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Introduction 
 Arcing fault occurs in underground 
distribution cable due to electrical and water 
treeing in XLPE insulation and inadequate 
splices assembly. These faults can cause 
considerable damage to the equipments if they 
are not detected and isolated promptly.  
 An arc is a luminous discharge of 
electricity flowing between two electrodes 
through an insulating medium. The electrical 
discharge of an arc can involve temperatures 
of up to or exceed 35,000oF (Koch, B. and 
Christophe, P. 1993). 
 Depending upon the environment of the 
installation, moisture, small metal particles 
and pollution can easily penetrate into a failed 
insulation creating an electrically conductive 
path between an energized conductor and 
other parts of the system which are at different 
electrical potentials. A conductive path 
created in this way often has a high resistance 
that will not immediately cause a bolted short 
circuit between two different potential levels 
of a system (Crnko, T. and Dyrnes, S. 2001). 
Hence, fault currents, until a bolted short 
circuit is established, will be limited and often 
cannot be detected by overcurrent protective 
devices connected upstream from the location 
of the fault. Such a fault would first persist as 
an arcing, not drawing enough current to be 
detected by standard overcurrent protections, 
and creating a fire hazard. 
 In the case of overhead line the gas 
generated through arcing is dispersed rapidly. 
But in the case of underground cable the 
generated gas could travel along cable duct 
and could result in explosion at manhole 
location, which is dangerous to personnel. 
 Arcing fault does not occur frequently on 
underground distribution cable but it can draw 
a large amount of electrical energy from the 
system. This energy is dissipated into the 
environment in various forms through the 
following mechanisms, namely melting and 

evaporation of the electrode material, noise 
produced by powerful ac arcs, jets of very 
high temperature vapours and ionised gases, 
temperature and pressure rises in a limited 
volume of a closed manhole and thermal 
degradation of nearby organic materials. 
 
Materials and methods 
 
Modelling of underground distribution 
systems 
 To study the characterization of arcing 
fault in underground distribution cable, a 
simple underground distribution system has 
been modelled and simulated using Power 
System Computer Aided Design / 
ElectroMagnetic Transients for Direct Current 
(PSCAD/EMTDC) program. The data 
obtained from simulation based on this system 
are used for neural network training and 
testing purposes. Figure 1 depicts the circuit 
diagram of simple underground distribution 
system.  
 This system includes typical distribution 
components, which consists of system source, 
distribution transformer, underground cables 
and loads. An arc model has been used to 
study the characterization of arcing fault. 
 To evaluate the performance of the 
detection algorithm, two practical TNB 
distribution systems will be used in this study. 
The first system is 11 kV underground 
distribution system in Taman Rinting, Masai, 
Johor (PPU Taman Rinting 11 kV) and the 
second system is 6.6 kV underground 
distribution system in Pasir Gudang, Johor 
(PMU PGIE 6.6 kV). The schematic diagrams 
of both systems are illustrated in Figure 2 and 
3, respectively. Both systems consist of 
system source, transformers, underground 
cables and loads. 
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FIGURE 1 Circuit diagram of simple underground distribution system 
 

Zone 2

Zone 4

Zone 6

Zone 8

Zone 7

Zone 3

Zone 9

 
 
FIGURE 2 Schematic diagram of 11kV underground distribution system in Taman Rinting, Masai, Johor 
 

 
 
FIGURE 3 Schematic diagram of 6.6kV underground distribution system in Pasir Gudang, Johor 
 
 Due to the PSCAD/EMTDC program 
educational edition’s limitation of 200 
electrical nodes, the modelling of underground 

cables is focused on 3 zones in PPU Taman 
Rinting 11 kV system and 2 zones in PMU 
PGIE 6.6 kV system. The other 7 zones in 
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PPU Taman Rinting 11 kV system and 8 
zones in PMU PGIE 6.6 kV system are 
represented by fixed loads. 
 Extensive simulations have been 
performed using PSCAD/EMTDC program 
for different values of arc fault resistance and 
fault locations. The phase current signals were 
collected and stored in out (*.out) format for 
later analysis on the data in Matrix Laboratory 
(Matlab) software package. 
 
The arc model 

An arc model developed based on 
(Emanuel, A. E. et al., 1990) is used to 
examine the diverse and complex 
characteristics of arcing fault, as shown in 
Figure 4. The arc model is embraced with 
nonlinear arc fault resistance R, two DC 
voltage sources VP and VN, connected in anti-
parallel by means of two diodes D1 and D2. S 
is a conventional time-controlled switch 
which connects the cable to the fault path. Zin 
is connected to cable conductor meanwhile 
Zout is connected to ground. A random number 
generator is used to generate random values of 
arc fault resistance in order to get different 
arcing faults current magnitudes. The current 
flows through VP only during positive half 
cycle and VN only during negative half cycle. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
FIGURE 4 The arc model 
 
Network architecture 
 A fully connected three-layer (input, 
hidden and output) feed-forward neural 
network have been used to discriminate arcing 
fault currents from normal load currents. 
Figure 5 depicts the pattern recognition 
network architecture. The input layer of the 
network is composed of 52 neurons. The first 

50 neurons are phase current inputs between 
the range of value 1 to value -1, which 
represent the instantaneous values of the 
sampled phase current per cycle, starting at 
the current zero crossing of the positive half 
cycle. The last two neurons are inputs consist 
of two ratios. The first ratio is the DC 
component to the fundamental frequency 
(Idc/I1) of the phase current per cycle; 
meanwhile the second ratio is the second 
harmonic to the fundamental frequency (I2/I1) 
of the phase current per cycle. 
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FIGURE 5 Pattern recognition network 
architecture 
 
 The hidden layer of the both networks is 
composed of 20 hidden neurons. In this layer, 
hyperbolic tangent function is used as the 
activation function with a range of –1 and 1. 
The output layer of both networks has one 
neuron. The target output of the network is ‘1’ 
for arcing faults and ‘0’ for normal load 
conditions. As a result, binary sigmoid 
function is used as the activation function in 
this layer. 
 
Training patterns 
 The neural network is trained by a set of 
phase current patterns of arcing faults and 
normal load conditions gathered from 
simulation results based on the simple 
underground distribution system in Figure 1. 
Figure 6 and Figure 7 illustrate some of the 
phase current patterns that were used to train 
the network. The arcing fault currents in 
Figure 7 are characterized by unsymmetrical 
half cycles due to harmonic contents.  
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FIGURE 6 Normal load current training pattern 
 

 
 
FIGURE 7 Arcing faults current training patterns 
 
 The neural network training can be made 
more efficient if certain pre-processing steps 
are performed on the network inputs and 
target outputs. As a result, the training 
patterns are sampled at the rate of 50 samples 
per cycle and then normalised between the 
range of value 1 to value –1, while 
maintaining the target outputs remained 
unchanged.  
 
 The neural network was trained with the 
backpropagation algorithm. The Matlab ANN 
Toolbox was selected for the implementation 
of backpropagation due to its simplicity and 
flexibility. 
 
Arcing fault detection algorithm 
 To detect the presence of arcing faults in 
underground distribution cable, an arcing fault 
detection algorithm has been developed. 
Figure 8 shows the flowchart of the arcing 
fault detection algorithm. The algorithm 
processes the data as follows: 
a) Input current signal 
 Phase current signals are loaded to the 
detector. 
b) Data pre-processing 
 The neural network requires the input 
signals to suit the network input layer.  

Therefore each cycle of the phase current 
signals is sampled at the rate of 50 samples, 
starting at the current zero crossing of the 
positive half cycle.  At the same time the two 
ratios, Idc/I1 and I2/I1 are calculated.  Then the 
sampled signals are normalised between the 
range of value 1 to value –1.  
c) Pattern recognition 
 The resulting input signals are passed cycle 
by cycle to the neural network for pattern 
recognition. 
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FIGURE 8 Flowchart of the arcing fault detection 
algorithm 
 
d) Detector 
 The detection algorithm integrates the 
neural network scores to calculate the detector 
output. 

( )oldnewoldnew outputscoretoutputoutput −+=
τ
δ  (1) 

where tδ  is the integration time step of one 
cycle and τ  is the integration time constant of 
one second (Sultan A. F. et al., 1994). 
 The output of detector is compared with a 
detection threshold to determine whether or 
not the disturbance is caused by an arcing 
fault. If the output of detector is more than a 
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detection threshold, the process of detection 
would be completed. However, if this 
condition is not true, the process is then 
repeated. 
 
Results and Discussion 
 
Test with simulation database 

To evaluate the dependability of the arcing 
fault detection algorithm, the algorithm is 
tested with four-second traces of normal load 
phase current corrupted by currents of phase-
to-ground faults on different combination of 
arc fault resistances and locations. The test 
cases with different range of fault resistance 
and location, as tabulated in Table1 and Table 
2, are obtained from the simulation results 
based on the PPU Taman Rinting 11 kV 
system and the PMU PGIE 6.6 kV system. 
 Figure 9 illustrates part of the test cases 
and detection results. It is clear that the 
detection results show a perfect performance 
in test cases 9 and 11. The neural network 
scores ‘0’ for the first one second because the 
phase currents consist of normal load currents. 
After the one second, the phase currents 
consist of typical arcing fault currents; hence 
the network scores ‘1’ within this period. The 
output of the fault detector indicates the 
probable presence of arcing fault is about 
0.95, for duration of three seconds. 
 This is in contrast with test cases 23 and 
28, the neural network shows relatively low 
scores in the detection results. This means that 
the neural network is unable to recognize all 
the arcing fault conditions. However, the 
outputs of the fault detector signify that the 
probable occurrences of arcing fault are about 
0.9, during the period of three seconds. 
 
TABLE 1 Test cases with different range of fault 
resistance obtained from PPU Taman Rinting 11 
kV system 

Test 
Case Zone Location 

(km) 
Range of Fault 

Resistance (ohm) 
9 1 0.5 300 – 800 
10 5 0.5 200 – 900 
11 5 1.0 200 – 1000 
12 5 1.5 200 – 800 
13 5 3.0 150 – 600 
14 5 4.5 100 – 700 
15 5 6.0 100 – 500 
16 10 0.8 200 – 400 
17 10 1.8 100 – 600 
18 10 3.2 100 – 800 
19 10 3.6 80 – 300 

TABLE 2 Test cases with different range of fault 
resistance obtained from PMU PGIE 6.6 kV 
system 
 

Test 
Case Zone Location 

(km) 
Range of Fault 

Resistance (ohm) 
20 4 0.5 100 – 200 
21 4 0.9 90 – 250 
22 4 1.2 110 – 270 
23 5 0.4 120 – 300 
24 5 1.0 80 – 350 
25 5 1.4 150 – 400 
26 5 2.0 100 – 380 
27 5 2.2 70 – 170 
28 5 2.4 85 – 234 
29 5 2.6 130 – 330 
30 5 2.8 60 – 150 

 
 Similarly in test cases 24 and 25, the 
neural network shows relatively low scores 
from 1 to 2 seconds. The arcing fault current 
patterns are very close to sinusoid within this 
period due to very high fault resistance. After 
2 seconds, as the arc fault resistance is 
decreases, the fault currents become typical 
arcing fault with observable current spikes, 
which are easily detected by the neural 
network. For above two cases, the fault 
detector outputs show that the probable 
presences of arcing fault are about 0.9. 
 The detection results show satisfactory 
performance in all test cases where the output 
of the fault detector indicates the probable 
occurrence of arcing fault is above 0.85 for a 
period of time less than four seconds.  For the 
detection threshold level, based on inspection 
of the fault detector output for all test cases 
shown 
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FIGURE 9 Test cases and detection results 
 
in Figure 9, a detection threshold level of 0.85 
is appropriate for a trip level setting. 
 The simulations database performed by 
PSCAD/EMTDC program was primarily 
designed to test the effectiveness of the 
proposed arcing fault detection algorithm. 
Therefore, the current patterns obtained from 
simulations are only representative of the 
types of patterns that could be generated by an 
arcing fault. 
 A more effective evaluation of the 
proposed arcing fault detection algorithm will 
require a lot more actual field data for 
reliability. In addition, the neural network 
need to be trained with more current patterns 
that include the patterns of nonlinear loads 
that mimic fault conditions would increase the 
network reliability. 
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