
3D SPATIAL OPERATIONS FOR GEO-DBMS: GEOMETRY VS. TOPOLOGY

T.K. Chena, *, A. Abdul-Rahmana, S. Zlatanovb

aDepartment of Geoinformatics, Faculty of Geoinformation Science and Engineering, Universiti Teknologi Malaysia,

Skudai, Malaysia - {kenchen, alias}@fksg.utm.my
bSection GIS Technology, OTB Research Institute for Housing, Urban and Mobility Studies, Delft University of

Technology, The Netherlands - s.zlatanova@tudelft.nl

Commission II, WgS II/4

KEY WORDS: Spatial, Database, Geometry, Query, Three-dimensional, GIS

ABSTRACT:

Geo-DBMS becomes very important medium for GIS as it can handle and manage (e.g. retrieve and update) large volume of spatial
data. Providing 3D spatial database with appropriate operation tools such as 3D spatial operations would be very useful for next
generation of GIS software (i.e. 3D GIS) since the software would highly depend on the Geo-DBMS in both modeling and analysis.
One of the desired components in such future software or system is geometric modeling capability that works with 3D spatial
operations. The literature reveals 3D spatial database would be greatly enhanced if analytical operations on the spatial data could be
manipulated in real 3D domain. Fundamentally, it can be considered that the aspect of 3D spatial operations within GIS software are
still not much been addressed and solved as expected (i.e. up to the level where an operational 3D system could be realized). The
main problem from this aspect is the unavailability of 3D spatial data type within geo-DBMS environment. It is the aim of this paper
to describe 3D spatial operations for geometrical and topological data types within geo-DBMS environment. In the experiment, we
utilize an existing geo-DBMS, PostgreSQL, later known as PostGIS, which complied with the standard specifications from Open
Geospatial Consortium (OGC), e.g. abstract and geometry specification. The second factor why we utilise the PostGIS is because its
an open source based technology and suitable for academic and research purposes. In this paper, we discuss a suitable way of
developing a new 3D data type, polyhedron, for both geometrical and topological data types and spatial operations using C language.

* Corresponding author.

1. INTRODUCTION

1.1 General Introduction

The database management system, or DBMS, is a computer
software program that is designed as the means of managing all
databases that are currently installed on a system hard drive or
network. Different types of database management systems exist,
with some of them designed for the oversight and proper
control of databases that are configured for specific purposes. In
spatial database, spatial data types are usually defined as
Abstract Data Types (ADT), i.e. encapsulated types together
with spatial operations. At implementation level, one can define
spatial indices on spatial ADTs (Cardelli and Wegner, 1985;
Liskov and Zilles, 1974; Stonebraker, et al., 1983; Stonebraker,
1986). A spatial object is an instance of a spatial type; it can
have 0 (point), 1 (line), 2 (polygon), and 3 (solid) dimensions.
All data stored in a DBMS is ultimately in binary form. A
spatial DBMS will have a pre-defined way of organizing binary
data to represent geometry, and this pre-defined way of
organizing binary data is built into the DBMS in the form of a
data type, such as SDO_GEOMETRY in Oracle Spatial or
ST_GEOMETRY in IBM's DB2 Spatial Extender. Because this
data type is built into the DBMS it is called a native geometry
type. However, the lack of 3D primitive, such as polyhedron,
yield the absent of 3D spatial operations. Therefore, to solve
this current problem, the paper is organized in the following
order: first, short discussion for the 3D objects construction in
three-dimension, i.e. polyhedron. Then, the rules to formulate
spatial operations for geometry and topology data type are

highlight based on the developed data types, i.e. denotes the
third section of the paper. The rules to construct the spatial
operations for the minimal set of topological operations are
discussed extensively in the fourth section. The experiment and
discussions are presented in section 5, which provide the
comparison between geometry and topology data types and
finally, the research is concluded in section 6.

1.2 Characteristic of polyhedron

Polyhedron is a 3D equivalent of a set of polygon that bounds a
solid object. It is made up by connecting all faces, sharing a
common edge between two adjacent polygons. The polygons
that make up the polyhedron have to be flat. This means that all
points that construct a polygon must be in the same plane.
Figure 1 denotes a sample of a planar and non-planar polygon.

Figure 1: (a) Planar polygon, and (b) non-planar polygon

The characteristics of a valid polyhedron must include
following rules (Aguilera & Ayala (1997), Aguilera (1998)):

549

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by CiteSeerX

https://core.ac.uk/display/24059820?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences. Vol. XXXVII. Part B2. Beijing 2008

• Flatness – all polygons that bound a single volume of
polyhedron must be flat. This means all vertices
involve in constructing a polygon should be in the
same plane. The flatness of a polygon can be verified
by plane equation as follow:

Ax + By + Cz + D = 0 (1)

The Eq. (1) denotes the standard equation of a plane
in 3D space. The normal to the plane is the vector
(A,B,C).

• Polyhedron must be single volume object – a set of
polygons that make up a polyhedron should be
bounded as a single volume.

• Simplicity characteristic – this rule had been
discussed by Arens (2005). However, this condition
could be simplified by enforcing the construction of a
polygon as follow:

- Each edge has exactly 2 vertices only.
- The starting and ending points of a polygon is

same, and will only be stored once. E.g. a
polygon consists 4 points (a,b,c,d), thus the
polygon will be stored as (a,b,c,d,a), instead of
(a,b,c,d,e), although a = e. Any point(s) with
same location will be stored only once.

- Polygon must have an area.
- Lines from a polygon must not self-intersecting.
- Singularity of polyhedron is not allowed, i.e.

lower dimension object must not exist in the
interior of higher dimension. E.g. point will not
exist in the interior of line or polygon or
polyhedron, line will not exist in the interior of
polygon or polyhedron. However, lower
dimension object may exist at the border of
higher dimension object. This rule may directly
avoid polygon intersects with other polygon(s)
(see Figure 2). Any polygon that intersects other
polygon(s) will not be stored as a part of
polyhedron.

Figure 2: Polygon intersection causes the singularity of points
and line

2. 3D DATA TYPES IN DBMS

2.1 3D Polyhedron

The existing spatial objects available in PostgreSQL are rather
limited to 2D, but appear in three-dimensional space. The 3D
primitive object is not available. Thus, 3D polyhedron will be

discussed. Refer to the section 1.2, a polyhedron is constructed
by a set of polygons that bounds a closed object. There are
several important arrays that make up a complete data structure
of a polyhedron. First, the array of coordinates should not be
redundant. In most of the DBMS, they tend to store multi-
polygon in such a way that coordinate-values are redundant.
Each location of point consists of 3 coordinate-values, (x,y,z).
If multi-polygon or polyhedron stores all coordinate-values, the
data storage will become huge. However, Arens et al. (2005)
had overcome this problem by representing each location with
an ID. With this method, every triplet of coordinate-values
(x,y,z) will be re-used if any shared vertex is found. This
method directly reduces the storage of polyhedron, because
each vertex will be shared by polygons that bound a closed
object. Unlikely to multi-polygon, vertex may, somehow, not be
shared with other polygons. Although polyhedron is similar to
multi-polygon, it can be stored in a simpler and lesser-storage
way. Thus, a set of coordinates array (with no redundant) will
be recorded. Because of this, all vertices from each polygon
will be referred as ID number. Thus, a set of array storing IDs
that bound a polygon will be recorded as well. Besides, some
extra information will be added, i.e. total polygon, vertices, etc.

2.2 Geometrical Data Type

The following data structure denote a sample of a polyhedron
for geometrical data type:

SELECT * FROM GM_BODYTABLE WHERE PID = 1;
(For geometrical data type)

POLYHEDRON(PolygonInfo(6,24),SumVertexList(
8),SumPolygonList(4,4,4,4,4,4),VertexList(1
00.0,100.0,100.0,400.0,100.0,100.0,400.0,40
0.0,100.0,100.0,400.0,100.0,100.0,100.0,400
.0,400.0,100.0,400.0,400.0,400.0,400.0,100.
0,400.0,400.0),PolygonList(1,2,6,5,2,3,7,6,
3,4,8,7,4,1,5,8,5,6,7,8,1,4,3,2))

1). PolygonInfo(6,24) denotes 6 polygons and 24 IDs in

PolygonList,
2). SumVertexList(8) denotes the total vertices,
3). SumPolygonList (4, 4, 4, 4, 4, 4) denotes

total vertices for each of polygon (total polygon is 6,
referred to (1)),

4). VertexList() denotes the list of coordinate-values for
all vertices (with no redundant), and

5). PolygonList() denotes the information about each
polygon from sets of ID.

The graphical representation of the sample polyhedron stated
above is given as follows (Figure 3):

Figure 3: Sample structure of a polyhedron for
geometrical data type

550

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences. Vol. XXXVII. Part B2. Beijing 2008

2.3 Topological Data Type

For topological data type, only object unique identifiers of
lower dimension are stored for the polyhedron. For this case,
face IDs are recorded as an input data set for a polyhedron, as
shown in Figure 4.

SELECT * FROM TP_BODYTABLE WHERE PID = 1;
 (For topological data type)

4,POLYHEDRON(FaceInfo(6,3),Face(1,2,3,4,5,6
), FaceSingularity(7,8,9))

1). FaceInfo(6,3) denotes 6 polygons and 3 singularities

for the polyhedron,
2). Face(1,2,3,4,5,6) denotes all faces ID that

construct a polyhedron,
3). FaceSingularity(7,8,9)denotes all singularities of

polygon within polyhedron.

Figure 4: Sample structure of a polyhedron for
topological data type

3. IMPLEMENTATION IN DBMS

Most of the commercial DBMS enable a user to create a new
user-defined data type and functions. This user-defined datatype
and functions can be written in C, C++ or Java. Data types can
be started also using high-level language PL/SQL but usually
these implementations have a bad performance. In this research,
we have used C. In general, a user-defined type is defined as a
class and must always have input and output functions. These
functions determine how the type appears in strings (for input
by the user and output to the user) and how the type is
organized in memory. The input function takes a null-
terminated character string as its argument and returns the
internal (in memory) representation of the type. The output
function takes the internal representation of the type as
argument and returns a null-terminated character string. If users
want to do anything more with the type than merely store it,
they must provide additional functions to implement whatever
operations they’d like to have for the type. The following three
sections will illustrate how a new data type and a new function
can be designed in C, compiled and used in PostgreSQL

3.1 Polyhedron Data Type

Suppose user wants to define a type complex that represents
complex numbers. A natural way to represent a complex
number in memory would be the following C structure:

typedef struct {
 char buf[200];
}POLYHEDRON;

As the external string representation of the type, a string of the
form (POLYHEDRON) is chosen. The input and output
functions are usually not hard to write especially the output
function. But when defining the external string representation of
the type, remember that users must eventually write a complete
and robust parser for that representation as their input function.
For instance:

PG_FUNCTION_INFO_V1(Polyhedron_in);
Datum
Polyhedron_in(PG_FUNCTION_ARGS)
{
 //== POLYHEDRON input class ==//
}

The output function can simply be:

PG_FUNCTION_INFO_V1(Polyhedron_out);
Datum
Polyhedron_out(PG_FUNCTION_ARGS)
{
 //== POLYHEDRON output class ==//
}

To define the complex data type, user needs to create the user-
defined I/O functions within PostgreSQL environment before
creating the type:

CREATE FUNCTION Polyhedron_in(cstring)
 RETURNS POLYHEDRON
 AS 'filename'
 LANGUAGE C IMMUTABLE STRICT;
CREATE FUNCTION Polyhedron_out(POLYHEDRON)
 RETURNS cstring
 AS 'filename'
 LANGUAGE C IMMUTABLE STRICT;

Notice that the declarations of the input and output functions
must reference the not-yet-defined type. Although this is
allowed, but it will draw warning messages that could be be
ignored. The input function must appear first. Finally, the data
type will be declared:

CREATE TYPE POLYHEDRON (
 internallength = 100,
 input = Polyhedron_in,
 output = Polyhedron_out,
 alignment = double
);

3.2 User-defined Function/Operation

To create new user-defined functions/operations, C language is
used within PostgreSQL. The PG_FUNCTION_INFO_V1()
macro is used in calling for the function. Within the function,
each actual argument is fetched using a PG_GETARG_xxx()
macro that corresponds to the argument’s data type, and the
result is returned using a PG_RETURN_xxx() macro for the
return type. PG_GETARG_xxx() takes as its argument the
number of the function argument to fetch, where the count starts
at 0. PG_RETURN_xxx() takes as its argument the actual value
to return. The C function is give as follows:

PG_FUNCTION_INFO_V1(OVERLAP3D);
Datum OVERLAP3D(PG_FUNCTION_ARGS)
{
 int32 arg = PG_GETARG_xxx(0);
 //== 3D OVERLAP function class ==//
 PG_RETURN_xxx();

551

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences. Vol. XXXVII. Part B2. Beijing 2008

}

4. TOPOLOGICAL OPERATIONS

The topological operations presented here are based on the 4-
intersection model and extends to 3D. The related operations
include Overlap, Meet, Disjoint, Inside, Covers, CoveredBy,
Contain, and Equal (see Figure 5). Some approaches will be
considered in developing 3D spatial operation for DBMS:

• The 3D spatial operation will cover all necessary topological

structures that define a complete solid object. In certain
cases, not all primitives are needed, e.g. a polyhedron is
defined by an ordered set of coordinate triplets for each
polygon that bound a volumetric body, and line will not be
used in the data structure.

• The implementing of the 3D spatial operations will be tested
within the DBMS environment.

• The results from 3D topological operations return to a
Boolean form (TRUE/FALSE). It involves two spatial
objects, polyhedron and polyhedron.

Figure 5: Body and body relation (after Zlatanova, 2000)

4.1 Spatial Operations for Geometrical Data Type

For topological operation in geometrical data type, coordinate
triplet of vertex will be discussed. Similar to computational-
geometry operation from previous section, the binary operation
is divided into base and target object. However, the vertices
from base object and polygons from target object will be
discussed (see Figure 6).

This topological operation involves vertices (from base object)
and polygon (from target object). Therefore, the relation
between these 2 objects will be examined. The location of base
vertices relative to target polygon will be either outside, touch,
or inside. The implementation was discussed in Chen and
Abdul-Rahman (2006). These relations will be used to
determine how these 2 polyhedrons intersect each other as
shown in Figure 5. For example (see Figure 7), vertices from
base object are either touch the target polyhedron or located
outside from target object.

Figure 6: Base and target object for 3D operation

Polygon from target object
Vertex from base object

Base object Target object 3D Meet

3D topological

operations

Inside

Outside

Touch
Meet NO YES YES

Figure 7: Vertices (base) are located and touch the target
polygon

The following Table 1 denotes the complete relation between
base and target object.

3D topological
operations

Inside

Outside

Touch

Equal X X
Meet X

Covers X
CoveredBy X

Contains X X
Inside X X

Disjoint X X
Overlap

Table 1: Conditions for topological operations

The relationship of Covers and CoveredBy are different due to
the role of base and target objects between these two
relationships are different. For Covers, the base object covers
the entire target object, whereas for CoveredBy, the target
object covers the entire base object. The similar approach
implemented between Contains and Inside.

4.2 Spatial Operations for Topological Data Type

Conventional topological data types involve the design of
primitive’s definition and object’s construction. The main
purposes of these implementations are to maintain 3D topology,
which will be used to perform visualization and spatial analysis.
These analyses are rather limited to spatial query, e.g. find any
face that is shared by 2 objects, or select all vertices that
construct a body. The strategy of implementing 3D topological
operation for 3D topological structure is to define the similarity
between 2 objects. Refer to Figure 5, the relationship between
body A and B exists only if similar face stores both object A
and B. If a spatial query is required to examined the relationship
between these 2 bodies, i.e. find all faces that shared by Body A
and B, the experiment will return to positive result due to the
similarity of faces are found (see Figure 8).

552

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences. Vol. XXXVII. Part B2. Beijing 2008

Figure 8: Determination of the similarity of face for 2 bodies

The research implements the Simplified Spatial Model (SSM)
(see Figure 9) developed by Zlatanova (2000) as a spatial model
for polyhedron. The main reason the research utilizes the SSM
because it is an optimized spatial model, in term of data storage
size. The comparison among other spatial models could be
found in Zlatanova (2000). The model consists of two
constructive objects, (nodes and faces) and four geometric
objects (point, line, surface and body). A point is a spatial
object that does not have shape or size but position is the space.
A line is a type of a spatial object that has length and position.
A surface is an abstraction of spatial object that has position
and area. A body is a type of spatial object that has a position
and a volume. Nodes constitute points and lines and faces
constitute surfaces and bodies.

Figure 9: Modified SSM for topological operations

In order to implement the 3D topological operations for SSM, a
minor modification for face-body relationship needs to be
modified. Previously, SSM only relates the face and body
relationship by implement the constructive object for the body
itself. The intersection among other bodies is not stored in
body table. However, this can be overcome by adding the
relationship FaceSingularity-Body to the body table (see Figure
10b). With the new implementation of body table for SSM, 3D
topological operations can be carried out based on following
rules:

1). The new approach attempts to implement FaceSingularity

as intersection result for body table.
2). Examine the similarity of Faces and FaceSingularity

between 2 bodies. Faces with different orientation, i.e.
1245 and -1245 are considered as similar face but different
orientation of vertices, will be selected as well.

3). The similarity and non-similarity of surfaces from 2 bodies
will be used to determine in which relationship these

bodies are. The rules for each of the topological
operations are (see Table 2 and Figure 9):

F1b

F1a

F1 F21

Table 2: Rules of 3D topological operations for modified SSM

5. ANALYSIS & DISCUSSIONS

5.1 Geometry Vs. Topology Data Types

The comparison could only be done (between geometrical and
topological data types) is the 3D topological operations (see
Figure 10). Since the computational-geometry and metric
operations manipulate the coordinate triplets within the
mathematical computations, these 3D operations are impossible
to be implemented in topological data type. With the absent of
these 3D operations, comparison could not be done for both
geometrical and topological data types. Thus, the comparison is
focused on the 3D topological operations, in terms of execution
time consumed.

Figure 10: Possible comparison between geometrical and

topological data types

Refer to the Figure 11a, the execution time consumed for
geometrical data type is higher than the topological data type.
The similar results are appeared in the Figure 11b, which the
datasets are getting bigger, the execution time of data storage
size are gradually increased because the geometrical data type
applied complex mathematical approaches within the Geo-
DBMS environment. The topological data type only
implements the spatial query between two spatial objects.

6. CONCLUDING REMARKS

We have implemented an approach for 3D topological
operations of geometrical and topological data types in Geo-
DBMS. The results have shown that implementation of a 3D
data type and functions allowing 3D GIS analysis are possible.

553

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences. Vol. XXXVII. Part B2. Beijing 2008

(a)

Figure 11: The comparison between geometrical and
topological data types

Our concept was tested within PostgreSQL computing
environment and has provided a promising outcome with
respect to the developed algorithms. The 3D topological
operations implemented in this paper covers the relationship of
4-intersection model (8 kinds of relations), i.e. meet, overlap,
contains, covers, coveredby, inside, equal, and disjoint.
However, the 3D topological operations could be extended to 9-
intersection model, which the exterior element is considered in
the relationship together with the interior and boundary
elements. More different kinds of relations could be
implemented (in future) with the same approach from this
research. The 3D topological operations for DBMS could be
implemented using different approaches such as using other
programming language, i.e. PL/PGSQL, PL/TCL, PL/Perl, and
SQL within PostgreSQL environment. However, since the
PostgreSQL was developed mostly using C language, an
implementation using procedural languages could result in less
efficiency and low performances. A very important issue still
need to be addressed is visualization of the result of 3D queries.

Appropriate graphical visualization is especially important for
3D in order to get a better perception of the result of the query.
We believe this research effort towards realizing a fully 3D
spatial analysis tools within Geo DBMS environment would be
beneficial to 3D GIS research community. This is because
major GIS task involves DBMS (except 3D visualization), i.e.
dataset handling, spatial operations, etc. It is our aim to move
further in addressing this issue of spatial data modeling and
geometrical modeling for 3D GIS.

ACKNOWLEGEMENTS

The author would like to thank the Ministry of Science,
Technology and Innovation (MOSTI), Malaysia for providing
the financial support for the research.

REFERENCES

Aguilera, A, and Ayala, D. (1997). Orthogonal Polyhedra as
Geometric Bounds In Constructive Solid Geometry. In C.
Hoffman, and W. Bronsvort, (ed.), Fourth ACM Siggraph
Symposium on Solid Modeling and Applications, Vol.4: 56-67.

Aguilera, A. (1998). Orthogonal Polyhedra: Study and
Application. Ph.D. Thesis, LSI-Universitat Politècnica de
Catalunya.

Arens, C., Stoter, J.E., and van Oosterom, P.J.M. 2005.
Modelling 3D Spatial Objects In a geo-DBMS Using a 3D
Primitive. In Computers & Geosciences, volume 31, 2. pp. 165-
177

Cardelli, L. and Wegner, P. (1985). On Understanding Types,
Data Abstactions, and Polymorphism. ACM Computing Survey.
17(4):471-522.

Chen, T.K., and Abdul-Rahman, A, (2006) “0-D Feature In 3D
Planar Polygon Testing for 3D Spatial Analysis”,
Geoinformation Science Journal, Vol. 6, No.(1), Faculty of
Geoinformation Science & Engineering, UTM, Malaysia, 15 p.

(b)
Liskov, B., and Zilles, S. (1974). Programming With Abstract
Data Types ACM SIGPLAN Notices.

Stonebraker, M., Rubenstein, B., and Guttman, A. (1983).
Application and Abstract Data Types and Abstract Indices to
CAD Database. In: Proc. Of the Annual Meeting Database
Week. 107-113.

Stonebraker, M. (1986). Inclusion of New Types in Relational
Database System. In: Proc. Intl. Conf.on Data Engineering.
262-269.

Zlatanova, S. (2000). “3D GIS for Urban Development.” PhD
Thesis, ITC, The Netherlands, 222 p.

554

	1. INTRODUCTION
	1.1 General Introduction
	1.2 Characteristic of polyhedron

	2. 3D DATA TYPES IN DBMS
	2.1 3D Polyhedron
	2.2 Geometrical Data Type
	2.3 Topological Data Type

	3. IMPLEMENTATION IN DBMS
	3.1 Polyhedron Data Type
	3.2 User-defined Function/Operation

	4. TOPOLOGICAL OPERATIONS
	4.1 Spatial Operations for Geometrical Data Type
	4.2 Spatial Operations for Topological Data Type

	5. ANALYSIS & DISCUSSIONS
	5.1 Geometry Vs. Topology Data Types

	6. CONCLUDING REMARKS
	ACKNOWLEGEMENTS
	REFERENCES

