brought to you by CORE

vii

TABLE OF CONTENTS

CHAPTER

TITLE

PAGE

TITLE PAGE	i
DECLARATION	ii
DEDICATION	iii
ACKNOWLEDGEMENTS	iv
ABSTRACT	V
ABSTRAK	vi
TABLE OF CONTENTS	vii
LIST OF TABLES	х
LIST OF FIGURES	xi
LIST OF SYMBOLS	xiv
LIST OF APPENDICES	XV

1 INTRODUCTION

1.1	General Introduction	1
1.2	Statement of Problem	3
1.3	Aims of the Study	4
1.4	Scope of the Study	4
	1.4.1 Sample Preparation	5
	1.4.2 Sample Characterization	5
1.5	Significant of the Research	5

2 LITERATURE REVIEW

2.1	Introd	uction	7
2.2	Struct	ural Characteristic	7
	2.2.1	X-ray Diffraction	8
	2.2.2	Fourier Transform Infrared Spectroscopy	9
	2.2.3	Fourier Transform Raman Spectroscopy	11
2.3	Lumir	nescence Characteristic	13
	2.3.1	Mechanism of Luminescence	14
	2.3.2	Types of Luminescence	16
	2.3.3	Luminescence of Rare Earth Ions	18
	2.3.4	Effect of Doping Ions on Luminescence	20
		Properties	
2.4	Phosp	hor Material	23
	2.4.1	Phosphate Based Phosphor	24
	2.4.2	Basic structure of phosphate	24
	2.4.3	Alkali Earth Phosphate	27

3 METHODOLOGY

4

3.1	Introd	uction	30
3.2	Sampl	le preparation	31
3.3	Exper	imental Characterizations	34
	3.3.1	X-ray Diffraction	34
	3.3.2	Fourier Transform Infrared Spectroscopy	35
	3.3.3	Fourier Transform Raman Spectroscopy	36
	3.3.4	Photoluminescence Spectroscopy	37
RESU	JLTS A	ND DISCUSSION	

4.1	Introd	uction	38
4.2	Struct	ural Study	38
	4.2.1	Crystalline Phase Analysis	39
	4.2.2	Infrared Spectra Analysis	44

		4.2.3	Raman Spectra Analysis	54
	4.3	Lumir	nescence Study	59
		4.3.1	Luminescence Spectra of Europium Ion	61
		4.3.2	Luminescence Spectra of Dysprosium Ion	65
		4.3.3	Luminescence Spectra of Europium and	68
			Dysprosium Ions	
5	CON	CLUSI	ONS AND RECOMMENDATIONS	
	5.1	Summ	nary	71
	5.2	Future	e Study	73

REFERENCES	74
APPENDICES	82

LIST OF TABLES

TABLE NO.

TITLE

PAGE

2.1	Electronic Configurations of Trivalent Rare-Earth	20
	Ions in the Ground State (Kano, 2006)	
2.2	The types of phosphates and their description (Brow, 2000)	27
3.1	The composition of phosphor samples	31
4.1	Crystallographic data and lattice parameter of crystal	41
	phase observed in this study	
4.2	Peak frequencies (cm ⁻¹) observed in the IR spectra of	49
	the xMgO-(50-x)SrO-50P ₂ O ₅ (with $0 \le x \le 50 \text{ mol }\%$)	
4.3	Peak frequencies (cm ⁻¹) observed in the Raman spectra	58
	of the xMgO-(50-x)SrO-50P ₂ O ₅ (with $0 \le x \le 50 \text{ mol }\%$)	

LIST OF FIGURES

TITLE

FIGURE NO.

2.1	Principle of X-ray Diffraction	9
2.2	Schematic diagram of a Fourier transform	11
	Infrared spectrometer	
2.3	Schematic diagram of a Raman spectroscopy	13
2.4	(a) Excitation and (b) emission spectra of	21
	$Eu^{3+}:Li_2TiO_3$ systems as reported by Kumar and	
	Buddhudu (2009)	
2.5	Luminescence intensities of	22
	$Ca_5La_5(SiO_4)_3(PO_4)_3O_2:Dy^{3+}$	
	(Yang and Huang, 2007)	
2.6	Phosphor devices in various fields of applications	25
	(Shinoya, 2001)	
2.7	P-tetrahedral sites that can exist in phosphate host	26
	(Hudgens et al., 1998)	
2.8	XRD patterns for calcium pyrophosphate at	29
	different sintering temperature (Doat et al., 2005)	
3.1	The phosphor sample (a) after the sintering	32
	process (b) under ultraviolet lamp	
3.2	Flow chart of sample preparation	33
3.3	X-ray Diffractometer (Siemens Diffractometer	34

PAGE

	D5000) at Faculty of Mechanical Engineering,	
	Universiti Teknologi Malaysia, Skudai	
3.4	FTIR instrument at Chemistry Department,	35
	Universiti Teknologi Malaysia, Skudai	
3.5	Raman instrument at Universiti Teknologi	36
	Malaysia, Skudai	
3.6	Equipment used for photoluminescence	37
	spectroscopy at School of Physics,	
	Universiti Sains Malaysia	
4.1	XRD patterns at different sintering temperatures	40
4.2 (a)	X-ray diffraction patterns of	42
	xMgO-(50-x)SrO-50P ₂ O ₅ with composition in	
	the range $0 \le x \le 25 \mod \%$	
4.2 (b)	X-ray diffraction patterns of	43
	xMgO-(50-x) SrO-50P ₂ O ₅ with composition	
	in the range $30 \le x \le 50 \mod \%$	
4.3	XRD patterns of MgOSrOP ₂ O ₅ (a) undoped	45
	(b) doped Eu^{3+} (c) doped Dy^{3+} (d) doped Eu^{3+}	
	and Dy ³⁺	
4.4 (a)	FT-Infrared spectra of xMgO-(50-x)SrO-50P ₂ O ₅	46
	powder samples (with $0 \le x \le 25 \mod \%$)	
4.4 (b)	FT-Infrared spectra of xMgO-(50-x)SrO-50P ₂ O ₅	47
	powder samples (with $30 \le x \le 50 \mod \%$)	
4.5	FT-Infrared spectra of xMgO-(50-x)SrO-50P ₂ O ₅	51
	powder samples (with $0 \le x \le 50 \text{ mol }\%$) at	
	higher frequencies	
4.6	IR spectra of $25MgO-25SrO-50P_2O_5$ (a) undoped	52
	(b) doped Eu ³⁺ (c) doped Dy ³⁺	
	(d) doped Eu^{3+} and Dy^{3+}	
4.7	The phosphate tetrahedron structure	53
4.8	Schematic structure of magnesium replacement	54

	in part of strontium ion for magnesium	
	strontium phosphate	
4.9 (a)	Raman spectra of xMgO-(50-x)SrO-50P ₂ O ₅	56
	powder samples (with $0 \le x \le 25 \mod \%$)	
4.9 (b)	Raman spectra of xMgO-(50-x)SrO-50P ₂ O ₅	57
	powder samples (with $30 \le x \le 50 \mod \%$)	
4.10	Raman spectra of 25MgO-25SrO-50P ₂ O ₅	60
	(a) undoped (b) doped $Eu^{3+}(c)$ doped Dy^{3+}	
	(d) doped Eu^{3+} and Dy^{3+}	
4.11	The luminescence spectra of	62
	$25MgO-25SrO-50P_2O_5$ for (a) undoped and	
	(b) doped with Eu^{3+}	
4.12	The energy level for Eu^{3+} in	64
	25MgO-25SrO-50P ₂ O ₅	
4.13	The luminescence spectra of	66
	25 SrO- 25 MgO- 50 P $_2$ O $_5$ for (a) undoped and	
	(b) doped Dy ³⁺	
4.14	The energy level of Dy^{3+} in	67
	25MgO-25SrO-50P ₂ O ₅	
4.15	The luminescence spectra of Eu^{3+} and Dy^{3+}	69
	doped in (a) 50SrO-50P ₂ O ₇ (b)50MgO-50P ₂ O ₇	
	(c) 25MgO-25SrO-50P ₂ O ₅	
4.16	The energy level model of Eu^{3+} and Dy^{3+} in	70
	magnesium strontium metaphosphate	

LIST OF SYMBOLS

 δ Deformation _ Asymmetric Stretching υ_{as} -Symmetric Stretching υ_{s} -Energy Е -Wavelength λ _ Spin angular momentum S -Orbital angular momentum L -Total angular momentum J -Azimuthal quantum number l -Speed of Light c _ Frequency of light υ Distance d -Angle θ -Planck constant h -Tetrahedral of phosphate link Q _

LIST OF APPENDICES

APPENDIX	TITLE	PAGE
А	The Samples Calculation	82
В	Publications	85