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1  
ABSTRACT 
 
The valuation of gas storage facilities is characterized as a stochastic impulse control problem with finite horizon resulting in Hamilton-Jacobi-Bellman 
(HJB) equations for the value function. In this context the two catagories of solving schemes for optimal switching are discussed in a stochastic control 
framework. We reviewed some numerical methods which include approaches related to partial differential equations (PDEs), Markov chain 
approximation, nonparametric regression, quantization method and some practitioners’ methods. This paper considers optimal switching problem arising 
in valuation of gas storage contracts for leasing the storage facilities, and investigates the recent developments as well as their advantages and 
disadvantages of each scheme based on dynamic programming principle (DPP). 
 
| Gas storage facility | Stochastic impulse control problems | Optimal switching | Optimal stopping time | Semi-Lagrangian scheme | HJB equation, 
Viscosity solution | 
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1. INTRODUCTION 
 

In the natural gas industry, the modelling and 
valuation of leases on natural gas storage have been major 
concerns in the last decade, especially since deregulation of 
U.S. and Europe energy markets. In this flourishing market, 
manager/renter of gas storage facilities has been taking 
advantages of the fluctuation in market prices by releasing 
natural gas from storage in seasons with high demand. 
Recently, several authors have focused on solving this 
operational flexibility problem to maximize the revenue, by 
exploiting storage operational strategies. These studies, 
such as [1 through 20], have led to the consideration of the 
optimal switching models with timing flexibility. In 1997, 
Pilipovic [16] in her book, which is the first book on energy 
risk, studied the natural gas price models and storage 
valuation problem as a price swing straddle, which is an 
operational method by using the strips of spark-spread 
options approach such as being used in 2003 by Bringedal 
[2], Eydeland and Wolyniec [6] and Thompson, Davison 
and Hassmussen [18]. Also, by using real options approach, 
for instance gas storage can be reduced to a collection of 
calendar call options. Option pricing methods are intuitive 
and have fast computational speed of convergence, but it 
ignores key operational constraints such as dynamic 
capacity limits [7, 18].  

Moreover, with reference to studies in [1 through 
20], the valuation of gas storage facilities is characterized as  
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a stochastic control problem resulting in Hamilton-
Jacobi-Bellman (HJB) equations. As shown in [21, 22], the 
value of a stochastic control problem is identical to the 
viscosity solution of a HJB equation. As a result, the value 
of a gas storage contract can be computed by solving the 
corresponding HJB equation using partial differential 
equation (PDE)-based approaches such as typically finite 
difference (FD) methods. It is important to ensure that a 
numerical scheme converges to the viscosity solution of the 
corresponding HJB equation. In 2003, Thompson et al. [18] 
used a Tsitsiklis and Van Roy (TvR) scheme as an explicit 
time stepping. The TvR scheme suffers from time step 
restrictions due to stability conditions. To overcome this 
difficulty, Chen and Forsyth [4, 5 and 23] introduced semi-
Lagrangian time-stepping scheme. This implicit finite 
difference scheme has the same difficulty as the simulation-
based methods [3, 11] for HJB equation with no bang-bang 
control, i.e., it is computationally expensive. A control that 
only takes from a finite set is called bang-bang control. To 
construct a suitable PDE solver, Ware and Li [20, 24] 
developed a wavelet method coupled with a semi-
Lagrangian approach to solve the gas storage HJB equation. 
Although the wavelet method resolves this difficulty, the 
convergence proof is problematic. Due to the presence of 
inventory, the HJB equation is a degenerate PDE and shows 
the path-dependency of the methods. Also, the PDE 
methods depend on price models and suffer from 
dimensionality. 

In Ludkovski thesis [11], he introduced the optimal 
switching approach which reduced the storage facility 
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problem to an iterated optimal stopping time over a finite 
horizon. He developed a robust numerical scheme based on 
Longstaff-Schwartz Monte Carlo regression (LS) which 
outperforms the PDE approaches in aspect of 
dimensionality problems. Besides the capability of easily 
handling multi-dimensional problems, this scheme 
considers the operational constraints in the model. This 
simulation based methods [3, 11] can be used directly to 
solve the stochastic control problem with bang-bang type 
control. But, for the control which is not of bang-bang type, 
these methods are computationally expensive. Furthermore, 
simulation-based schemes have difficulty in achieving high 
accuracy [5].  

In addition to PDE solver and simulation-based 
approaches, another prevalent approach is lattice or tree 
models [12, 15] which can be considered as stochastic 
programming approaches. As an example of these 
approaches, in [15], Parsons presented a two-factor tree 
approach for valuing natural gas storage leases. His tree 
model has been tested successfully against historical data to 
quantify the optionality in storage leases. Meanwhile, 
lattice/tree methods such as trinomial and binomial tree 
approaches [7, 15 and 18], are resulted from Bellman’s 
optimal principle and used in real options due to being 
flexible, relatively simple and readily implemented in a 
computer program. Thus it can be widely used to evaluate 
options. However, trees cannot handle optimal exercise 
strategy problems arisen in natural gas storage [18]. There 
are two reasons for this. First, such trees are just explicit 
finite difference methods for solving parabolic PDEs.  In the 
case of natural gas storage the operating characteristics lead 
to equations of a parabolic and hyperbolic nature.  Since 
there are too many state variables in the problem, including 
the storage level, spot price, and forward prices, it is very 
difficult to solve the hyperbolic equations by tree models or 
by solving a finite difference equation [10]. Then to solve 
the hyperbolic equations, we need another technique more 
sophisticated than tree methods. Secondly, trees cannot 
handle price spikes properly [18].  
 
 
2. NATURAL GAS STORAGE FACILITY 
 
2.1  Introduction 
 

The gas storage facility problem discusses about 
determining the value of gas storage contracts for leasing 
the storage facilities. Owners of storage facilities lease out 
space within, and a leaseholder has the right to inject into or 
withdraw from the facility only for a pre-specified period of 
time, and within pre-specified volume constraints, which 
are described through a ratchet schedule [15].  A ratchet 
schedule is a schedule of all possible inventory levels (or 
ratchets) and their associated daily maximum injection and 
withdrawal rates. As the lease-holder injects or withdraws, 
she tends to maximize the revenue by only exploiting 
storage operational strategies and cover the dealing costs of 
operating the facility. Owners/operators of storage facilities 

are not necessarily the owners of the gas held in storage. 
Indeed, most working gas held in storage facilities is held 
under lease with shippers, local distribution companies 
(LDCs), or end users who own the gas. On the other hand, 
the type of entity that owns/operates the facility will 
determine to some extent how that facility's storage capacity 
is utilized. 
 
2.2  Why we choose the salt cavern storage?  
 

Among the underground storage facilities, i.e., 
depleted reservoirs in oil and/or gas fields, aquifers, salt 
cavern formations and artificial cavern, salt cavern is a 
common concern among researchers due to providing very 
high withdrawal and injection rates relative to their working 
gas capacity.  Since 1993, the natural gas storage industry 
has attempted to profit from the changes of the market 
conditions. The deregulation of energy market allows using 
the storage facility to inject or withdraw as changes in price 
levels or arbitrage opportunities presents in the market. 
Therefore, the facilities with more rapid cycle in their 
inventories, i.e., completely withdraw and refill working gas 
or vice versa, are more suitable to the flexible operational 
needs of today's storage users. On the other hand, the 
maximum profit obtains from high deliverability storage 
sites, which include salt cavern storage reservoirs as well as 
some depleted oil or gas reservoirs due to the largest daily 
withdrawal capability, [18, 19].  
 
2.3 Storage facility problem  

 
In this section, the corresponding  continuous-time 

stochastic impulse control is introduced, with the notations 
following Ludkovski’s work [11]. This operational 
flexibility problem is modelled as an optimal switching with 
timing flexibility to maximize the revenue by exploiting 
storage operational strategies [1 through 20]. Before going 
into the problem, we suppose some assumption on owner 
and gas market. 
 
2.3.1   Assumption on manager/renter 
 

1. She is rational. The manager/renter makes choices 
based on her rational outlook, available 
information and past experiences. And, government 
policy does not influence on her decisions. In this idea 
if the owner of storage facility believes that the price 
for gas will be higher in the future, it will stop or slow 
supply until the price rises. Consequently, the demand 
stays the same and gas prices will increase. In sum, the 
producer believes that the price will rise in the 
future, makes a rational decision to slow production 
and this decision partially affect what happens in the 
future. In conclusion, these rational expectations of the 
players will partially affect what happens to the 
economy in the future.  

2. She is risk-neutral. Risk-neutral investor is only 
concerned with an investment's expected return and 
overlooks risk in her investments. 
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3.   She is concerned to maximize the value function of her 
lease agreement over a finite time. 

4.  She is a price-taker. Her buying or selling transactions 
have no effect on the market in a form of monopoly. 
The owner can alter the injection and withdrawal rates 
without significantly affecting the market price of 
natural gas, [3]. 

 
2.3.2 Assumption on gas market 

 
1. Market is liquid. In this market, due to high level of 

trading, trading does not affect the gas price. And, the 
gas can be easily sold or bought that reflects the ability 
to convert the gas to cash quickly or being 
marketability. Then, it is safer to invest in liquid assets 
than illiquid ones because it is easier for an investor to 
get his/her money out of the investment. We can say 
that the higher liquidity, the lower spread and 
volatility.  Although there is no specific liquidity 
formula, liquidity ratios is used as a measure of 
liquidity. 

 
2. Market is fairly liberal, i.e., all participants have the 

opportunity to rent a storage facility to speculate and 
take the advantages of the volatility in prices to 
maximize the profit. 

 
3. Gas market shows a strong seasonality which   leads to 

intrinsic value of storage. To buy in low price, the 
owner locks-in forward contracts and sell in high price 
in heating/cooling days. 

 
2.3.3   Stochastic impulse control 

 
We study the following optimal switching problem 

from Carmona and Ludkovski’s work [3] as the storage 
facility model, with no changes or supplements. In advance, 
we label the three above operational strategies in the way 
that injection (-1), store or doing nothing (0) and 
withdrawal (1), i.e., we have three operational regimes 𝑖𝑖 ∈
{−1,0,1} by the payoff rate 𝜓𝜓𝑖𝑖(𝑡𝑡,𝐺𝐺𝑡𝑡 ,𝐶𝐶𝑡𝑡  ) in  $

𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦
 from 

running the facility in regime  𝑖𝑖 . 
 

 
𝐼𝐼𝐼𝐼𝐼𝐼𝑦𝑦𝐼𝐼𝑡𝑡:  𝜓𝜓−1(𝑡𝑡,𝐺𝐺𝑡𝑡 ,𝐶𝐶𝑡𝑡  ) = −𝐺𝐺𝑡𝑡 .𝑏𝑏𝑖𝑖𝐼𝐼 − 𝐾𝐾−1(𝐶𝐶𝑡𝑡  ) ,        

           𝑑𝑑𝐶𝐶𝑡𝑡 = 𝑦𝑦𝑖𝑖𝐼𝐼 (𝐶𝐶𝑡𝑡)𝑑𝑑𝑡𝑡                                                    (1) 
 

𝑆𝑆𝑡𝑡𝑆𝑆𝑦𝑦𝑦𝑦:    𝜓𝜓0(𝑡𝑡,𝐺𝐺𝑡𝑡 ,𝐶𝐶𝑡𝑡  ) = −𝐾𝐾0(𝐶𝐶𝑡𝑡  ) ,      
        𝑑𝑑𝐶𝐶𝑡𝑡 = 𝑦𝑦0(𝐶𝐶𝑡𝑡)𝑑𝑑𝑡𝑡                                                      (2) 

 
𝑊𝑊𝑖𝑖𝑡𝑡ℎ𝑑𝑑𝑦𝑦𝑦𝑦𝑑𝑑:   𝜓𝜓1(𝑡𝑡,𝐺𝐺𝑡𝑡 ,𝐶𝐶𝑡𝑡  ) = 𝐺𝐺𝑡𝑡 . 𝑏𝑏𝑆𝑆𝑜𝑜𝑡𝑡 − 𝐾𝐾1(𝐶𝐶𝑡𝑡  ) ,  

         𝑑𝑑𝐶𝐶𝑡𝑡 = −𝑦𝑦𝑆𝑆𝑜𝑜𝑡𝑡 (𝐶𝐶𝑡𝑡)𝑑𝑑𝑡𝑡                                                (3) 
 
 
 
where 

• Time horizon T, the life time of leasing agreement 
of the facility, 

•  (𝐺𝐺𝑡𝑡),  𝐺𝐺𝑡𝑡 ∈ ℝ𝑑𝑑 , Market gas prices given by a 
Markov continuous-time stochastic process quoted 
in dollars per million of British thermal units 
(MMBtu), with 1 (billion cubic feet) Bcf =106 
MMBtu. 

• Level of inventory in storage denoted by 𝐶𝐶𝑡𝑡 .  
• Finite cave capacity represented by 𝐶𝐶𝑚𝑚𝑖𝑖𝐼𝐼 ≤ 𝐶𝐶𝑡𝑡 ≤

𝐶𝐶𝑚𝑚𝑦𝑦𝑚𝑚  . 
• Constant discount (interest) rate r. 
• Denote the injection rate by 𝑦𝑦𝑖𝑖𝐼𝐼 (𝐶𝐶𝑡𝑡), quoted in Bcf 

per day. Injection of 𝑦𝑦𝑖𝑖𝐼𝐼 (𝐶𝐶𝑡𝑡) Bcf of gas requires the 
purchase of  𝑏𝑏𝑖𝑖𝐼𝐼 (𝐶𝐶𝑡𝑡) ≥ 𝑦𝑦𝑖𝑖𝐼𝐼 (𝐶𝐶𝑡𝑡) Bcf on the open 
market. 

• Similarly the withdrawal rate is labelled 
𝑦𝑦𝑆𝑆𝑜𝑜𝑡𝑡 (𝐶𝐶𝑡𝑡) and causes a market sale of  𝑏𝑏𝑆𝑆𝑜𝑜𝑡𝑡 (𝐶𝐶𝑡𝑡) ≤
𝑦𝑦𝑆𝑆𝑜𝑜𝑡𝑡𝐶𝐶𝑡𝑡  Bcf. 

• Capacity charges 𝐾𝐾𝑖𝑖(𝑡𝑡,𝐶𝐶𝑡𝑡  ) in each regime. 
• The case 𝑏𝑏𝑖𝑖 ≠ 𝑦𝑦𝑖𝑖   indicates gas loss during 

injection/withdrawal (typically on the scale of 
0.25%−1% for salt dome storage). The transmission 
rates  𝑦𝑦𝑖𝑖  , 𝑏𝑏𝑖𝑖  are a function of 𝐶𝐶𝑡𝑡   and are based on 
gas pressure laws.  

 
The available strategies to the manager are specified 

via the set of admissible control U of possible storage 
policies u.  For 𝑡𝑡 ∈   [0,𝑇𝑇],𝑜𝑜𝑡𝑡 ∈  {−1, 0, 1}  denotes the 
operating regime of the facility. The policy  u is  typically 
written   𝑜𝑜 = (𝜉𝜉1, 𝜉𝜉2, 𝜉𝜉3, … ; 𝜏𝜏1, 𝜏𝜏2, 𝜏𝜏3, … ),  where the 
variables 𝜉𝜉𝑘𝑘 ∈  {−1, 0, 1} denote the sequence of operating 
regimes taken by u,while 𝜏𝜏𝑘𝑘 ≤ 𝜏𝜏𝑘𝑘+1 ≤ 𝑇𝑇 denote the 
switching times. Thus, 𝑜𝑜𝑡𝑡 = ∑ 𝕝𝕝[𝜏𝜏𝑘𝑘 ,𝜏𝜏𝑘𝑘+1) (𝑡𝑡)𝑘𝑘  , where by 
convention  
𝜏𝜏0 = 0, 𝜉𝜉0 = 𝑖𝑖0  is the initial facility state.  

Given the initial inventory 𝐶𝐶0 = 𝐼𝐼  and the storage 
strategy u, the future inventory 𝐶𝐶𝑡𝑡� (𝑜𝑜) is completely 
determined. Namely, 𝐶𝐶𝑡𝑡� (𝑜𝑜)  satisfies the ordinary 
differential equation 
 
𝑑𝑑𝐶𝐶𝑠𝑠� (𝑜𝑜) = 𝑦𝑦𝑜𝑜𝑠𝑠�𝐶𝐶𝑠𝑠� (𝑜𝑜)�𝑑𝑑𝑠𝑠,       𝐶𝐶0���(𝑜𝑜) = 𝐼𝐼                                          (4)  
 
In addition, we also use the following notation. 

 𝐶𝐶𝑡𝑡� (𝐼𝐼, 𝑖𝑖) ≜ 𝐼𝐼 + � 𝑦𝑦𝑖𝑖(𝐶𝐶𝑡𝑡� (𝐼𝐼, 𝑖𝑖) )𝑑𝑑𝑠𝑠                                                     (5) 
𝑡𝑡

0
  

 
 Each change of the facility’s regime incurs switching 
costs. In particular, moving the facility from regime i to 
regime j costs 𝐾𝐾𝑖𝑖 ,𝐼𝐼  = 𝐾𝐾(𝑖𝑖, 𝐼𝐼;  𝑡𝑡,𝐺𝐺𝑡𝑡 ,𝐶𝐶𝑡𝑡).  We assume that the 
switching costs are discrete:  𝐾𝐾𝑖𝑖 ,𝐼𝐼  ≥ 𝜀𝜀  for all 𝑖𝑖 ≠ 𝐼𝐼 and 
some  𝜀𝜀 > 0  , and  𝐾𝐾𝑖𝑖 ,𝑖𝑖=0 .  In this research, among the 
storage facilities we only focus on salt dome facilities the 
switching costs are economically negligible; however, in 
other facilities, switching costs may be significant. Also, 
switching costs are assumed strictly positive so that it 
prohibits the owner would repeatedly change the regimes 
back-and-forth over a very short time. Since the ultimate 
computations are in discrete time, switching costs can be set 
to zero on implementation-level. 
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           A necessary condition for u to belong to the set U of 
admissible strategies is to be 𝔽𝔽 − 𝑦𝑦𝑑𝑑𝑦𝑦𝑎𝑎𝑡𝑡𝑦𝑦𝑑𝑑 , right-
continuous and of ℙ − 𝑦𝑦. 𝑠𝑠. finite variation on [0, T]. 
𝔽𝔽 − 𝑦𝑦𝑑𝑑𝑦𝑦𝑎𝑎𝑡𝑡𝑖𝑖𝑎𝑎𝑦𝑦𝐼𝐼𝑦𝑦𝑠𝑠𝑠𝑠   is a standard condition implying that 
the agent only has access to the observed price process and 
cannot use any other information. Finite variation means 
that the number of switching decisions must be finite almost 
surely. Thus,  ℙ(𝜏𝜏𝑘𝑘 < 𝑇𝑇 ∀𝑘𝑘 ≥ 0) = 0 . Besides, u must satisfy 
the model’s restrictions; for example the finite storage 
constraint requires that 𝐶𝐶𝑡𝑡� (𝑜𝑜) ∈ [𝐼𝐼𝑚𝑚𝑖𝑖𝐼𝐼 , 𝐼𝐼𝑚𝑚𝑦𝑦𝑚𝑚 ]  for all 𝑡𝑡 ≤  𝑇𝑇. 
Further we assume that 𝑈𝑈(𝑡𝑡, 𝐼𝐼, 𝑖𝑖), representing the set of all 
admissible strategies on the time interval [𝑡𝑡,𝑇𝑇] starting in 
regime i and with initial inventory c, is a closed subset of U. 
           Subject to those costs and the operational constraints, 
the facility manager maximizes the net expected profit. 
Given initial conditions at time t, 𝐺𝐺𝑡𝑡 = 𝑔𝑔,𝐶𝐶𝑡𝑡 = 𝐼𝐼 and initial 
operating regime 𝑖𝑖, suppose the manager chooses a 
particular dispatching policy 𝑜𝑜 ∈  𝑈𝑈(𝑡𝑡, 𝐼𝐼, 𝑖𝑖). If we denote by 
𝑉𝑉 (𝑡𝑡,𝑔𝑔, 𝐼𝐼, 𝑖𝑖;𝑜𝑜) the corresponding expected profit until final 
date T, then 
 
𝑉𝑉 (𝑡𝑡,𝑔𝑔, 𝐼𝐼, 𝑖𝑖;𝑜𝑜)                                                                                         (6)  

= 𝐸𝐸 �� 𝑦𝑦−𝑦𝑦(𝑠𝑠−𝑡𝑡)𝜓𝜓𝑜𝑜𝑠𝑠�𝐺𝐺𝑠𝑠 ,𝐶𝐶𝑠𝑠� (𝑜𝑜)�𝑑𝑑𝑠𝑠 − � 𝑦𝑦−𝑦𝑦𝜏𝜏𝑘𝑘𝐾𝐾𝑜𝑜𝜏𝜏𝑘𝑘− ,𝑜𝑜𝜏𝜏𝑘𝑘  
𝜏𝜏𝑘𝑘<𝑇𝑇

𝑇𝑇

𝑡𝑡
�𝐺𝐺𝑡𝑡 = 𝑔𝑔,𝐶𝐶𝑡𝑡 = 𝐼𝐼�  

 
 
where the first term above counts the total revenues from 
running the facility up to the horizon T and the second term 
counts the incurred switching costs. Thus the control 
problem is computing 
 
𝑉𝑉 (𝑡𝑡,𝑔𝑔, 𝐼𝐼, 𝑖𝑖) ≜ 𝑠𝑠𝑜𝑜𝑎𝑎 𝑜𝑜∈𝑈𝑈(𝑡𝑡 ,𝐼𝐼 ,𝑖𝑖)  𝑉𝑉 (𝑡𝑡,𝑔𝑔, 𝐼𝐼, 𝑖𝑖;𝑜𝑜)                                    (7)                   

 
with 𝑉𝑉 (𝑡𝑡,𝑔𝑔, 𝐼𝐼, 𝑖𝑖;𝑜𝑜) as defined in (6). Besides the value 
function V, an optimal policy 𝑜𝑜∗ is characterized.   If 𝑜𝑜∗ 
exists, it achieves the supermom in (7). 

To specify the terminal condition at T, one needs to 
enforce some conditions involved in contract.  In typical 
contracts, the facility should be returned with the same 
inventory 𝐶𝐶0 as initially held, and in certain state, e.g. store. 
A common condition, such as below (8), may make the 
penalty proportional to the difference with stipulated 
inventory 𝐶𝐶0 , with multipliers 𝐾𝐾�1 and 𝐾𝐾�2 used for under-
delivery and over-delivery respectively, and adding a 
second penalty of 𝐾𝐾�3  if the final regime is not store. 
 
𝑉𝑉 (𝑇𝑇,𝑔𝑔, 𝐼𝐼, 𝑖𝑖;𝐶𝐶0) = −𝐾𝐾�1. (𝐶𝐶0 − 𝐼𝐼)+ − 𝐾𝐾�2. (𝐶𝐶0 − 𝐼𝐼)−

− 𝐾𝐾�3𝕝𝕝𝑖𝑖≠0                                                      (8) 
 
Another common choice is  𝑉𝑉 (𝑇𝑇,𝑔𝑔, 𝐼𝐼, 𝑖𝑖;𝐶𝐶0) =
−𝐾𝐾�1.𝑔𝑔. (𝐶𝐶0 − 𝐼𝐼)+, which penalizes for having less gas than 
originally and makes the penalty proportional to current 
price of gas. 
 
Remark. Natural gas spot price process 𝐺𝐺𝑡𝑡  represents the 
price at time t of the near-month forward contract, which is 
by far the most liquid contract on the market. It makes some 

difficulty that the sale price in forward contract is locked-in 
in advance, while the inventory only changes at delivery 
time. Thus, we assume for simplicity that any purchase or 
sale is immediately reflected in the current inventory. 
 
2.3.3 Assumption on gas spot price process 

  
(A) The process  (𝐺𝐺𝑡𝑡)    is a d-dimensional, strong Markov, 
non-exploding process in ℝ𝑑𝑑 . 
(B) The information filtration 𝔽𝔽 = (ℱ𝑡𝑡) on the stochastic 
basis (Ω,ℱ,𝑃𝑃)  is the natural filtration of  (𝐺𝐺𝑡𝑡)    . 
(C) The reward rate  𝜓𝜓𝑖𝑖 : [0,𝑇𝑇] × ℝ𝑑𝑑 × [𝐼𝐼𝑚𝑚𝑖𝑖𝐼𝐼 , 𝐼𝐼𝑚𝑚𝑦𝑦𝑚𝑚 ] → ℝ is 
a jointly Lipschitz-continuous function of (t, g, c) and 
satisfies 
 
𝐸𝐸�𝑠𝑠𝑜𝑜𝑎𝑎𝑡𝑡∈[0,𝑇𝑇]  |𝜓𝜓𝑖𝑖(𝑡𝑡,𝐺𝐺𝑡𝑡 ,𝐶𝐶𝑡𝑡  )|2 �𝐺𝐺0 = 𝑔𝑔,𝐶𝐶0 = 𝐼𝐼�

< ∞         ∀𝑔𝑔, 𝐼𝐼.                                                  (9) 
 
For notational clarity we suppress from now on the 
dependency of  𝜓𝜓𝑖𝑖  and the coefficients of (9) on time t. 
 
 
 
 
 
 
 
3.  NUMERICAL SOLUTIONS 
  
3.1 Introduction  
 
 To achieve numerical solutions of the 
corresponding optimal switching problem (6-7), we can 
consider one of the following strategies: 
1. To directly tackle the quasi-variational (QV) 

formulation.  
2. To replace the continuous-space process by some sort 

of discrete approximation. 
3. To compute the conditional expectations appeared in 

value function with various methods. 
 
These strategies lead to obtain the following numerical 
methods: 
1. PDE approaches 
2. Markov chain approximation 
3. Nonparametric regressions 
4. Quantization method 

 
3.2 PDE approaches  

 
              Tsitsiklis and Van Roy (TvR) [18] introduced  an 
explicit PDE approach and in [4, 23 and 25], they 
developed semi-Lagrangian  time-stepping as an implicit 
FD scheme.  
 Since the optimal switching is a special case of 
impulse control, one can use the classical methods of 
solving stochastic impulse control problems which relates to 
studying the parabolic partial differential equations (PDEs) 
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resulted from applying Bellman’s optimal principle. In fact, 
a smooth solution of the quasi-variational Hamilton-Jacobi-
Bellman (HJB) inequality is the value function of the 
impulse control problem.  To prove the uniqueness of 
solutions, the notion of viscosity solutions is used   as weak 
solutions. Indeed, the value function is always the unique 
viscosity solution of the system in verification theorem [11, 
22 and 26].  The PDE solver relies on the quasi-variational 
formulation of verification theorem. Generally speaking, the 
PDE methods transform the stochastic control problem into 
a parabolic partial differential equation with a free 
boundary. To solve this parabolic PDE, there are a variety 
of tools such as the basic finite difference scheme (FD).  By 
setting up a space-time grid, we solve the PDE by replacing 
derivatives with finite differences in the HJB equation and 
directly enforcing the barrier condition at each step. In spite 
of being the simplest setting, the approaches pose a 
multitude of challenges that prevent rigorous solutions.  An 
FD method is easy to implement but suffers several major 
drawbacks. First, FD often needs a large number of time 
steps to be of numerical stability. Second, the method 
suffers from dimensionality problem: the size of the space 
grid is exponential in number of dimensions of price 
process d and generally speaking d > 3 is computationally 
infeasible. Finally, the switching boundary will inevitably 
be jagged due to the presence of a grid in the x-space. The 
last point can be alleviated with the use of an adaptive grid. 
The method’s accuracy depends on the order of the 
approximation used for the derivatives of u, which should 
be at least  𝑂𝑂(∆𝑡𝑡 + ∆𝑚𝑚2). 

  
3.3 Markov chain approximation 

 
The Markov chain approximation method, 

corresponding the second strategy, pioneered by Kushner 
[9] consists in replacing  (𝑋𝑋𝑡𝑡) by a continuous time Markov 
chain �𝑋𝑋𝑡𝑡�� with a finite state space 𝐸𝐸�  , such that its 
transition probabilities of �𝑋𝑋𝑡𝑡�� are consistent with the 
dynamics of (𝑋𝑋𝑡𝑡).  Since the transition probabilities are 
computed through the infinitesimal generator of (𝑋𝑋𝑡𝑡), one 
needs to use the finite differences approximations of the 
HJB equation such as the PDE approaches . The formula (6) 
can also be re-written in probabilistic form as 
 
�́�𝑉(𝑚𝑚∆𝑡𝑡, 𝑚𝑚, 𝐼𝐼, 𝑖𝑖;𝑜𝑜) = �𝑃𝑃𝑚𝑚 (𝑚𝑚,𝑦𝑦). �́�𝑉(𝑚𝑚∆𝑡𝑡,𝑦𝑦, 𝐼𝐼, 𝑖𝑖; 𝑜𝑜)                  (10)  

𝑦𝑦∈𝐸𝐸�
+ 𝑃𝑃𝑚𝑚 (𝑚𝑚, 𝑚𝑚).𝑉𝑉 ((𝑚𝑚 + 1)∆𝑡𝑡, 𝑚𝑚, 𝐼𝐼, 𝑖𝑖; 𝑜𝑜) 

 
where 𝑃𝑃𝑚𝑚 (𝑚𝑚, 𝑦𝑦) indicates the transition probability of �𝑋𝑋𝑡𝑡��, 
going from (𝑚𝑚,𝑚𝑚∆𝑡𝑡) to (𝑦𝑦, (𝑚𝑚 + 1)∆𝑡𝑡) for any  𝑚𝑚, 𝑦𝑦 ∈ 𝐸𝐸� =
{𝑚𝑚0 + 𝐼𝐼∆𝑚𝑚} ⊂ 𝐸𝐸, and 
�́�𝑉(𝑡𝑡1, 𝑚𝑚, 𝐼𝐼, 𝑖𝑖;𝑜𝑜) = 𝔼𝔼�𝑉𝑉�𝑡𝑡2,𝑋𝑋𝑡𝑡2 , 𝐼𝐼, 𝑖𝑖;𝑜𝑜��𝑋𝑋𝑡𝑡1 = 𝑚𝑚�. Solving 
(10) only needs to invert the tri-diagonal matrix ℙ𝑚𝑚 =
𝑃𝑃𝑚𝑚 (𝑚𝑚,𝑦𝑦). Like the PDE solver, this algorithm suffers from 
the curse of dimensionality and is not robust to extensions. 
Nevertheless, in low dimensions it provides a reliable 
benchmark.  

3.4 Nonparametric regressions 
 

This approach is related to the third strategy as we 
mentioned before to compute the conditional expectations.  
To compute the conditional expectation, there are several 
methods, including Malliavin calculus, Monte Carlo 
simulations and regression. In regression schemes we have 
a choice between regression against basis functions and 
fully non-parametric regression. Choosing a non-parametric 
regression relieves us of the concerns regarding selecting 
appropriate basis functions and may produce smoother 
conditional distributions [11]. The simplest version of this 
approach is k-nearest neighbours multivariate kernel 
regression. Thus, this regression is replaced by a local linear 
combination of the other paths’ values with the weights 
proportional to the distance. The use of nearest neighbours 
reduces the dimensionality difficulty. It is attractive due to 
its robustness and involving no additional error.  However, 
the two major difficulties with the kernel method are 
selecting an appropriate bandwidth and the computations 
around the edges. The bandwidth h controls the peak of the 
weights around (x, y). Thus, as the bandwidth increases, 
more distant points carry more weight and the estimate 
becomes more ‘global’. However, choosing h is heuristic 
and may require a lot of trial-and-error. The other difficulty 
is when the regressed value is extreme; the nearest 
neighbours have bias for the extreme values in contradiction 
to regression algorithm.  
 
3.5 Quantization method 

 
A powerful non-Markovian version of the second 

strategy, i.e., replacing the continuous-space process by a 
discrete approximation, with an adaptive approximating 
grid is the so-called Quantization Scheme (QS). The main 
motivation of quantization is to find a small and efficient 
approximating grid in exchange for giving up the Markov 
property and closed-form formulae for transition probability 
matrix   ℙ𝑚𝑚 = 𝑃𝑃𝑚𝑚 (𝑚𝑚,𝑦𝑦). This method instead of computing  
 ℙ𝑚𝑚  via PDE solver such as FD, uses  Monte Carlo 
simulation. Whiles this is likely to be slow, it can be done 
just once off-line and stored for later calculations. The gain 
will increase the robustness and results in much better 
dimensional scaling. The transition matrix is required to 
approximate closely the dynamics of between cells of the 
adjacent quantization grids. The quantization scheme can be 
summarized in these following stages: 
1. Construct the quantization grid by Voronoi tessellations 

(cells) as a partition of state space E. 
2. Simulate  �𝐸𝐸� ,𝑃𝑃�� with, for instance, Competitive 

Learning Vector Quantizer (CLVQ) algorithm. 
3. Solve the optimal switching problem by computing the 

pseudo-Snell envelops of the non-Markov �𝑋𝑋𝑡𝑡��. 
The advantageous of the quantization scheme can be 
mentioned as: 
1. Since the entire algorithm for constructing�𝑋𝑋𝑡𝑡��  is 

Monte Carlo based, it is considered to be  robust. 
2. Simulation can be parallelized. 



Ranjbari et al. / Malaysian Journal of Fundamental & Applied Sciences Vol.8, No.1 (2012) 31-37. 
  

| 36 | 
 

3. Once the grids and transition are computed, any control 
problem is solved because the approximation of �𝑋𝑋𝑡𝑡�� is 
independent from the optimization steps in contrast to 
regression algorithm. 

However, there are some drawbacks to the method: 
1. Estimation of the transition probability 𝑃𝑃� is 

problematic. 
2. To achieve an acceptable accuracy, the method needs to 

run in large number of simulations. 
Ludkovski [3, 11] replaced the optimal switching 

problem with finite horizon by a recursive optimal stopping 
problems in finite time. Then, the exponential maturity 
randomization  was used to construct the iterative sequence 
of infinite horizon stopping times. In stead of directly 
solving the obtained iterative problems, he used LS Monte 
Carlo regression scheme to compute the conditional 
expectation by exploiting  the concept of  Snell envelops for 
revenue functions. 
  
 
4.    PRACTITIONER METHODS 

 
 Besides these methods, there are some practitioner 
methods to solve the operational flexibility problem of 
natural gas storage facility which are mentioned in the 
following: 
 
4.1 Classical net present value (NPV) theory  

 
        In Dixit [27], he used discounted cash flow analysis 
to estimate the value of the asset based on projections of 
future prices and proper weighing and discounting of 
possible cases. Uncertainty was essentially eliminated, as 
static scenarios were used to forecast the future and select 
pre-determined optimal behaviour. The opportunity of 
dynamically responding to prices was ignored and as a 
result the contracts were consistently underpriced. 
 
4.2 Markov decision process (MDP)  

 
        This is a stochastic programming approach 
implemented in Yushkevich [28]. In MDP, we have the 
tree-based versions of the stochastic control formulation, 
and there exist sequential decision problems under 
uncertainty. The problem is discretized in time and the path 
space of (𝑋𝑋𝑡𝑡) is broken into a finite number of actions. Then 
the transition probabilities 𝑃𝑃(𝑚𝑚,𝑦𝑦,∆𝑡𝑡) are estimated for each 
current outcome x and possible transition action y. Finally, 
the problem is solved via dynamic programming that 
corresponds to a lattice discretization of the Quasi-
Variational Inequality (QVI). Indeed, MDP or stochastic 
programming approach is a dynamic construction of the 
decision tree. The goals of using MDP are mentioned in 
below: 
(A) In finite horizon problem, the aim is to maximize the 

expected reward for the next n steps. 
(B) In infinite horizon, maximizing the expected 

discounted reward is considered. 

The MDP tree is simple and intuitive to understand. 
However, if one must solve numerically then the 
computational complexity explodes for long horizons with 
much optionality. 
 
4.3 Strips of spark-spread options approach  

 
 This approach is being carried out in Bringedal [2],  
Eydeland and Wolyniec [6] and Thompson, Davidson  
and Rassmussen [18].  The motivation is to reduce the 
problem to pricing standard financial options whose 
valuation is well understood. Accordingly, the payoff from 
the power plant is represented as a collection of European 
options that pay the maximum value to be obtained during 
each period. This method is intuitive and have fast 
computational speed of convergence, but it ignores key 
operational constraints such as dynamic capacity limits. 

 
 

5. CONCLUSION  
 
As a comparison for the numerical methods considered in 
this paper, one can mention that in small dimensions (d < 3) 
the best algorithm is the PDE approache such as semi-
Lagrangian  and TvR schemes. Otherwise, for d > 2,  the LS 
and Quantization schemes should be used due to scalability 
to high dimensional problems.  An industrial-strength 
implementation should be very fast and produce provable 
accurate results. And, to choose between LS and 
quantization schemes, if one is looking for a quick tool to 
solve optimal switching for a variety of (𝑋𝑋𝑡𝑡), the LS scheme 
is the best. On the other hand, if (𝑋𝑋𝑡𝑡) is fixed, the 
quantization may be better.  
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