
4
PATH FINDING ALGORITHMS IN
GAME ENGINE DEVELOPMENT

Baldeve Paunoo, Daut Daman

INTRODUCTION

Commercial games are still growing and are a billion-dollar
industry. Great graphics have been the vital factor to attract
the user, and mostly the main driving forces for sales.
However, it is no longer true. More realistic gaming
experiences are also an important factor to make a game
valuable in the market (Bj”ornsson, Y et al. 2003).
Therefore, artificial intelligence has become more and more
important nowadays. Artificial intelligence in game always
relates to the character in game, which is able to think like
human and behave like human beings. One of the artificial
intelligence techniques which have been developed recent
years is path finding. Path finding gives the best route for
the game character to move from starting point to the goal
destination.

There are diverse forms of path finding, such as
graph based, natural, bump 'n' grind, tracing, orbital and so
on. Selecting a good path finding algorithm is essential.
However, it depends on the type of game and the players’
view point. Consider an example of the bump 'n' grid
method in a real time strategy (RTS) game – whenever the
player encounters any obstacles like a wall, the method will
incrementally change the angle until it finds an appropriate
angle to avoid the obstacle. It creates an ungraceful
movement. Natural algorithms are by far the best type of

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Universiti Teknologi Malaysia Institutional Repository

https://core.ac.uk/display/11803685?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

44

algorithm for path finding; they simulate the human mind
to solve the problem of path finding. Unfortunately, they
require enormous memory and high processing power.

Figure 4.1 Situation of with and without path finding algorithm
 (Amit 2004)

Consider the above situation (see Figure 4.1). The
unit starts at the initial point (indicated by “start”) and it
intends to reach the goal point. It changes direction once it
detects any obstacle. In this example, it finds its way
around the "U"-shaped obstacle. In contrast, a pathfinder
would have found a shorter path (solid line on right),
without sending the unit into the concave shaped obstacle.
Pathfinders allow us to look ahead and make appropriate
plans. Pathfinding can be used to solve many movement
problems (Amit 2004).

45

SEARCH ALGORITHMS

The main purpose of search algorithms is to find the
shortest path with the cheapest cost. The aim is to find the
best path by using as little memory as possible in the
shortest time. There are many common algorithms, and
they can be ranged from the simplest to the most
complicated. Overall, the search algorithms can be
categorized into two parts; the brute-force search and the
heuristic search.

Brute-Force Search / Blind Search

Brute-force search is the most popular search algorithm. It
is the simplest way to get the best route. Generally, it will
go towards the goal and turns to another direction
whenever an obstacle is met. It will keep tracing around the
edges of obstacles repeatedly. Therefore, it is called “blind
search” (Mattews 1999).

This approach does not require any domain specific
knowledge of the game world. What it needs is a state
description, a set of legal operators, an initial state and a
description of the goal state. This approach form the basis
of the following approaches - breadth-first search,
bidirectional search, depth-first search, depth-first iterative-
deepening search and uniform cost search (Korf 1998).

Although this approach is significantly simple, it
suffers from memory consumption. This problem becomes
obvious and unavoidable when the tree complexity
increases. A faster machine can help the situation, but the
problem is still cannot fully be resolved.

46

Breadth-First Search

Breadth-first search is a tree-like algorithm. The tree is
generated hierarchically in top down manner until a
solution is found. (Mattews 1999). Besides, the searching
time is proportional to the tree size. It consumes more
memory as the number of nodes increases. As a result, it is
detrimentally in practice, and will exhaust the memory
available on typical computer. However, it is guaranteed to
find a shortest path as long as the cost of each node is the
same.

Bidirectional Search

Bidirectional search consists of two breadth-first searches.
Both start simultaneously, one start from initial position
and the other on from goal position. They keep on
searching until they find the same node (Mattews 1999).
The path form the initial state is then concatenated with the
inverse of the path from the goal state to form the complete
solution path. Hence, it can be said as an algorithm that
requires an explicit goal state instead of simply testing the
goal condition.

Bidirectional search still guarantees optimal
solutions. But, at the same time, it has double space bound
problems as breadth-first search do (Korf 1998).

Depth-First Search

The depth-first search extends node’s descendant before its
siblings, until it either reaches the goal or a certain cut-off
point. Then it will examine the other possible path
(Mattews 1999).

47

The breadth-first works on a list of first-in first-out
(FIFO) queue while depth-first search treats the list as a
last-in first-out (LIFO) stack (Korf 1998). The advantage of
this approach is the space requirement. It is proportional to
the search depth, as oppose to the exponential for breadth-
first search. However, it has a possibility to span to infinite
tree once it traverses only to the left-most path.

Depth-First Iterative-Deepening Search

A combination of the features from breadth-first and depth-
first search is called depth-first iterative-deepening search
(DFID) (Stickel and Tyson 1985; Korf 1985). The depth-
first iterative-deepening search is similar to depth-first
search. The main difference is the cut-off point starts at the
straight line distance to the goal. Once all nodes up to that
point have been expanded, the cut-off point is incremented
and the search will be repeated.

Starting from depth level one DFID performs a
depth-first search to level by level until the goal solution is
obtained. DFID is guaranteed to be along the shortest path
since it never generates a node unless it has a child node.
The iteration will be terminated when solution is found.
Therefore, the space complexity is not too high.

Dijkstra’s Algorithm

Dijkstra's algorithm (Dijkstra 1959), solves a shortest path
problem for a directed and connected graph which has
nonnegative edge weights. A more modern interpretation
and proof of its correctness can be found in (Cormen et al.
1990).

48

Dijkstra’s algorithm looks at the unprocessed
neighbors of the node closest to the start, and sets the
update distances. The distance is calculated based on the
cost instead of the number of nodes from start point to the
goal.

This algorithm expands the node that is farthest
from the start node, so it ends up ‘stumbling’ into the goal
node just like the breadth-first search. It is guaranteed to
find the shortest path (Mattews 1999).

The set V is the set of all vertices in the graph G.
The set E is the set of ordered pairs which represent
connected vertices in the graph - if (u, v) belongs to E then
there is a connection from vertex u to vertex v

Assume that the function w: V x V -> [0,]
describes the cost w(x, y) of moving from vertex x to vertex
y (non-negative cost). The cost of a path between two
vertices is the sum of costs of the edges in that path. The
cost of an edge can be thought of as (a generalisation of)
the distance between those two vertices. For a given pair of
vertices s, t in V, the algorithm finds the path from s to t
with lowest cost (i.e. the shortest path).

The algorithm works by constructing a subgraph S
such that the distance of any vertex v' (in S) from s is
known to be a minimum within G. Initially S is simply the
single vertex s, and the distance of s from itself is zero.
Edges are added to S at each stage by

(a) identifying all the edges ei = (vi1,vi2) in G-S such
that vi1 is in S and vi2 is in G, and then

(b) choosing the edge ej = (vj1,vj2) in G-S which
gives the minimum distance of its vertex vj2 (in G)
from s from all edges ei. The algorithm terminates
either when S becomes a spanning tree of G, or
when all the vertices of interest are within S.

49

The procedure for adding an edge ej to S maintains
the property that the distances of all the vertices within S
from s are known to be minimum.

A few subroutines implemented with Dijkstra's
algorithm (Dijkstra.E. W. 1959):

Initialize-Single-Source (G,s)
1 for each vertex v in V[G]
2 do d[v] := infinite
3 previous[v] := 0
4 d[s] := 0
Relax(u,v,w)
1 if d[v] > d[u] + w(u,v)
2 then d[v] := d[u] + w(u,v)
3 previous[v] := u

v = Extract-Min(Q) searches for the vertex v in the vertex
set Q that has the least d[v] value. That vertex is removed
from the set Q and then returned.

Another version of the algorithm is given by
Jonsson and Markus (1997):

Dijkstra(G,w,s)
 1 Initialize-Single-Source(G,s)
 2 S := empty set
3 Q := set of all vertexes
 4 while Q is not an empty set
 5 do u := Extract-Min(Q)
 6 S := S union {u}

50

 7 for each vertex v which is a
neighbour of u

 8 do Relax(u,v,w)

A related problem is the traveling salesman
problem, which is the problem of finding the shortest path
that goes through every vertex exactly once, and returns to
the start. That problem is NP-hard, so it cannot be solved
by Dijkstra's algorithm (Dijkstra.E. W. 1959), nor by any
other known polynomial-time algorithm.

Uniform-Cost Search

Instead of expanding the nodes based on the depth from the
root in tree, uniform-cost search extends nodes according to
the cost of the node from root. At each loop, the node,
which is going to be expanded, is the one who has the
lowest cost. The nodes are stored in a priority queue. This
algorithm is also known as Dijkstra’s single source
shortest-path algorithm (Dijkstra.E.W. 1959).
Unfortunately, it also suffers the same problem as breadth-
first search, which is memory limitation.

Heuristic Search

Heuristic search is a search that does not guarantee the best
solution but it does give a good solution in a reasonable
time. This is because it does not search all the possibilities
for a solution; it concentrates on solution that seems to
match or seems to be able to give a good solution. By
sacrificing computational on all the possibilities available
to a solution, it shortened the time required to come up with
the solution. This is good for solution that requires instant

51

solution; this is because some solution will take a very long
period to be solved.

Best-First Search

Best-first search is a search algorithm which optimises
breadth first search by ordering all current paths according
to some heuristic. The heuristic attempts to predict how
close the end of a path is to a solution (Stout and Bryan
1999). Paths which are judged to be closer to a solution are
extended first. Efficient selection of the current best
candidate for extension is typically implemented using a
priority queue.

Best-first algorithms are often used for path finding
in combinatorial search. If a good evaluation function is
provided, best first search may drastically cut down the
amount of search that we have to do to find a solution. We
may not find the best solution, but if a solution exists you
will eventually find it, and there is a good chance of finding
it quickly. If the evaluation function is no good then the
performances will be at par with simpler search techniques
such as depth first or breadth first. And if the evaluation
function is very expensive and takes longer period to
calculate, the benefits of cutting down on the amount of
search may be outweighed by the costs of assigning a
score.

A* Algorithm

Best first search is useful, but in its original form, it does
not take into account the cost of the path when choosing
which node to search from next. There is a variant of best
first search known as A* which attempts to find a solution

52

which minimizes the total length or cost of the solution
path. It combines advantages of breadth first search and
best first search, where the shortest path is found first and
the next node to be explored is potentially closest to the
solution.

A* algorithm employs a "heuristic estimate"(Korf
1998) which ranks each node by an estimate of the best
route that goes through that node (Koenig et al. 2001). It
visits the nodes in order of this heuristic estimate. The A*
algorithm is therefore an example of best-first search. In the
A* algorithm the score which is assigned to a node is a
combination of the cost of the path so far and the estimated
cost to solution. This is normally expressed as an
evaluation function f, which involves the sum of the values
returned by two functions g and h, g returning the cost of
the path (from initial state) to the node in question, and h
returning an estimate of the remaining cost to the goal state:

f(Node) = g(Node) + h(Node)

The A* algorithm then looks the same as the simple
best first algorithm, but we use this slightly more complex
evaluation function. The only drawback in A* algorithm is
the high memory consumption.

The algorithm (Jones and Heyes 2001) :

AStarSearch
 s.g = 0 // s is the start node
 s.h = GoalDistEstimate(s)
 s.f = s.g + s.h
 s.parent = null
 push s on Open
 while Open is not empty

53

 pop node n from Open // n has the
lowest f
 if n is a goal node
 construct path
 return success
 for each successor n' of n
 newg = n.g + cost(n,n')
 if n' is in Open or Closed,
 and n'.g < = newg
 skip
 n'.parent = n
 n'.g = newg
 n'.h = GoalDistEstimate(n')
 n'.f = n'.g + n'.h
 if n' is in Closed
 remove it from Closed
 if n' is not yet in Open
 push n' on Open
 push n onto Closed
 return failure // if no path found

Iterative-Deepening A* (IDA*)

Iterative-Deepening-A* or IDA* solves the memory
constraint of A* algorithm without sacrificing the solution
efficiency. Each iteration of the algorithm is a depth-first
search that keeps track of the cost, f(Node) = g(Node) +
h(Node), of each node generated. Threshold costs are
estimated at the initial state. As soon as a node is generated
which cost exceed a threshold for that iteration, its path is
cut off and the search backtracks before it continues. The
algorithm ends when a goal state is achieved in which total

54

cost does not exceed the estimated threshold. Besides
requiring less memory, it also finds an optimal solution.
Other benefits include easier to implement algorithm
compared to A* and most often IDA* runs faster than A*.

SMOOTHING THE A* PATH

The first and most basic step in making an A* path more
realistic is to remove the zigzag effect it produces, which
you can see in Figure 4.2a. This effect is due to the fact that
the standard A* algorithm searches the eight tiles
surrounding a tile, and then proceeds to the next tile. This is
acceptable in primitive games for smooth movement
required in most games today.

A simple method of reducing the number of turns is
modify the A* algorithm by adding cost penalty each time
a turn is taken (Lester and Patrick 2003). This will favor
paths which are the same distance, but take fewer turns, as
shown in 4.2b. Unfortunately, this simplistic solution is not
very effective, because all turns are still at 45-degree
angles, which causes the movement to continue to look
rather unrealistic. In addition, the 45-degree-angle turns
often cause paths to be much longer than they have to be.
Finally, this solution may add significantly to the time
required to perform the A* algorithm.

55

Figure 4.2 The Common Zigzag Effect of the Standard (a)
amodification with fewer, but still fairly dramatic

 turns, (b) and the most directed and hence desired
 route (c) (Stout 1999)

The actual desired path is that shown in 1.2c, which
takes the most direct route, regardless of the angle. In order
to achieve this effect, a simple smoothing algorithm is
introduced which takes place after the standard A*
algorithm has completed its path. The algorithm makes use
of a function Walkable(pointA, pointB) (Lester 2003),
which samples points along a line from point A to point B
at a certain granularity (typically we use one-fifth of a tile
width), checking at each point whether the unit overlaps

56

any neighboring blocked tile. Using the width of the unit, it
checks the four points in a diamond pattern around the
unit's center. The function returns true if it encounters no
blocked tiles and false otherwise.

COMPARISON BETWEEN ALGORITHMS

Based on the literature, we found out that there are some
differences between these algorithms. Obviously, brute-
force search does not have the knowledge about the cost of
the path to the goal in selecting the next node to span. On
the contrary, the heuristic search plans the whole path
before going anywhere. A comparison among the most
popular search algorithms is listed in the Table 4.1 below

Table 4.1 Comparison between the algorithms

Methods Best-First
Search

Dijkstra’s
Algorithm

A* Algorithm

Main
characteristics

Expands nodes
based on a
heuristic
estimate of the
cost to the goal.
Nodes, which
are estimated to
give the best
cost, are
expanded first

Looks at the
unprocessed
neighbors of the
node closest to the
start, and sets or
updates their
distances (in terms
of cost, not number
of nodes) from the
start. The Dijkstra
algorithm expands
the node that is

A combination of
BFS and Dijkstra’s
algorithms(Dijkstra’s
1959). It finds the
best distance cost and
use heuristic method
to accelerate the
searching process.

57

CONCLUSION

The comparison among the well-known path finding
algorithms has been presented. It shows that A* provides
the best solution with minimum cost. We believe A* which
is widely used is the best path finding without doubt. A*
algorithm is similar to Dijkstra's algorithm in which it can
be used to find a shortest path. A* may not perform very
well if the map is very large and the quality of the search
depends on the quality of the estimated heuristic (Stout and
Bryan 1999). The emergence of variations of A* algorithm
together with genetic algorithm, neural networks and
reinforcement learning are for a better and realistic path
finding algorithms.

farthest from the
start node, so it
ends up
"stumbling" into the
goal node.

Reliability Guarantee to
find a shortest
path.

Guarantee to find a
best path.

Guarantee to find a
best path as long as
the heuristic estimate
is admissible.

Processing
time

Fast. Slow. Fast.

Heuristic
estimation

Uses heuristic
estimation.

Not using any
heuristic estimation.

Uses heuristic
estimation.

Memory
consumption

Less. Low. High.

58

REFERENCE

AMIT .2004. Citing Internet Sources URL
http://theory.stanford.edu/~amitp/GameProgramming/
AStarComparison.html.

BJ”ORNSSON, Y., ENZENBERGER, M, HOLTE, R, SCHAEFFER,
J. AND YAP, P. Comparison of Different Grid
Abstraction for Pathfinding on Maps.

CORMEN, T. H., LEISERSON, C. E., RIVEST R. L. 1990.
Introduction to Algorithms. The MIT Press/McGraw-
Hill.

DIJKSTRA, E. W. 1959. A note on Two Problems in
Connexion with Graphs. Numerische Mathematic.
1:269-271

DIABLO, SENIOR. 20 December 2003. Citing Internet
sources URL http://ai-
depot.com/Tutorial/PathFinding.html.

JÖNSSON, F. MARKUS. 1997. An Optimal Pathfinder for
Vehicles in Real-World Digital Terrain Maps. Master
Thesis, The Royal Institute of Science, School of
Engineering Physics, Stockholm, Sweden.

JONES, JUSTIN HEYES. 2 September 2001. Citing Internet
sources URL
http://www.geocities.com/jheyesjones/pseudocode.htm
l.

KOENIG, S.; LIKACHEV, M.; AND FURCY, D. 2001. Lifelong
Planning A*. Technical Report, GIT-COGSCI-2002/2,
College of Computing, Georgia Institute of
Technology, Atlanta (Georgia).

KORF, R. E.1985. Depth-first iterative-deepening: An
Optimal admissible Tree Search. Artificial
Intelligence. 27:97-108.

59

KORF, R. E. 1998. Artificial Intelligence Search Algorithms,
Algorithm and Theory of Computation Handbook.
Reading, Mass: CRC Press.

LESTER, PATRICK. 2 March 2003. Citing Internet sources
URLhttp://www.policyalmanac.org/games/aStarTutori
al.htm.

MATTEWS. 27 February 1999. Pathfinding: A Comparison
between Algorithms.

STICKEL, M. E. AND TYSON, W. M. 1985. An Analysis of
Consecutivelt bounded depth-first search with
Applications in Automated Deduction. In Proceedings
of the International Joing Conference on Artificial
Intelligence (IJCAI-85), 1073-1075. Los Angeles, Ca.

STOUT, BRYAN. 12 February 1999. Citing Internet sources
URLhttp://www.gamasutra.com/features/19990212/sm
_01.htm.

STOUT, W. B. 12 February 1999. Citing Internet Resouce
URLhttp://www.gamasutra.com/features/19990212/sm
_01.htm.

