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Abstract: The performance of a simple model with a linear root water extraction term that varies 

with time is presented in this paper. The research is based on the use of a one-dimensional form 

of Richard’s Equation for unsaturated moisture flow including a sink term. A numerical solution 

has been achieved via the finite element method for spatial discretisation along with a finite 

difference time-marching scheme. The model is assessed via a series of simulations of water 

uptake beneath uniform crop cover. A good correlation between the field data and simulated 

results has been achieved. This relatively straight forward approach is seemed more suitable for 

development and application to a range of geoengineering problems such as slope stability, 

shrinkage and heave prediction. 
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1.0 Introduction 

 

Soil suction is a limiting parameter for water-uptake, and hence nutrient intake, 

for many types of vegetation.  In agricultural science, the optimisation of crop 

yield depends on a sound knowledge of the interplay between the plant-root 

system and the soil water.  However, it is now recognised that the variation in 

soil suction that occurs in the presence of vegetation, and indeed those that can 

occur on removal of vegetation, have an important role in the analysis of a 

number of geotechnical and geoenvironmental problems.  This paper explores 

the development and the performance of a numerical model of water uptake 

associated with vegetation.  Some of the practical problems where this type of 

model (in a developed form) may prove useful are discussed briefly. A brief 

summary of the historical development of root-water uptake models is also 

provided. 
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The stability of soil slopes, naturally occurring or man-made, gives rise to 

significant problems in many countries. This is a problem that is exacerbated by 

climate change and increasingly intense rainfall events (Dehn et al., 2000; 

Turner, 2001). In many circumstances soil slopes will be populated by some 

form of vegetation ranging from grass cover to more established shrubs and 

trees.  Repair maintenance and operation of railway and road embankments is a 

particular area where these problems are important (Ridley et al. 2004).  Recent 

research indicates that progress is now being made to incorporate the influence 

of vegetation within the framework of slope stability analysis (Greenwood et al. 

2004).  Whereas, good progress is being made with regard to the contribution of 

roots to the overall shear strength, the direct influence of suction variations still 

requires further consideration. 

In the UK, the shrinkage and swelling of clay soils, particularly when 

influenced by trees, is the single most common cause of foundation movements 

which may damage domestic buildings (BRE, 1999). In geoenvironmental 

engineering, one complementary technique that can be used to assist with the 

clean-up process is known as phytoremediation (Salt et al., 1995).  This method 

exploits the soil/water interaction in the rhizosphere (root zone) to help remove 

contaminants from the soil mass.  Therefore in this area also, an ability to predict 

the water uptake process will be useful. 

There are many different root water uptake models described in the literature 

which classify these models into two categories which are the microscopic 

approaches and macroscopic approaches. In this paper, the macroscopic 

approach is used as this approach does not take into account the effect of 

individual root because of the difficulty in measuring the time-dependent 

geometry of the root system.  

A considerable amount of research has been published in this area, starting 

with early contributions from Philip (1957) and Gardner (1964).  Feddes et al. 

(1976) represented water uptake by roots by adding a volumetric sink term to the 

continuity equation for soil water flow. Further developments appeared in the 

literature shortly afterwards (see for example, Afshar and Marino (1978); 

Hoogland et al. (1981); Raats (1974); Landsberg and Fowkes (1978); Molz 

(1981); Rowse et al. (1978); Prasad (1988). 

A number of different approaches to modelling the water uptake process have 

been considered.  For example, Gardner (1991) proposed a model based on non-

linear behaviour of the root membranes and described by a distributed sink 

moving downward through the soil profile.  Whereas, Mathur and Rao (1999) 

presented a model that incorporates a sinusoidal root growth function that takes 

into account the root growth with time.  Lai and Katul (2000) considered the role 

of root-water-uptake on the relationship between actual and potential 
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transpiration.  An exponential root water uptake model was proposed by Li et al. 

(2001). 

In the last few years, several findings have been published.  For example, 

Homaee et al. (2002) used an extraction term in the simulation of salinity stress.  

Dardanelli et al. (2004) developed a simplified water-uptake model that uses 

generalizations from measured soil water content changes to predict root-water-

uptake.  Roose and Fowler (2004) provide a model which includes the 

simultaneous flow of water within the root network itself as well as within the 

soil mass.  Braud et al. (2005) have provided a useful assessment of the water 

uptake that considered water stress compensation based on water stress reduction 

and an asymptotic root distribution function.  

As a result, most of the models found in the literature are similar in approach, 

but these models use different root extraction functions. The model justified the 

use of these root extraction functions and each one of them operated 

successfully. Li et al. (2001, 2006) made a comparison of root water uptake 

models. Although they claim that an exponential model can produce more 

realistic behaviour compared to a linear model, they also demonstrate that only a 

5 % difference in the cumulative water uptake occurred between these two 

approaches.   

In view of the above, this paper develops a linear root water extraction term 

that varies with time based on the work of Prasad (1998).  This simple approach 

lends itself to further development for application to wider range of 

geoenvironmental problems. 

  

 

2.0  Unsaturated Moisture Flow Theory And Numerical Solution 

 

The model employed is based on Richard’s equation (Richards, 1931) written in 

one-dimensional form and including a source/sink term: 

 

 

         (1) 

 

 

Where K  is the unsaturated hydraulic conductivity, t  is the time, z  is the co-

ordinates, θ  is the volumetric moisture content, and ψ  is the capillary potential.  

This equation is written in terms of one unknown variable, the capillary 

potential, also frequently described as the negative pore-water pressure head. 

The equation contains two soil properties; the specific moisture capacity ψθ ∂∂  
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and K.  Both are non-linear functions of capillary potential (and therefore soil 

suction). 

 A solution of Equation 1 is obtained via a procedure of finite element spatial 

discretisation and a scheme of finite difference time-stepping. In particular, 

adopting a Galerkin weighted residual approach (Zienkiewicz and Taylor, 1989) 

yields: 
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In the work presented here, parabolic shape functions, and eight node 

isoparametric elements are employed. Using, Green’s formula and introducing 

boundary terms (Zienkiewicz and Taylor, 1989), lead to the final disctretised 

form: 

 

             (3) 
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The time dependent nature of Equation 3 is dealt with via a mid-interval 

backward difference technique, yielding: 

 

   

                                                                         (8) 

   

                  

  

3.0  Development And Application Of A Sink Term 

 

Equations describing one dimensional water uptake in a soil may be derived by 

assuming a linear variation of extraction rate with depth. It is assumed that for 

potential transpiration conditions, Smax is given by, 
 

   (9) 

 

Where Smax is the extraction rate, aj  and –bj  are the intercept and slope on the  

jth day, respectively and z is the rooting depth. Let zrj is the maximum depth of 

the root zone, the boundary condition at the bottom of the root zone (z = zrj) and 

Smax equals to zero, 

 

   (10)  

 

The total transpiration, Tj, across the root zone is then obtained by integrating 

over the active depth,  
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At the bottom of root zone, from equation (10), 

 

    (14) 

 

Substituting equation (14) into equation (13), yields 

  

         (15) 

 

 

Substituting equation (15) into equation (14), then gives 

 

                       (16) 

 

 

Combining equations (9), (15) and (16), gives, 
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This can be re-arranged as, 
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Equation (18) is valid only under optimal soil moisture levels. When the 

moisture content is low, actual transpiration is lower than the potential value. A 

model proposed by Feddes et al. (1978) to describe the sink term for actual 

transpiration is represented by, 
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Prasad (1988) introduced this equation to represent one-dimensional water 

uptake model by plant roots. This equation is used in this paper.  

 

 

4.0 Assessment Of The 1 -D Linear Model 

 

An initial assessment of the model has been achieved by simulation of a series of 

test cases based on the experimental (and numerical) work of others.  The results 

of this assessment are summarised below. 

  

4.1 Case 1 - Linear Water-Uptake 

 

The first case-study was based on the work of Mathur and Rao (1999). In this 

work, the soil water content was expressed a function of the pressure head using 

van Genuchten’s method  (Genuchten, 1980): 

 

        

                  (21) 

 

 

Where rθ   and  sθ  are residual and saturated water content respectively, h is the 

pressure head and, n and m are the empirical shape parameters. The parameters 

used, for loamy soil, are shown in Table 1. 

 
 

Table 1 : Basic soil properties Gottardi and Venutelli (1992) 

 
 

 Mathur and Rao (1999) used the water retention characteristic obtained from 

Equation 21 along with the pore size distribution model of Mualem (1976), to 
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Where Ks is the saturated hydraulic conductivity and l is a soil specific 

parameter. The water retention and hydraulic conductivity relationships are 

shown in Figures 1(a) and 1(b) respectively. 

 

 

 

 

 

 

 

 

 

 

 

(a) Water Retention Curve    (b) Hydraulic Conductivity 

 
Figure 1: Material Properties for Berino Loamy Sand 

 

The soil profile studied by Mathur and Rao (1999) was 100cm in depth.  This 

was divided into 25 elements each of 4 cm height and 8 cm width. The moisture 

content initially was assumed to correspond to a capillary potential of -300 cm of 

water throughout the column. The boundary condition at the top was assumed to 

be a zero flux and the potential transpiration rate was assumed to be 0.025 

cm/day. The maximum root length for the simulation was 13.66 cm and the 

period analysed covered four days.  This problem has been re-analysed with the 

current model, to provide a basic verification of the sink term employed. 
 

 

  (a) 3 days      (b) 4 days 
 

 Figure 2: Simulated Moisture Profiles at Day 3 and Day 4 
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 The results for both the current simulation and those presented by Mathur and 

Rao (1999) for Day 3 and Day 4 are shown in Figure 2(a) and 2(b) respectively. 

The simulated results match well with the results from the previously published 

profile yielding some confidence in the implementation of the procedure.  

 

4.2 Case 2 - Water Stress Function 

 

The second case-study was based on the work of Feddes et al (1976). In their 

research, the finite different method was used to simulate sink term and was 

compared to the experimental result. A field experiment was performed by the 

Feddes (1971) at the groundwater-level experimental field at Geestmerambacht 

in the Netherlands, in which red cabbage was grown on heavy clay. Although the 

model did not predict the distribution of soil water content with depth in very 

accurate detail, the cumulative effect over the entire depth is properly simulated. 

The sink term which was used in their model is: 

 

             (23)

                   

Where Epl is the actual transpiration (cm/s), Z is the rooting depth (cm) and 

( )ψα   is a dimensionless function of the capillary potential. This function can be 

obtained in Figure 3. The root water uptake is zero when the soil is wetter than 

the anaerobiosis point, h1 as well as drier than the wilting point, h4 and is 

constant at its maximum value between h2 and h3. A linear variation of alpha,  

with capillary potential,  is assumed when the latter is less than h2 or greater than 

h3.  

 

 

 

 

 

 

 

 

     
    h1   h2                          h3                   h4 

 

 

 

Figure 3: General shape of the sink term as a function of the absolute value of the capillary 

potential, after Feddes et al (1978) 
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The water retention and hydraulic conductivity relationships for Case 2 are 

shown in Figures 4(a) and 4(b) respectively. 

 

 

 (a) Water Retention Curve     (b) Hydraulic Conductivity 

 
Figure 4: Material Properties for Heavy Clay 

 

The soil profile was 100 cm in depth and was divided into 25 elements, each 

of 4 cm height and 8 cm width. The moisture content initially was 0.5cm
3
/cm

3
 

throughout the column and the boundary condition at the top was assumed to be 

a zero flux. The potential transpiration rate was assumed based on the average of 

0.025 cm/hour. The depth of the effective root zone varied from about 25 cm at 

the beginning to about 70 cm at the end of the simulation which is 49 days. It is 

assumed that a uniform rate of root growth throughout the simulation which is 

0.038 cm/hour.  
 

   

  (a) 34 days      (b) 49 days 

 

Figure 5 : Simulated Moisture Profiles at 34 days and 49 days 
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The results for the current simulation and those presented by Feddes et al 

(1976) in both finite difference simulation and experiment measured for 34 days 

and 49 days are shown in Figures 5(a) and 5(b) respectively. The simulated 

results match well with published profile at 34 days but slightly different with 

the finite difference result at 49 days. This difference may be occurring due to 

both simulations used different methods, different extraction functions and 

assumptions that have been made. However, the difference is small and 

acceptable which are 19 % and the simulation result profile looks close to the 

experiment measured profile.  

 

4.3 Case 3 - Non-Uniform Root Model 

 

The third case-study was based on the work of Gardner (1964).  Gardner 

proposed a mathematical model to describe the water uptake by a non-uniform 

root system. The main thrust in this study was to determine the rooting 

distribution associated with each depth increment. The results of the model were 

validated using his experimental data on sorghum plant.  The mathematical 

equation used by Gardner (1964) is: 

 

                         

   (24) 

 

 

Where q is the total rate of water uptake per unit cross sectional area by 

summing from i=1 to i=n layer, B is a constant, h is the thickness for each n 

layer, δ   is the suction or diffusion pressure deficit in the plant roots, η   is the 

average matric suction in the soil, z is the distance from the soil surface to the 

centre of the layer, k is the unsaturated conductivity of soil and L is the length of 

roots in the unit volume of soil. 

The water retention and hydraulic conductivity relationships for Pachappa 

Sandy Loamy are shown in Figures 6(a) and 6(b), respectively. 
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     (a) Water Retention Curve    (b) Hydraulic Conductivity 

 

Figure 6: Material Properties for Pachappa Sandy Loamy 

 

The soil profile was 200 cm in depth and was divided into 40 elements, which 

are concentrating at the soil surface. The linear distribution moisture content 

initially used was from 0.3 cm
3
/cm

3
 to 0.4 cm

3
/cm

3 
at the depth of 100 cm from 

the soil surface and the boundary condition at the top was assumed to be a zero 

flux. The potential transpiration rate is 2 cm/day. The maximum root length for 

the simulation was 100 cm and the period analysed covered four days. The 

maximum root length for the simulation was 100 cm and the period analysed 

covered four days. 
 

   

  (a) 2 days     (b) 4 days 

 

Figure 7: Simulated Moisture Profiles at 2 days and 4 days. 
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The results for the current simulation and those presented by Gardner (1964) 

in both calculation and experiment measured for 2 days and 4 days are shown in 

Figures 7(a) and 7(b), respectively. From both result, it is shown that the 

simulated results match well with published profile for both 2 days and 4 days.  
 

 

5.0 Conclusions 
 

This paper has presented an initial assessment of a 1-D linear water uptake 

model thought to be suitable for further development.  Three case-studies have 

been presented for this purpose.  The first case-study illustrated application of 

the linear water-uptake model to a simple hypothetical test problem.  The new 

model produced results that were generally within 4 % compare to independently 

simulation results.  

The second problem considered the significance of including a water-stress 

function for water-uptake modelling.  The new model performed adequately for 

this type of problem.  The final case study explored a problem involving a non-

uniform root system.  This problem served to illustrate the extent to which a 

simple linear approach could be used to model such a case.  The linear model 

again performed adequately, but was, by definition, not capable of accurately 

representing a non-uniform extraction process.  However, for some practical 

problems the cumulative water uptake predicted by a simple linear model may be 

adequate.   

Overall, the new model has shown to be capable of producing results that are 

comparable with independently published results.  The implementation of the 

water-uptake model and the associated sink term therefore appear to have been 

successfully undertaken. 
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Notations 

 

 

( )ψC     Specific moisture capacity (cm
-1
) 

( )ψK     Unsaturated hydraulic conductivity (cm/s) 

Smax, ( ) ( )zSS ,, ψψ    Sink term (cm
3
/cm

3
/s) 

T, Tj     Potential Transpiration rate (cm/s) 

t      Time (s) 
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zrj , zr     Maximum rooting depth (cm) 

( )ψα      Pressure head dependent reduction factor 

θ       Volumetric moisture content (%) 

rθ      Residual water content (%) 

sθ      Saturated water content (%) 

ψ          Capillary potential (cm) 
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