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PATH FINDING ALGORITHMS IN 
GAME ENGINE DEVELOPMENT 

Baldeve Paunoo, Daut Daman 

INTRODUCTION   

Commercial games are still growing and are a billion-dollar 
industry. Great graphics have been the vital factor to attract 
the user, and mostly the main driving forces for sales. 
However, it is no longer true. More realistic gaming 
experiences are also an important factor to make a game 
valuable in the market (Bj”ornsson, Y et al. 2003). 
Therefore, artificial intelligence has become more and more 
important nowadays. Artificial intelligence in game always 
relates to the character in game, which is able to think like 
human and behave like human beings. One of the artificial 
intelligence techniques which have been developed recent 
years is path finding. Path finding gives the best route for 
the game character to move from starting point to the goal 
destination.

There are diverse forms of path finding, such as 
graph based, natural, bump 'n' grind, tracing, orbital and so 
on. Selecting a good path finding algorithm is essential. 
However, it depends on the type of game and the players’ 
view point. Consider an example of the bump 'n' grid 
method in a real time strategy (RTS) game – whenever the 
player encounters any obstacles like a wall, the method will 
incrementally change the angle until it finds an appropriate 
angle to avoid the obstacle. It creates an ungraceful 
movement. Natural algorithms are by far the best type of 
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algorithm for path finding; they simulate the human mind 
to solve the problem of path finding. Unfortunately, they 
require enormous memory and high processing power.  

Figure 4.1 Situation of with and without path finding algorithm 
  (Amit 2004) 

Consider the above situation (see Figure 4.1). The 
unit starts at the initial point (indicated by “start”) and it 
intends to reach the goal point.  It changes direction once it 
detects any obstacle. In this example, it finds its way 
around the "U"-shaped obstacle. In contrast, a pathfinder 
would have found a shorter path (solid line on right), 
without sending the unit into the concave shaped obstacle. 
Pathfinders allow us to look ahead and make appropriate 
plans. Pathfinding can be used to solve many movement 
problems (Amit 2004).   
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SEARCH ALGORITHMS  

The main purpose of search algorithms is to find the 
shortest path with the cheapest cost. The aim is to find the 
best path by using as little memory as possible in the 
shortest time. There are many common algorithms, and 
they can be ranged from the simplest to the most 
complicated. Overall, the search algorithms can be 
categorized into two parts; the brute-force search and the 
heuristic search.

Brute-Force Search / Blind Search

Brute-force search is the most popular search algorithm. It 
is the simplest way to get the best route. Generally, it will 
go towards the goal and turns to another direction 
whenever an obstacle is met. It will keep tracing around the 
edges of obstacles repeatedly. Therefore, it is called “blind 
search” (Mattews 1999). 

This approach does not require any domain specific 
knowledge of the game world. What it needs is a state 
description, a set of legal operators, an initial state and a 
description of the goal state. This approach form the basis 
of the following approaches - breadth-first search, 
bidirectional search, depth-first search, depth-first iterative-
deepening search and uniform cost search (Korf  1998). 

Although this approach is significantly simple, it 
suffers from memory consumption. This problem becomes 
obvious and unavoidable when the tree complexity 
increases. A faster machine can help the situation, but the 
problem is still cannot fully be resolved.  
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Breadth-First Search 

Breadth-first search is a tree-like algorithm. The tree is 
generated hierarchically in top down manner until a 
solution is found. (Mattews 1999). Besides, the searching 
time is proportional to the tree size. It consumes more 
memory as the number of nodes increases. As a result, it is 
detrimentally in practice, and will exhaust the memory 
available on typical computer. However, it is guaranteed to 
find a shortest path as long as the cost of each node is the 
same. 

Bidirectional Search 

Bidirectional search consists of two breadth-first searches. 
Both start simultaneously, one start from initial position 
and the other on from goal position. They keep on 
searching until they find the same node (Mattews 1999). 
The path form the initial state is then concatenated with the 
inverse of the path from the goal state to form the complete 
solution path. Hence, it can be said as an algorithm that 
requires an explicit goal state instead of simply testing the 
goal condition. 

Bidirectional search still guarantees optimal 
solutions. But, at the same time, it has double space bound 
problems as breadth-first search do (Korf 1998). 

Depth-First Search 

The depth-first search extends node’s descendant before its 
siblings, until it either reaches the goal or a certain cut-off 
point. Then it will examine the other possible path 
(Mattews 1999).
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The breadth-first works on a list of first-in first-out 
(FIFO) queue while depth-first search treats the list as a 
last-in first-out (LIFO) stack (Korf 1998). The advantage of 
this approach is the space requirement. It is proportional to 
the search depth, as oppose to the exponential for breadth-
first search. However, it has a possibility to span to infinite 
tree once it traverses only to the left-most path.  

Depth-First Iterative-Deepening Search 

A combination of the features from breadth-first and depth-
first search is called depth-first iterative-deepening search 
(DFID) (Stickel and Tyson 1985; Korf 1985). The depth-
first iterative-deepening search is similar to depth-first 
search. The main difference is the cut-off point starts at the 
straight line distance to the goal. Once all nodes up to that 
point have been expanded, the cut-off point is incremented 
and the search will be repeated.  

Starting from depth level one DFID performs a 
depth-first search to level by level until the goal solution is 
obtained. DFID is guaranteed to be along the shortest path 
since it never generates a node unless it has a child node. 
The iteration will be terminated when solution is found. 
Therefore, the space complexity is not too high. 

Dijkstra’s Algorithm

Dijkstra's algorithm (Dijkstra 1959), solves a shortest path 
problem for a directed and connected graph which has 
nonnegative edge weights. A more modern interpretation 
and proof of its correctness can be found in (Cormen et al. 
1990).
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Dijkstra’s algorithm looks at the unprocessed 
neighbors of the node closest to the start, and sets the 
update distances. The distance is calculated based on the 
cost instead of the number of nodes from start point to the 
goal.

This algorithm expands the node that is farthest 
from the start node, so it ends up ‘stumbling’ into the goal 
node just like the breadth-first search. It is guaranteed to 
find the shortest path (Mattews 1999).

The set V is the set of all vertices in the graph G. 
The set E is the set of ordered pairs which represent 
connected vertices in the graph - if (u, v) belongs to E then 
there is a connection from vertex u to vertex v 

Assume that the function w: V x V -> [0, ]
describes the cost w(x, y) of moving from vertex x to vertex 
y (non-negative cost). The cost of a path between two 
vertices is the sum of costs of the edges in that path. The 
cost of an edge can be thought of as (a generalisation of) 
the distance between those two vertices. For a given pair of 
vertices s, t in V, the algorithm finds the path from s to t
with lowest cost (i.e. the shortest path).

The algorithm works by constructing a subgraph S 
such that the distance of any vertex v' (in S) from s is 
known to be a minimum within G. Initially S is simply the 
single vertex s, and the distance of s from itself is zero. 
Edges are added to S at each stage by  

(a) identifying all the edges ei = (vi1,vi2) in G-S such 
that vi1 is in S and vi2 is in G, and then

(b) choosing the edge ej = (vj1,vj2) in G-S which 
gives the minimum distance of its vertex vj2 (in G) 
from s from all edges ei. The algorithm terminates 
either when S becomes a spanning tree of G, or 
when all the vertices of interest are within S.  
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The procedure for adding an edge ej to S maintains 
the property that the distances of all the vertices within S 
from s are known to be minimum.  

A few subroutines implemented with Dijkstra's 
algorithm (Dijkstra.E. W. 1959):  

Initialize-Single-Source (G,s) 
1 for each vertex v in V[G] 
2 do d[v] := infinite 
3       previous[v] := 0 
4 d[s] := 0 
Relax(u,v,w)
1 if d[v] > d[u] + w(u,v) 
2 then d[v] := d[u] + w(u,v) 
3         previous[v] := u 

v = Extract-Min(Q) searches for the vertex v in the vertex 
set Q that has the least d[v] value. That vertex is removed 
from the set Q and then returned.  

Another version of the algorithm is given by 
Jonsson and Markus (1997):

Dijkstra(G,w,s)  
 1 Initialize-Single-Source(G,s) 
 2 S := empty set 
3 Q := set of all vertexes 
 4 while Q is not an empty set 
 5 do u := Extract-Min(Q) 
 6          S := S union {u} 
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 7          for each vertex v which is a    
neighbour of u 

 8 do Relax(u,v,w) 

A related problem is the traveling salesman 
problem, which is the problem of finding the shortest path 
that goes through every vertex exactly once, and returns to 
the start. That problem is NP-hard, so it cannot be solved 
by Dijkstra's algorithm (Dijkstra.E. W. 1959), nor by any 
other known polynomial-time algorithm.  

Uniform-Cost Search 

Instead of expanding the nodes based on the depth from the 
root in tree, uniform-cost search extends nodes according to 
the cost of the node from root. At each loop, the node, 
which is going to be expanded, is the one who has the 
lowest cost. The nodes are stored in a priority queue.  This 
algorithm is also known as Dijkstra’s single source 
shortest-path algorithm (Dijkstra.E.W. 1959). 
Unfortunately, it also suffers the same problem as breadth-
first search, which is memory limitation. 

Heuristic Search 

Heuristic search is a search that does not guarantee the best 
solution but it does give a good solution in a reasonable 
time. This is because it does not search all the possibilities 
for a solution; it concentrates on solution that seems to 
match or seems to be able to give a good solution. By 
sacrificing computational on all the possibilities available 
to a solution, it shortened the time required to come up with 
the solution. This is good for solution that requires instant 
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solution; this is because some solution will take a very long 
period to be solved. 

Best-First Search 

Best-first search is a search algorithm which optimises 
breadth first search by ordering all current paths according 
to some heuristic. The heuristic attempts to predict how 
close the end of a path is to a solution (Stout and Bryan 
1999). Paths which are judged to be closer to a solution are 
extended first. Efficient selection of the current best 
candidate for extension is typically implemented using a 
priority queue.

Best-first algorithms are often used for path finding 
in combinatorial search. If a good evaluation function is 
provided, best first search may drastically cut down the 
amount of search that we have to do to find a solution. We 
may not find the best solution, but if a solution exists you 
will eventually find it, and there is a good chance of finding 
it quickly. If the evaluation function is no good then the 
performances will be at par with simpler search techniques 
such as depth first or breadth first. And if the evaluation 
function is very expensive and takes longer period to 
calculate, the benefits of cutting down on the amount of 
search may be outweighed by the costs of assigning a 
score.

A* Algorithm 

Best first search is useful, but in its original form, it does 
not take into account the cost of the path when choosing 
which node to search from next. There is a variant of best 
first search known as A* which attempts to find a solution 
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which minimizes the total length or cost of the solution 
path. It combines advantages of breadth first search and 
best first search, where the shortest path is found first and 
the next node to be explored is potentially closest to the 
solution. 

A* algorithm employs a "heuristic estimate"(Korf 
1998) which ranks each node by an estimate of the best 
route that goes through that node (Koenig et al. 2001). It 
visits the nodes in order of this heuristic estimate. The A* 
algorithm is therefore an example of best-first search. In the 
A* algorithm the score which is assigned to a node is a 
combination of the cost of the path so far and the estimated 
cost to solution. This is normally expressed as an 
evaluation function f, which involves the sum of the values 
returned by two functions g and h, g returning the cost of 
the path (from initial state) to the node in question, and h 
returning an estimate of the remaining cost to the goal state: 

f(Node) = g(Node) + h(Node) 

The A* algorithm then looks the same as the simple 
best first algorithm, but we use this slightly more complex 
evaluation function. The only drawback in A* algorithm is 
the high memory consumption. 

The algorithm (Jones and Heyes 2001) : 

AStarSearch 
   s.g = 0  // s is the start node 
   s.h = GoalDistEstimate( s ) 
   s.f = s.g + s.h 
   s.parent = null 
   push s on Open 
   while Open is not empty 
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      pop node n from Open  // n has the 
lowest f 
      if n is a goal node
         construct path
         return success 
      for each successor n' of n 
         newg = n.g + cost(n,n') 
         if n' is in Open or Closed, 
          and n'.g < = newg 
       skip 
         n'.parent = n 
         n'.g = newg 
         n'.h = GoalDistEstimate( n' ) 
         n'.f = n'.g + n'.h 
         if n' is in Closed 
            remove it from Closed 
         if n' is not yet in Open 
            push n' on Open 
      push n onto Closed 
   return failure // if no path found

Iterative-Deepening A* (IDA*) 

Iterative-Deepening-A* or IDA* solves the memory 
constraint of A* algorithm without sacrificing the solution 
efficiency. Each iteration of the algorithm is a depth-first 
search that keeps track of the cost, f(Node) = g(Node) + 
h(Node), of each node generated. Threshold costs are 
estimated at the initial state.  As soon as a node is generated 
which cost exceed a threshold for that iteration, its path is 
cut off and the search backtracks before it continues. The 
algorithm ends when a goal state is achieved in which total 
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cost does not exceed the estimated threshold. Besides 
requiring less memory, it also finds an optimal solution. 
Other benefits include easier to implement algorithm 
compared to A* and most often IDA* runs faster than A*. 

SMOOTHING THE A* PATH 

The first and most basic step in making an A* path more 
realistic is to remove the zigzag effect it produces, which 
you can see in Figure 4.2a. This effect is due to the fact that 
the standard A* algorithm searches the eight tiles 
surrounding a tile, and then proceeds to the next tile. This is 
acceptable in primitive games for smooth movement 
required in most games today. 

A simple method of reducing the number of turns is 
modify the A* algorithm by adding  cost penalty each time 
a turn is taken (Lester and Patrick 2003). This will favor 
paths which are the same distance, but take fewer turns, as 
shown in 4.2b. Unfortunately, this simplistic solution is not 
very effective, because all turns are still at 45-degree 
angles, which causes the movement to continue to look 
rather unrealistic. In addition, the 45-degree-angle turns 
often cause paths to be much longer than they have to be. 
Finally, this solution may add significantly to the time 
required to perform the A* algorithm.  
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Figure 4.2  The Common Zigzag Effect of the Standard (a) 
amodification with fewer, but still fairly dramatic 

    turns, (b) and the most directed and hence desired 
    route (c) (Stout 1999) 

The actual desired path is that shown in 1.2c, which 
takes the most direct route, regardless of the angle. In order 
to achieve this effect, a simple smoothing algorithm is 
introduced which takes place after the standard A* 
algorithm has completed its path. The algorithm makes use 
of a function Walkable(pointA, pointB) (Lester 2003), 
which samples points along a line from point A to point B
at a certain granularity (typically we use one-fifth of a tile 
width), checking at each point whether the unit overlaps 
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any neighboring blocked tile. Using the width of the unit, it 
checks the four points in a diamond pattern around the 
unit's center. The function returns true if it encounters no 
blocked tiles and false otherwise. 

COMPARISON BETWEEN ALGORITHMS 

Based on the literature, we found out that there are some 
differences between these algorithms. Obviously, brute-
force search does not have the knowledge about the cost of 
the path to the goal in selecting the next node to span. On 
the contrary, the heuristic search plans the whole path 
before going anywhere. A comparison among the most 
popular search algorithms is listed in the Table 4.1 below 

Table 4.1 Comparison between the algorithms

Methods Best-First 
Search

Dijkstra’s 
Algorithm 

A* Algorithm 

Main 
characteristics 

Expands nodes 
based on a 
heuristic 
estimate of the 
cost to the goal. 
Nodes, which 
are estimated to 
give the best 
cost, are 
expanded first 

Looks at the 
unprocessed 
neighbors of the 
node closest to the 
start, and sets or 
updates their 
distances (in terms 
of cost, not number 
of nodes) from the 
start. The Dijkstra 
algorithm expands 
the node that is 

A combination of 
BFS and Dijkstra’s 
algorithms( Dijkstra’s 
1959). It finds the 
best distance cost and 
use heuristic method 
to accelerate the 
searching process. 



57

CONCLUSION 

The comparison among the well-known path finding 
algorithms has been presented. It shows that A* provides 
the best solution with minimum cost. We believe A* which 
is widely used is the best path finding without doubt. A* 
algorithm is similar to Dijkstra's algorithm in which it can 
be used to find a shortest path. A* may not perform very 
well if the map is very large and the quality of the search 
depends on the quality of the estimated heuristic (Stout and 
Bryan 1999). The emergence of variations of A* algorithm 
together with genetic algorithm, neural networks and 
reinforcement learning are for a better and realistic path 
finding algorithms. 

farthest from the 
start node, so it 
ends up 
"stumbling" into the 
goal node. 

Reliability Guarantee to 
find a shortest 
path. 

Guarantee to find a 
best path. 

Guarantee to find a 
best path as long as 
the heuristic estimate 
is admissible. 

Processing
time 

Fast. Slow. Fast. 

Heuristic
estimation 

Uses heuristic 
estimation. 

Not using any 
heuristic estimation. 

Uses heuristic 
estimation. 

Memory 
consumption 

Less. Low. High. 
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