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ABSTRACT: 
 
Geo-DBMS becomes very important medium for GIS as it can handle and manage (e.g. retrieve and update) large volume of spatial 
data. Providing 3D spatial database with appropriate operation tools such as 3D spatial operations would be very useful for next 
generation of GIS software (i.e. 3D GIS) since the software would highly depend on the Geo-DBMS in both modeling and analysis. 
One of the desired components in such future software or system is geometric modeling capability that works with 3D spatial 
operations. The literature reveals 3D spatial database would be greatly enhanced if analytical operations on the spatial data could be 
manipulated in real 3D domain. Fundamentally, it can be considered that the aspect of 3D spatial operations within GIS software are 
still not much been addressed and solved as expected (i.e. up to the level where an operational 3D system could be realized). The 
main problem from this aspect is the unavailability of 3D spatial data type within geo-DBMS environment. It is the aim of this paper 
to describe 3D spatial operations for geometrical and topological data types within geo-DBMS environment. In the experiment, we 
utilize an existing geo-DBMS, PostgreSQL, later known as PostGIS, which complied with the standard specifications from Open 
Geospatial Consortium (OGC), e.g. abstract and geometry specification. The second factor why we utilise the PostGIS is because its 
an open source based technology and suitable for academic and research purposes. In this paper, we discuss a suitable way of 
developing a new 3D data type, polyhedron, for both geometrical and topological data types and spatial operations using C language. 
 
 

                                                                 
*  Corresponding author.   

1. INTRODUCTION 

1.1 General Introduction 

The database management system, or DBMS, is a computer 
software program that is designed as the means of managing all 
databases that are currently installed on a system hard drive or 
network. Different types of database management systems exist, 
with some of them designed for the oversight and proper 
control of databases that are configured for specific purposes. In 
spatial database, spatial data types are usually defined as 
Abstract Data Types (ADT), i.e. encapsulated types together 
with spatial operations. At implementation level, one can define 
spatial indices on spatial ADTs (Cardelli and Wegner, 1985; 
Liskov and Zilles, 1974; Stonebraker, et al., 1983; Stonebraker, 
1986). A spatial object is an instance of a spatial type; it can 
have 0 (point), 1 (line), 2 (polygon), and 3 (solid) dimensions. 
All data stored in a DBMS is ultimately in binary form. A 
spatial DBMS will have a pre-defined way of organizing binary 
data to represent geometry, and this pre-defined way of 
organizing binary data is built into the DBMS in the form of a 
data type, such as SDO_GEOMETRY in Oracle Spatial or 
ST_GEOMETRY in IBM's DB2 Spatial Extender. Because this 
data type is built into the DBMS it is called a native geometry 
type. However, the lack of 3D primitive, such as polyhedron, 
yield the absent of 3D spatial operations. Therefore, to solve 
this current problem, the paper is organized in the following 
order: first, short discussion for the 3D objects construction in 
three-dimension, i.e. polyhedron. Then, the rules to formulate 
spatial operations for geometry and topology data type are 

highlight based on the developed data types, i.e. denotes the 
third section of the paper. The rules to construct the spatial 
operations for the minimal set of topological operations are 
discussed extensively in the fourth section. The experiment and 
discussions are presented in section 5, which provide the 
comparison between geometry and topology data types and 
finally, the research is concluded in section 6.   
 
1.2 Characteristic of polyhedron 

Polyhedron is a 3D equivalent of a set of polygon that bounds a 
solid object. It is made up by connecting all faces, sharing a 
common edge between two adjacent polygons. The polygons 
that make up the polyhedron have to be flat. This means that all 
points that construct a polygon must be in the same plane. 
Figure 1 denotes a sample of a planar and non-planar polygon. 
 
 

 
Figure 1: (a) Planar polygon, and (b) non-planar polygon 

 
The characteristics of a valid polyhedron must include 
following rules (Aguilera & Ayala (1997), Aguilera (1998)):  
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• Flatness – all polygons that bound a single volume of 
polyhedron must be flat. This means all vertices 
involve in constructing a polygon should be in the 
same plane. The flatness of a polygon can be verified 
by plane equation as follow: 

 
 

Ax + By + Cz + D  = 0                    (1) 
 

 
The Eq. (1) denotes the standard equation of a plane 
in 3D space. The normal to the plane is the vector 
(A,B,C). 

• Polyhedron must be single volume object – a set of 
polygons that make up a polyhedron should be 
bounded as a single volume.  

• Simplicity characteristic – this rule had been 
discussed by Arens (2005). However, this condition 
could be simplified by enforcing the construction of a 
polygon as follow: 

 
- Each edge has exactly 2 vertices only. 
- The starting and ending points of a polygon is 

same, and will only be stored once. E.g. a 
polygon consists 4 points (a,b,c,d), thus the 
polygon will be stored as (a,b,c,d,a), instead of 
(a,b,c,d,e), although a = e. Any point(s) with 
same location will be stored only once. 

- Polygon must have an area. 
- Lines from a polygon must not self-intersecting. 
- Singularity of polyhedron is not allowed, i.e. 

lower dimension object must not exist in the 
interior of higher dimension. E.g. point will not 
exist in the interior of line or polygon or 
polyhedron, line will not exist in the interior of 
polygon or polyhedron. However, lower 
dimension object may exist at the border of 
higher dimension object. This rule may directly 
avoid polygon intersects with other polygon(s) 
(see Figure 2). Any polygon that intersects other 
polygon(s) will not be stored as a part of 
polyhedron. 

 
 

 
 

Figure 2: Polygon intersection causes the singularity of points 
and line 

 
 

2. 3D DATA TYPES IN DBMS 

2.1 3D Polyhedron 

The existing spatial objects available in PostgreSQL are rather 
limited to 2D, but appear in three-dimensional space. The 3D 
primitive object is not available. Thus, 3D polyhedron will be 

discussed. Refer to the section 1.2, a polyhedron is constructed 
by a set of polygons that bounds a closed object. There are 
several important arrays that make up a complete data structure 
of a polyhedron. First, the array of coordinates should not be 
redundant. In most of the DBMS, they tend to store multi-
polygon in such a way that coordinate-values are redundant. 
Each location of point consists of 3 coordinate-values, (x,y,z). 
If multi-polygon or polyhedron stores all coordinate-values, the 
data storage will become huge. However, Arens et al. (2005) 
had overcome this problem by representing each location with 
an ID. With this method, every triplet of coordinate-values 
(x,y,z) will be re-used if any shared vertex is found. This 
method directly reduces the storage of polyhedron, because 
each vertex will be shared by polygons that bound a closed 
object. Unlikely to multi-polygon, vertex may, somehow, not be 
shared with other polygons. Although polyhedron is similar to 
multi-polygon, it can be stored in a simpler and lesser-storage 
way. Thus, a set of coordinates array (with no redundant) will 
be recorded. Because of this, all vertices from each polygon 
will be referred as ID number. Thus, a set of array storing IDs 
that bound a polygon will be recorded as well. Besides, some 
extra information will be added, i.e. total polygon, vertices, etc. 
 
2.2 Geometrical Data Type   

The following data structure denote a sample of a polyhedron 
for geometrical data type: 
 
SELECT * FROM GM_BODYTABLE WHERE PID = 1; 
(For geometrical data type) 

 
POLYHEDRON(PolygonInfo(6,24),SumVertexList(
8),SumPolygonList(4,4,4,4,4,4),VertexList(1
00.0,100.0,100.0,400.0,100.0,100.0,400.0,40
0.0,100.0,100.0,400.0,100.0,100.0,100.0,400
.0,400.0,100.0,400.0,400.0,400.0,400.0,100.
0,400.0,400.0),PolygonList(1,2,6,5,2,3,7,6,
3,4,8,7,4,1,5,8,5,6,7,8,1,4,3,2)) 
 
1). PolygonInfo(6,24) denotes 6 polygons and 24 IDs in 

PolygonList, 
2). SumVertexList(8) denotes the total vertices, 
3). SumPolygonList (4, 4, 4, 4, 4, 4) denotes 

total vertices for each of polygon (total polygon is 6, 
referred to (1)), 

4). VertexList() denotes the list of coordinate-values for 
all vertices (with no redundant), and 

5). PolygonList() denotes the information about each 
polygon from sets of ID. 

 
The graphical representation of the sample polyhedron stated 
above is given as follows (Figure 3): 
 
 

 
 

Figure 3: Sample structure of a polyhedron for  
geometrical data type 
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2.3 Topological Data Type 

For topological data type, only object unique identifiers of 
lower dimension are stored for the polyhedron. For this case, 
face IDs are recorded as an input data set for a polyhedron, as 
shown in Figure 4. 

  
SELECT * FROM TP_BODYTABLE WHERE PID = 1; 
 (For topological data type) 
 
4,POLYHEDRON(FaceInfo(6,3),Face(1,2,3,4,5,6
), FaceSingularity(7,8,9)) 
 
1). FaceInfo(6,3) denotes 6 polygons and 3 singularities 

for the polyhedron, 
2). Face(1,2,3,4,5,6) denotes all faces ID that 

construct a polyhedron, 
3). FaceSingularity(7,8,9)denotes all singularities of 

polygon within polyhedron. 
 

 
 

Figure 4: Sample structure of a polyhedron for  
topological data type 

 
 

3. IMPLEMENTATION IN DBMS 

Most of the commercial DBMS enable a user to create a new 
user-defined data type and functions. This user-defined datatype 
and functions can be written in C, C++ or Java. Data types can 
be started also using high-level language PL/SQL but usually 
these implementations have a bad performance. In this research, 
we have used C. In general, a user-defined type is defined as a 
class and must always have input and output functions. These 
functions determine how the type appears in strings (for input 
by the user and output to the user) and how the type is 
organized in memory. The input function takes a null-
terminated character string as its argument and returns the 
internal (in memory) representation of the type. The output 
function takes the internal representation of the type as 
argument and returns a null-terminated character string. If users 
want to do anything more with the type than merely store it, 
they must provide additional functions to implement whatever 
operations they’d like to have for the type. The following three 
sections will illustrate how a new data type and a new function 
can be designed in C, compiled and used in PostgreSQL 
 
3.1 Polyhedron Data Type 

Suppose user wants to define a type complex that represents 
complex numbers. A natural way to represent a complex 
number in memory would be the following C structure:  
 

typedef struct { 
   char buf[200];  
}POLYHEDRON; 

 

As the external string representation of the type, a string of the 
form (POLYHEDRON) is chosen. The input and output 
functions are usually not hard to write especially the output 
function. But when defining the external string representation of 
the type, remember that users must eventually write a complete 
and robust parser for that representation as their input function. 
For instance:  
 
PG_FUNCTION_INFO_V1(Polyhedron_in); 
Datum  
Polyhedron_in(PG_FUNCTION_ARGS) 
{ 
    //== POLYHEDRON input class ==// 
} 
 
The output function can simply be:  
 
PG_FUNCTION_INFO_V1(Polyhedron_out); 
Datum 
Polyhedron_out(PG_FUNCTION_ARGS) 
{ 
    //== POLYHEDRON output class ==// 
} 
 
To define the complex data type, user needs to create the user-
defined I/O functions within PostgreSQL environment before 
creating the type: 
 
CREATE FUNCTION Polyhedron_in(cstring) 
    RETURNS POLYHEDRON 
    AS 'filename' 
    LANGUAGE C IMMUTABLE STRICT; 
CREATE FUNCTION Polyhedron_out(POLYHEDRON) 
    RETURNS cstring 
    AS 'filename' 
    LANGUAGE C IMMUTABLE STRICT; 
 
Notice that the declarations of the input and output functions 
must reference the not-yet-defined type. Although this is 
allowed, but it will draw warning messages that could be be 
ignored. The input function must appear first. Finally, the data 
type will be declared: 
 
CREATE TYPE POLYHEDRON ( 
   internallength = 100,  
   input = Polyhedron_in, 
   output = Polyhedron_out,    
   alignment = double 
);  
 
3.2 User-defined Function/Operation 

To create new user-defined functions/operations, C language is 
used within PostgreSQL. The PG_FUNCTION_INFO_V1( ) 
macro is used in calling for the function. Within the function, 
each actual argument is fetched using a PG_GETARG_xxx() 
macro that corresponds to the argument’s data type, and the 
result is returned using a PG_RETURN_xxx() macro for the 
return type. PG_GETARG_xxx() takes as its argument the 
number of the function argument to fetch, where the count starts 
at 0. PG_RETURN_xxx() takes as its argument the actual value 
to return. The C function is give as follows: 
 
PG_FUNCTION_INFO_V1(OVERLAP3D); 
Datum OVERLAP3D(PG_FUNCTION_ARGS) 
{ 
   int32 arg = PG_GETARG_xxx(0); 
   //== 3D OVERLAP function class ==// 
   PG_RETURN_xxx();      
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} 
 

4. TOPOLOGICAL OPERATIONS 

The topological operations presented here are based on the 4-
intersection model and extends to 3D. The related operations 
include Overlap, Meet, Disjoint, Inside, Covers, CoveredBy, 
Contain, and Equal (see Figure 5). Some approaches will be 
considered in developing 3D spatial operation for DBMS: 
 
• The 3D spatial operation will cover all necessary topological 

structures that define a complete solid object. In certain 
cases, not all primitives are needed, e.g. a polyhedron is 
defined by an ordered set of coordinate triplets for each 
polygon that bound a volumetric body, and line will not be 
used in the data structure.  

• The implementing of the 3D spatial operations will be tested 
within the DBMS environment.  

• The results from 3D topological operations return to a 
Boolean form (TRUE/FALSE). It involves two spatial 
objects, polyhedron and polyhedron. 

 

 
Figure 5: Body and body relation (after Zlatanova, 2000) 

 
4.1 Spatial Operations for Geometrical Data Type 

For topological operation in geometrical data type, coordinate 
triplet of vertex will be discussed. Similar to computational-
geometry operation from previous section, the binary operation 
is divided into base and target object. However, the vertices 
from base object and polygons from target object will be 
discussed (see Figure 6).  
 
This topological operation involves vertices (from base object) 
and polygon (from target object). Therefore, the relation 
between these 2 objects will be examined. The location of base 
vertices relative to target polygon will be either outside, touch, 
or inside. The implementation was discussed in Chen and 
Abdul-Rahman (2006). These relations will be used to 
determine how these 2 polyhedrons intersect each other as 
shown in Figure 5. For example (see Figure 7), vertices from 
base object are either touch the target polyhedron or located 
outside from target object.   

 
Figure 6: Base and target object for 3D operation 

Polygon from target object
Vertex from base object

Base object Target object 3D Meet 

 

 
3D topological 

operations 
 

Inside 
 

Outside 
 

Touch 
Meet NO YES YES 

Figure 7: Vertices (base) are located and touch the target 
polygon 

 
The following Table 1 denotes the complete relation between 
base and target object. 
 

3D topological 
operations 

 
Inside 

 
Outside 

 
Touch 

Equal X X  
Meet X   

Covers  X  
CoveredBy  X  

Contains  X X 
Inside  X X 

Disjoint X  X 
Overlap    

Table 1: Conditions for topological operations 
 
The relationship of Covers and CoveredBy are different due to 
the role of base and target objects between these two 
relationships are different. For Covers, the base object covers 
the entire target object, whereas for CoveredBy, the target 
object covers the entire base object. The similar approach 
implemented between Contains and Inside. 
 
4.2 Spatial Operations for Topological Data Type 

Conventional topological data types involve the design of 
primitive’s definition and object’s construction.  The main 
purposes of these implementations are to maintain 3D topology, 
which will be used to perform visualization and spatial analysis. 
These analyses are rather limited to spatial query, e.g. find any 
face that is shared by 2 objects, or select all vertices that 
construct a body. The strategy of implementing 3D topological 
operation for 3D topological structure is to define the similarity 
between 2 objects.  Refer to Figure 5, the relationship between 
body A and B exists only if similar face stores both object A 
and B. If a spatial query is required to examined the relationship 
between these 2 bodies, i.e. find all faces that shared by Body A 
and B, the experiment will return to positive result due to the 
similarity of faces are found (see Figure 8).   
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Figure 8: Determination of the similarity of face for 2 bodies  
 

The research implements the Simplified Spatial Model (SSM) 
(see Figure 9) developed by Zlatanova (2000) as a spatial model 
for polyhedron.  The main reason the research utilizes the SSM 
because it is an optimized spatial model, in term of data storage 
size. The comparison among other spatial models could be 
found in Zlatanova (2000). The model consists of two 
constructive objects, (nodes and faces) and four geometric 
objects (point, line, surface and body). A point is a spatial 
object that does not have shape or size but position is the space. 
A line is a type of a spatial object that has length and position. 
A surface is an abstraction of spatial object that has position 
and area.  A body is a type of spatial object that has a position 
and a volume.  Nodes constitute points and lines and faces 
constitute surfaces and bodies.  
 

 
 

Figure 9: Modified SSM for topological operations 
  
In order to implement the 3D topological operations for SSM, a 
minor modification for face-body relationship needs to be 
modified.  Previously, SSM only relates the face and body 
relationship by implement the constructive object for the body 
itself.  The intersection among other bodies is not stored in 
body table.  However, this can be overcome by adding the 
relationship FaceSingularity-Body to the body table (see Figure 
10b). With the new implementation of body table for SSM, 3D 
topological operations can be carried out based on following 
rules: 
 
1). The new approach attempts to implement FaceSingularity 

as intersection result for body table.   
2). Examine the similarity of Faces and FaceSingularity 

between 2 bodies.  Faces with different orientation, i.e. 
1245 and -1245 are considered as similar face but different 
orientation of vertices, will be selected as well. 

3). The similarity and non-similarity of surfaces from 2 bodies 
will be used to determine in which relationship these 

bodies are.  The rules for each of the topological 
operations are (see Table 2 and Figure 9): 

F1b 

F1a 

F1 F21  

 
Table 2: Rules of 3D topological operations for modified SSM 

 
5. ANALYSIS & DISCUSSIONS 

5.1 Geometry Vs. Topology Data Types 

The comparison could only be done (between geometrical and 
topological data types) is the 3D topological operations (see 
Figure 10). Since the computational-geometry and metric 
operations manipulate the coordinate triplets within the 
mathematical computations, these 3D operations are impossible 
to be implemented in topological data type. With the absent of 
these 3D operations, comparison could not be done for both 
geometrical and topological data types. Thus, the comparison is 
focused on the 3D topological operations, in terms of execution 
time consumed. 
 

 
Figure 10: Possible comparison between geometrical and 

topological data types 
 
Refer to the Figure 11a, the execution time consumed for 
geometrical data type is higher than the topological data type. 
The similar results are appeared in the Figure 11b, which the 
datasets are getting bigger, the execution time of data storage 
size are gradually increased because the geometrical data type 
applied complex mathematical approaches within the Geo-
DBMS environment. The topological data type only 
implements the spatial query between two spatial objects.  
 

6. CONCLUDING REMARKS 

We have implemented an approach for 3D topological 
operations of geometrical and topological data types in Geo-
DBMS. The results have shown that implementation of a 3D 
data type and functions allowing 3D GIS analysis are possible. 
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(a) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 11: The comparison between geometrical and 
topological data types 

 
Our concept was tested within PostgreSQL computing 
environment and has provided a promising outcome with 
respect to the developed algorithms. The 3D topological 
operations implemented in this paper covers the relationship of 
4-intersection model (8 kinds of relations), i.e. meet, overlap, 
contains, covers, coveredby, inside, equal, and disjoint. 
However, the 3D topological operations could be extended to 9-
intersection model, which the exterior element is considered in 
the relationship together with the interior and boundary 
elements. More different kinds of relations could be 
implemented (in future) with the same approach from this 
research. The 3D topological operations for DBMS could be 
implemented using different approaches such as using other 
programming language, i.e. PL/PGSQL, PL/TCL, PL/Perl, and 
SQL within PostgreSQL environment. However, since the 
PostgreSQL was developed mostly using C language, an 
implementation using procedural languages could result in less 
efficiency and low performances. A very important issue still 
need to be addressed is visualization of the result of 3D queries. 

Appropriate graphical visualization is especially important for 
3D in order to get a better perception of the result of the query. 
We believe this research effort towards realizing a fully 3D 
spatial analysis tools within Geo DBMS environment would be 
beneficial to 3D GIS research community. This is because 
major GIS task involves DBMS (except 3D visualization), i.e. 
dataset handling, spatial operations, etc. It is our aim to move 
further in addressing this issue of spatial data modeling and 
geometrical modeling for 3D GIS.  
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