brought to you by **CORE** provided by Universiti Teknologi Malaysia Institutional Repository

vii

TABLE OF CONTENTS

CHAPTER	TITLE	PAGE
	DECLARATION	ii
	DEDICATION	iii
	ACKNOWLEDGEMENTS	iv
	ABSTRACT	V
	ABSTRAK	vi
	TABLE OF CONTENTS	vii
	LIST TABLES	Х
	LIST OF FIGURES	xi
	LIST OF SYMBOLS	xii

INTRODUCTION

1

Overview	1
Background of study	3
Problem statement	4
Objectives of the study	4
Scope of the study	4
Significance of the study	5
Organization of the study	5
	Overview Background of study Problem statement Objectives of the study Scope of the study Significance of the study Organization of the study

2 LITERATURE REVIEW

2.1	Introduction	6
2.2	Fabrication of fusion fiber coupling	8
2.3	Thermodynamic equilibrium	11
2.4	Nitrogen plasma species	12

3 MODELING OF KINETIC COLLISIONS OF FIBER FUSION

3.1	Introduction	14
3.2	Chemical kinetic model	15
3.3	Global model	18
3.4	Simulation and execution of Matlab	
	programming	20

RESULTS AND DISCUSSION

4

4.1	Introduction	26
4.2	Integration and application model to	
	low pressure discharge	27
4.3	Comparative model	29
4.4	Nitrogen species densities for higher	
	atmospheric pressure	31
4.5	Integration model for nitrogen gas mixture	35

viii

5 CONCLUSIONS

5.1	Conclusions	36
5.2	Future works	37

REFERENCES	38
Publications	42
Appendices A-F	43-73

LIST OF TABLES

TABLE NO.TITLEPAGE3.1Nitrogen reaction composition with Arrhenius parameters17

LIST OF FIGURES

FIGURE NO.	. TITLE	PAGE
1.1	Fabrication of fused coupler: the basic "fuse-pull-taper"	
	method	2
1.2	The basic structure of a fused biconical tapered (FBT)	
	fiber coupler	2
2.1	Experimental setup to fabricate fused fiber coupler	7
2.2	Schematic diagram of SMF-28e® during fiber fusion	8
2.3	Coupled SMF-28e® fibers	8
2.4	SMF-28e® fibers after fusion coupling process	9
3.1	Job control for each specified m.file	21
3.2	Schematic diagram showing the execution of Matlab m.file	
	for the reaction rate of nitrogen species.	22
3.3 (a)	Simulation flow chart	24
3.3 (b)	Simulation flow chart (continued)	25
4.1	Snapshots of figure generated by output m.file for nitrogen	
	species densities	27
4.2	Nitrogen species density for $T = 1.8eV$ to $7eV$	28

4.3	The electron density and electron temperature in global model	
	measured by Singh and Graves(2000b) as a function of discharge	
	pressure.	29
4.4	Nitrogen species density where the initial values are taken from	
	the global model.	31
4.5	The initial species densities is used by global model measured	
	by Singh and Graves(2000b) as a function of discharge	
	pressure.	33
4.6	The reaction rate of species densities as a function of discharge	
	pressure.	34

LIST OF SYMBOLS

T_e	-	Temperature of electron (K)
T_{g}	-	Temperature of gas (K)
T_i	-	Temperature of ion (K)
n _i	-	density
ν_{i}	-	velocity
Κ	-	Temperature in kelvin

LIST OF APPENDICES

APPENDIX	TITLE	PAGE
А	Kinetic parameters applied to NOx model	43
В	equilbNOx.m	44
С	Coding for kinetic parameters of nitrogen species (n2data.m)	46
D	Coding for run the equilibrium densities of nitrogen species	
	(equilb.m)	48
E	Coding for calculating the reaction rates of nitrogen species	
	(rrates.m)	52
F	Set of data generated by Matlab for each pressure range from	
	1 to 3 atm	53