
5
REAL-TIME SHADOW CASTING

USING FAKE SOFT SHADOW
VOLUME

Lee Kong Weng, Daut Daman

INTRODUCTION

Shadows are essential to realistic and visually appealing
images, but they are difficult to compute in most display
environments especially in computer games. Since the
introduction of shadow volume by Crow (1977), shadow
map by William (1978) and then fake shadows by Blinn
(1988, 1996), a lot of development has been done to
improve shadow algorithm in real-time graphic application.
Current issues about shadow are on real-time dynamic soft
shadows and hardware improvement that improvised real-
time shadow generation.

This chapter will discuss and explain on how to
create an accurate real-time dynamic fake soft shadow. The
important element in shadows is the accuracy and dynamic
of the hard shadow because it provides information and
spatial cue while soft shadow determines the type of light
source. In this chapter, stencil shadow volume algorithm
will be combined with plateaus soft shadow to create an
accurate dynamic fake soft shadow. This method is used to
enhance the realistic effect in the scene.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Universiti Teknologi Malaysia Institutional Repository

https://core.ac.uk/display/11799411?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

62

RELATED WORK

The pioneer of the shadow research was initiated by Frank
Crow in 1977-title of the research paper is Shadow
Algorithm’s for Computer Graphics. The proposed method
explicitly clips shadow geometry to the view frustums,
generating perfect caps where the volume crosses a
clipping plane. The improvised version of the Crow’s
original algorithm was suggested by Heidmann (1991),
where stencil buffer has been added to support the original
algorithm. Stencil shadows belong to the group of
volumetric shadow algorithm as the shadowed volume in
the scene is explicit in the algorithm.
 In the year 2000, Carmack suggested a slightly
different approach which entails that the view rays are
traced from infinity towards the eye. This may stop when
encountering the pixel on the geometry that is closest to the
eye (Carmack 2000). This reversal of the view rays'
direction has given the algorithm the name Carmacks
reverse. The two different approaches have also been
named zpass and zfail, as the stencil buffer in the original
algorithm is changed only when a fragment passes the z-
test.

Lengyel (2002) proposed a hybrid algorithm that
uses faster z-pass rendering when the viewport is not
shadowed and reverts to robust z-fail rendering once the
viewport is shadowed. Several new shadow volume
improvements are suggested by Assarson et al.
(2002,2003) like how to create soft shadows using
penumbra wedges rendered from shadow volume. Fauerby
et al. (2003) introduced a technique for highly efficient
coverage calculation for spherical light sources. This
technique is able to avoid clipping operations in the pixel

63

shader and let the texture handle do the clipping. The only
setback using this technique is that it limited to spherical
shaped light source.

ALGORITHM

This method combines the existing stencil shadow volume
method with Heckbert and Herf soft shadow technique
which was originally used for shadow map. This algorithm
will be divided into two important steps as shown as Figure
5.1.

Figure 5.1. Research methodology

64

Step 1: Creating Hard Shadow Volume

A shadow volume for an object and light is the volume of
space that is shadowed. The first step is to create the
shadow volume using the silhouette edges of shadowing
object/occluder as seen by the light source. After that, the
edges are then extruded away from the light and form
polygons such as shown by Figure 5.2.

Figure 5.2 Silhouette edge

Next step is to clip the shadow volume to the
view/camera, and this will form the polygons that bounded
the shadow volume as shown in Figure 5.3.

65

Figure 5.3 Shadow volume clipping with view volume

Assume the eye is not in shadow, along a ray from
the eye, we can track the shadow state by looking at the
intersections of shadow volume boundaries. The following
rules are applied to track the shadow:

Each time the ray crosses a front facing shadow
polygon, add one to a counter
Each time the ray crosses a back facing shadow
polygon, subtract one from a counter
Places where the counter is zero are lit, others are
shadowed

The algorithm to implement stencil shadow volumes is
summed up as (Hun Yen Kwoon 2002):

[1] Render all the objects using only ambient lighting
and any other surface-shading attribute. Rendering
should not depend on any particular light source.
Make sure depth buffer is written.

66

[2] Starting with a light source, clear the stencil buffer
and calculate the silhouette of all the occluders with
respect to the light source.

[3] Extrude the silhouette away from the light source to
an infinite distance to form the shadow.

[4] Render the shadow volumes using the depth-pass.
[5] Using the updated stencil buffer, do a lighting pass

to shade the fragments that corresponds to non-zero
stencil values (make it a tone darker).

[6] Repeat step 2 to 5 for all the lights in the scene.

From the above list of steps, it is clear that number
of light is in proportion with the frame rate intensity. In
fact, the algorithm has to be very selective when deciding
which light should be used for casting shadows.

Silhouette Determination

The very first step to construct a shadow volume is to
determine the silhouette of the occluder. The stencil
shadow algorithm requires that the occluders be closed to
triangle meshes. This means that every edge in the model
must only be shared by two triangles thus avoiding any
holes that would expose the interior of the model. There are
many ways to calculate the silhouette edges and each of
them are highly computation.

Edge connectivity information must be pre-
computed so that we can determine a mesh’s silhouette for
shadow volume rendering. The method used here can be
explained using an array of N vertices V1, V2, and VN and an
array of M triangle faces F1, F2,… and FM. Each triangle
faces simply indicate which three vertices it uses by storing
three integer indexes i1, i2 and i3. An index ip precedes an
index iq if the number p immediately precedes the number q

67

in the cyclic chain 1 2 3 1. The indexes i1, i2 and i3 are
ordered such that the positions of the vertices Vi1, Vi2 and Vi3

to which they refer are twist counter clockwise about the
triangles normal vector. Suppose that two triangles share
an edge whose endpoints are the vertices Va and Vb. The
consistent winding rule enforces the property that for one
of the triangle faces, the index referring to Va precedes the
index referring to Vb and that for the other triangle, and the
index referring to Vb precedes the index referring to Va.

With this, the edges of a triangle mesh can be
identified by making a single pass through the triangle face
list. For any triangle having vertex indexes i1, i2 and i3,
create an edge record for every instance in which i1 i2,
i2 i3, and i3 i1 and store the index of the current triangle
face in the edge record. Once all the edges are identified,
make a second pass through the triangle face list to find the
second triangle that shares each edge. This is done by
locating triangles for which i1 i2, i2 i3, or i3 i1 and
matching it to an edge having the same vertex indexes that
has not yet been supplied with a second triangle index. The
general concept of this explanation can be expressed using
the following pseudo code:

1. for each triangle face (A) in the object/model
2. for each edge in A
3. if this edge triangle face (neighbors)is not known

yet
4. for each triangle face (B) in the object/model except

A
5. for each edge in B
6. if A’s edge is the same as B’s edge, then they are

neighbors on that edge, set the neighbor property

68

for each triangle face A and B, then move onto next
edge in A

With the edge list for a triangle mesh/face, the
silhouette is determined by substituting the light position
with the plane equation. A triangle face that is visible to
light source will have a value of plane equation > 0. The
silhouette is equal to the set of edges shared by a visible
triangle and a triangle face that is not visible to the light.
This is done by examining all the triangle faces and
checking the visible edges. The edge where there is no
neighboring triangle face or the neighboring triangle face is
not visible to light source will be the silhouette and it casts
shadow.

It is important to note that silhouette determination
is one of the two most expensive operations in stencil
shadow volume implementation. The other is the shadow
volume rendering passes to update the stencil buffer. These
two areas are prime candidates for aggressive
optimizations.

Shadow Volume Construction

In order to form the object’s shadow volume, each edge
need to be extruded away from the light source’s position
once the set of an object’s silhouette edges has been
determined with respect to a light source. For a point light
source, which was implemented in this prototype, the
extrusion of the silhouette edges consists of a set of quads
(can be substitute with triangle strips). The quads are
constructed from the two vertices that belongs to an edge
and two additional vertices that corresponds to the
extrusion of the same edge to “infinity” (a large value)
based on homogeneous coordinates. Shadow volume is

69

extruded to “infinity” in order to avoid the awkward
situation where the light source is very close to an occluder.
If that happens [see the illustration shown in Figure 5.4],
finite shadow volume extrusion fails to cover all the
shadow receivers in a scene.

Figure 5.4 Finite shadow volume fails to shadow
other objects

The extrusion distance is the distances from the
vertices of the bottom cap of shadow volume (that are
extruded) to the light source. The approach used in
implementing this prototype is a brute force approach that
draws the extrusion polygon to “infinity” and the shadow
volume is just clipped against the entire polygon it
encounters (refer Figure 5.5 for illustration).

70

Figure 5.5 Extrusion option

The next procedure is to determine the triangle
faces that are visible to light source. The procedure will
provide a triangle face that is situated at the edge of the
silhouette. A triangle face with no neighboring triangle
face, or the neighboring triangle face which is not visible to
the light source (refer Figure 5.6), and is called silhouette
triangle face from now on.

Occluder/object

Shadow volume

Shadow at d, distances

Infinity

Light
source

71

Figure 5.6 The edge for casting shadow volume

In order to obtain the edge that are at silhouette (the
black line edge), edge test need to be done in which a
single silhouette triangle face is colored with black and
white line (Figure 4.6). The single edge will provide two
vertices, which will be used to extrude to another two
vertices that will be generated. A basic scaling
transformation is applied to extrude the shadow volume by
using the two vertices at the silhouette edge. The extrusion
process will produce new vertices and they need to be
projected along the vector between the light source and the
first silhouette edge. It is than scaled to INFINITY value -
set to a very large value (refer Figure 5.7).

Silhouette
triangle
f

72

Figure 5.7 Extruding to INFINITY by producing two new
additional vertices

The scaling transformations to produce the new vertices are
shown as:

xff sxxxx)('

yff syyyy)('

zff szzzz)('

Vertices P’(x’, y’, z’) is a new vertex, L(x, y, z) is
the light source location, and O(x, y, z) is the vertex from
the silhouette edge. By using the above equations two new
vertices are produced (illustrated as black color normal
line in Figure 5.7) while the other vertices are illustrated as
black color dash line. The generated vertices are than used
to form the quadrilateral which is needed to create the
shadow volume. After creating the shadow volume the

Silhouette edge with
two vertices

New
vertices

Shadow volume

Light
source

To INFINITY

73

next process is to render it, so that the hard shadow is
visible.

Rendering Shadow Volume Using Depth-Pass

Depth-pass is commonly known as z-pass. Let us assume
that the objects had been rendered onto the frame buffer
prior to the above stenciling operations. This means that
the depth buffer would have been set with the correct
values for depth testing or z-testing. Referring to Figure
5.8, the two leftmost ray originating from the eye position
does not hit any part of the shadow volume (in grey), hence
the resultant stencil values is 0. That means that the
fragment represented by these two rays is not in shadow.
The third ray from the left - if we rendered it on the front
face of the shadow volume, the stencil value would be
incremented to 1 and the depth test is set as enable/pass.
When rendering the back face of the shadow volume, the
depth test would fail since the back face of the shadow
volume is behind the occluder. Thus the stencil value for
the fragment represented by this ray remains at 1. This
means that the fragment is in shadow since its stencil value
is non-zero.

74

Figure 5.8 Depth-pass

After determining the object’s silhouette with
respect to a light source and constructing a shadow volume
by extruding the silhouette edges away from the light
source, the shadow volume is ready to be rendered into
stencil buffer using depth-pass technique. The frame buffer
is first cleared and an ambient rendering pass was
performed to initialize the depth buffer. Lighting is
disabled because there will be no rendering to the color
buffer but only the stencil buffer. The stencil buffer is
configured so that it always passes the test (the reason why
it is called as depth-pass technique). The drawing will
only be done into the stencil buffer, which then writes to
color buffer. The depth buffer is disabled so that shadow
volumes do not appear as solid objects in the depth buffer.
Shadow volume faces which are constructed as mentioned
in earlier section are rendered using different stencil
operations. The process depends on whether they face
towards or away from the camera. It is rendered in two
passes, first pass - incrementing the stencil buffer with front
faces (casting shadow) and the second pass- decrementing

75

the stencil buffer with the back faces (“turning off” the
shadow between the object and any other surfaces).

Once shadow volumes have been rendered for all
objects that could potentially cast shadows into the visible
region of the scene, it will later cause all the areas that are
in shadow volume to have a non-zero stencil value while all
those areas in the light area remain zero. Lighting pass are
performed to illuminates surfaces wherever the stencil
value remain zeroes, re-enable writes to the color buffer,
change the depth test to pass only when fragment depth
values are equals or less to those in the depth buffer and
configure the stencil test to pass when the value in stencil
buffer is not equal to zero. Then, draw the blended onto the
screen that will cast the hard shadow. The technique is
known as depth-pass technique since it manipulates the
stencil values only when depth test passes. The following is
the general overview of the algorithm;

[1] Render front face of shadow volume. If depth test
passes, increment stencil value, else do nothing.
Disable draw to frame and depth buffer.

[2] Render back face of shadow volume. If depth test
passes, decrement stencil value, else do nothing.
Disable draw to frame and depth buffer.

Step 2: Adding Fake Soft Shadow

Adding fake soft shadows to existing shadows generated by
shadow volume will increase the realism of the shadow in
3D scene especially computer games and movies. Here,
the technique to implement soft shadows in shadow volume
was developed, from the earlier concept of Heckbert &
Herf’s soft shadow (Heckbert and Herf 1997). The

76

technique was implemented interactively by exploiting
graphics workstation hardware. Since hardware has
become more affordable and computationally fast, the
technique is feasible to be implemented on desktop
computer with a standard graphic cards. The proposed
algorithm is developed by methodically addressing the
fundamental limitations of the conventional stenciled
shadow volume. The approach towards soft shadow uses
the same approach taken by earlier researcher. The
workflow of adding soft shadow for hard shadow volume is
shown at Figure 5.9.

Figure 5.9 Work flow for adding soft shadows

Get Geometric of the Original Hard Shadow

The very first step in generating the soft shadows is to get
the geometric of hard shadows generated earlier. This can
be done by saving all the generated coordinates of the

Get geometric of original
hard shadow

Generate new sample of
hard shadows with new
blending of gradient colour

Blend/average the sample
of new hard shadows with
original hard shadow

77

vertices generated while rendering shadow volume in
depth-pass technique so that no calculation will need to be
done again. This will save computation cost.

Generate Sample of Hard Shadows

Sample of hard shadows can be generated using blending
of gradient colors and can be done by drawing the same
shadow geometric volume (refer to Figure 5.10). However,
this time the size of the shadow volume polygon is scaled,
so that it is slightly bigger than the original shadow
volume. The amount of sample depends on the quality of
soft shadows.

Figure 5.10 Sample of new hard shadows generated

78

Generating the sample of hard shadows as shown in
Figure 5.10 does not take a lot of processing time
rendering. Here, the selection of number of samples must
be taken into consideration so that it will not slow down the
frame rate. The quality of the soft shadow depends on the
amount of the generated samples- the more the better.
However, this will increased CPU consumption and
performance.

Blend/Average The Sample Of Hard Shadows

The last step of adding fake soft shadows is to blend or
average out the samples together with the original shadow
volume. The illustration on how the stacking of the sample
can be view on Figure 5.11.

Figure 5.11 Stacking of the sample and original shadow
volume

Stacking

79

The production of stacking the sample and original
shadow volume must be done from the less dark sample to
the darkest in order to produce a new shadow which is a
soft shadow. The produced soft shadow will have
penumbrae effects on the edge of shadow, which differ
from the original shadow volume that has only the hard
shadow (Refer Figure 5.12 for illustration).

Figure 5.12 Comparison of original shadow volume and new
soft shadow volume

The creation of the soft shadow using this technique
accepts two parameters to differentiate the quality of the
soft shadow produced. The first parameter is the length
factor, which determines how far the penumbrae or the soft
shadow will extends to. The second parameter is the gap
factor, which determines the gap between the samples of
hard shadows produced (refer Figure 5.13). The number
of samples of hard shadow produced depends on the length
and gap factor, which is equal to length divide by gap. This
will produce a new soft shadow that will have a more
realistic and quite convincing effect compared to the
original algorithm.

80

Figure 5.13 Length and gap factor

RESULTS

To actually implement the technique discussed so far in this
research can be a daunting task with lots of potential
pitfalls and problems. In this section, the implementation
and some of the testing details were presented for clarity
reasons. Since one of the main goals with this research
was to test the applicability of soft shadow in a true 3D
environment, the implementation and testing were done
with complex and high polygon model. The method used to
determine an accurate shadow that resembles real life
shadow was side-by-side visual comparisons with reference
examples. The approach was also applicable to measure the
quality of the produced fake soft shadows. Speed
comparisons were performed by observing the frame rate
and also by using the reported results of other algorithms.
The running time of the algorithms depends on factors such
as the screen resolution, the number of polygon, desired
quality, graphics hardware and CPU speed. The first test
was Accuracy or Resemblance Test. It is to test the
accuracy of the shadow produced whether it resembles the
real life shadows. Quality Test is performed next on soft

Length
factor

Gap factor
Original
hard
shadow

Sample hard
shadow
generated

81

shadows qualities. Finally Real-Time Test is done to test
the speed of the shadow generation.

Accuracy or Resemblance Test

The shadows generated by the prototype are guaranteed
true, real and accurate shadow because it uses the model or
shadow caster geometric to produce the shadow. There is
no model simplification done to optimized rendering. The
produced shadow in this prototype is real, true and accurate
or resemble the model/shadow caster (refer Figure 5.14).

Figure 5.14 Research prototypes featuring true, real and
accurate or resemble the model/shadow caster

Quality Test

The test involved rendering a cube with eight vertices and
twelve faces of triangle polygon using different value of

82

parameter of length and gap factor. The test result images
are captured and the numbers of polygon triangles
produced are recorded. Later, the comparison and analysis
is done to evaluate the quality of the soft shadow produced,
as shown at Figure 5.15.

Figure 5.15 Test results using Cube with different length and
 gap

The system is able to capture 60 FPS, which is good
for run time application. The quality of soft shadow
produced depends on the number of triangle polygon
rendered, the bigger the better. The length is also
important factor. In this model, the appropriate value for
parameter length is anything from two to three. A bigger
number will cause dramatic changes. The optimized gap
factor value ranges from 0.3 to 0.5. A number less than 0.3
is not perceivable to the human eye while value of more
than 0.5 would produced would aliasing effect as shown in
Figure 5.16.

83

The next test is done by visually comparing the
shadow images rendered by our result with another soft
shadow volume algorithm developed by Assarson and
Akenine-Möller (2003). The experiment involves a cube
and sphere in a simple environment. From the experiment,
it is seen that the prototype was able to render at about 60
FPS but the quality is poorer. The illustrations of the
comparison are shown in Figure 5.16.

Figure 5.16 Comparison of generated soft shadow

84

Real-Time Test

One way to obtain a fast soft shadow algorithm is to utilize
the graphics hardware. Shadow volume consumes a lot of
CPU and GPU processing because it requires a lot of
computation especially in silhouette edge determination
and two pass rendering. Speed comparison was also
performed against Assarson and Akenine-Möller’s (2003)
algorithm and as well as other algorithms.

Figure 5.17 FPS vs. model polygon count for 3 different
systems using Fake Soft Shadow Volume with

 Stencil Buffer

FPS vs Model Polygon Count For 3 Different Systems Using Fake Soft Shadow Volume With
Stencil Buffer

0.00

100.00

200.00

300.00

400.00

500.00

600.00

0 200 400 600 800 1000 1200 1400 1600 1800

Model Polygon Count

F
P

S

System 1 System 2 System 3

85

These tests were meant to generally test each soft
shadow algorithm against three different systems to
determine the best setting. The result shows that the
qualities of the soft shadows are almost identical in
particular with the value of 3.0 for length and 0.3 for gap.
The environment was set to 800x600 with 32 bit colours.
This is to ensure that the same amounts of polygon are used
to render the soft shadow so that a proper comparison can
be carried out. Figure 5.17 shows the graph of test using the
research prototype that implements the “Fake Soft Shadow
Volume with Stencil Buffer” and “Approximate Soft
Shadow On Arbitrary Surfaces Using Penumbra Wedge”.

System 1 can only achieve 10 FPS with 216
polygons and if the number of polygon exceeds 500 the
FPS dropped to 3. In this case, it shows that better graphics
hardware and system are required. System 2 with 1.5 GHz
CPU and 768 MB RAM is able to render soft shadow with
around 640 FPS for a 200 number of triangle polygons.
Once the number of polygons exceeds 500, the FPS also
dropped to 50-60 FPS. System 3 with 2.4 GHz CPU and 1
GB RAM gives the output of 60 FPS for polygon number
less than 250. When the number of polygons is more than
500, the FPS remains static at 15 FPS. Comparing our
experiment with Assarson and Akenine-Möller’s (2003), it
shows that the trend is quite similar (see figure 5.18).

86

Figure 5.18 FPS vs. model polygon count for 3 different
systems with Approximate Soft Shadows on
Arbitrary Surfaces Using Penumbra Wedges

 algorithm

CONCLUSION

In this Chapter, we have shown we have discussed the
algorithm to generate an accurate hard shadow volume and
to add fake soft shadow onto it. We can get high quality of
soft shadow in real-time by using the proposed algorithm.
Although the soft shadow is not geometrically accurate as
compared to the hard shadow, it resembles penumbrae (soft
shadow). This algorithm can be further improved and
implemented using programmable graphics hardware to
achieve real-time performance. One of the drawback is that
the soft shadows effect only involve the planar/surfaces.
The future research direction is to explore on how to extend
the effect of shadows onto other surfaces and objects in the
scene beside the planar.

FPS vs Model Polygon Count For 3 Different Systems With Approximate Soft Shadows on
Arbitrary Surfaces Using Penumbra Wedges

0

20

40

60

80

100

120

140

0 200 400 600 800 1000 1200 1400 1600 1800

Model Polygon Count

F
P

S

System 1 System 2 System 3

87

REFERENCE

Eric Haines, 2001, “Soft Planar Shadows Using Plateaus”,
Journal of Graphics Tools 6, 1, pp. 19-27.

CASS EVERITT AND MARK J. KILLGARD, March 2002.
Practical and Robust Stenciled Shadow Volumes for
Hardware-Accelerated Rendering. Technical Report,
NVIDIA Cooperation. Published online at
http://www.developer.nvidia.com.

ERIC LENGYEL, 2002. “The Mechanics of Robust Stencil
Shadows”, Gamasutra.com.

FRANK CROW, “Shadow Algorithms for computer
graphics”, Computer Graphics (SIGGRAPH 1977),
11(3), pp. 242-248, 1977

HUN YEN KWOON, 2002. “The Theory of stencil shadow
volumes”, GameDev.net.

JIM BLINN, “Me and My (Fake) Shadow,” IEEE Computer
Graphics and Applications, vol. 8, no. 1, pp. 82-86,
January 1988.

JIM BLINN, 1996. Jim Blinn’s Corner: A Trip Down the
Graphics Pipeline, Morgan Kaufmann Publishers,
Inc., San Francisco.

JOHN CARMACK, 2000. Unpublished correspondence.
KASPER FAUERBY AND CARSTEN KJAER, 2003. “Real-time

Soft Shadows in a Game Engine”, Master’s Thesis.
LANCE WILLIAMS, August 1978. Casting Curved Shadows

on Curved Surfaces. Computer Graphics, Volume 12,
Number 3.

TIM HEIDMANN, 1991. “Real Shadows, Real Time”, Iris
Universe, volume 18, pp. 23-31, Silicon Graphics Inc.

88

TOMAS AKENINE-MOLLER AND ULF ASSARSSON, 2002.
Approximate soft shadows on arbitrary surfaces using
penumbra wedges. In Proceedings of the 13th
Eurographics workshop on Rendering, pages 297-
306. Eurographics Association.

Ulf ASSARSSON AND TOMAS AKENINE-MOLLER, 2003. A
geometry-based soft shadow volume algorithm using
graphics hardware. ACM Transactions on Graphics
(TOG), 22(3):511-520.

ULF ASSARSSON, MICHAEL DOUGHERTY, MICHAEL
MOUNIER, AND TOMAS AKENINE-MOLLER, 2003. An
optimized soft shadow volume algorithm with real-time
performance. In Proceedings of the ACM
SIGGRAPH/EUROGRAPHICS conference on Graphics
hardware, pages 33-40. Eurographics Association

