brought 🐱CyOp R Eb provided by Universiti Teknologi

vii

TABLE OF CONTENTS

CHAPTER

1

TITLE

PAGE

TITLE	i
	1
DECLARATION	ii
DEDICATION	iii
ACKNOWLEDGEMENTS	iv
ABSTRACT	V
ABSTRAK	vi
TABLE OF CONTENTS	vii
LIST OF TABLES	xii
LIST OF FIGURES	xiii
LIST OF SYMBOLS AND ACRONYMS	xviii
LIST OF APPENDICES	xxi

INTRO	ODUCTION	1
1.1	Dynamic Equivalents of Power Systems	1
1.2	Problem Statement	3
1.3	Research Motivation	5
1.4	Research Objectives	7
1.5	Research Contributions	8
1.6	Organisation of the Thesis	9

2	POWI	ER SYS	TEM DYNAMIC EQUIVALENTS	10
	2.1	Introd	uction	10
	2.2	Power	System Dynamic Equivalents in	10
		Genera	al	
	2.3	Classi	fication of Power System Dynamic	13
		Equiva	alents	
		2.3.1	Review of Modal Analysis Based	14
			Dynamic Equivalents	
		2.3.2	Review of Coherency Based	15
			Dynamic Equivalents	
		2.3.3	Modal-coherency Based Dynamic	32
			Equivalents	
		2.3.4	Identification Based Dynamic	33
			Equivalents	
	2.4	Resear	rch Background	35
		2.4.1	Parametric Identification Based	35
			(Linear Method)	
		2.4.2	Parametric Identification Based	37
			(Nonlinear Method)	
		2.4.3	Non-parametric Identification Based	38
			Approaches	
	2.5	Summ	ary	40
3	DVNA	MIC M	IODELS OF POWER SYSTEM	41
5	31	Introd		41
	3.2	Power	System Dynamic Models	41
	0.2	3 2 1	Dynamic Model of Synchronous	42
		0.2.1	Machine	.2
		3.2.2	Dynamic Models of Turbine	47
			Governor	.,
		3.2.3	Dynamic Model of Exciter	49
		3.2.4	Dynamic Models of Power System	51
			Stabiliser	

	3.3	Basic	Multimachine Equations	55
	3.4	Soluti	on of Overall System Equations	57
	3.5	Summ	ary	58
4	SOF	ГWARE	TOOLS (PSDYNET)	59
	4.1	Introd	uction	59
	4.2	Matlal	p-based Power System Dynamic	60
		Equiva	alents Toolbox (PSDYNET)	
		4.2.1	Input Data	62
		4.2.2	Output Data	63
		4.2.3	Routine for Power Flow Program	63
		4.2.4	Routine for Time Domain	73
			Simulation Program	
		4.2.5	Routine for Dynamic Equivalents	79
			Identification Program	
	4.3	Summ	ary	83
5	IDEN	TIFICA	TION BASED DYNAMIC	84
	EQU	IVALEN	TS	
	5.1	Introd	uction	84
	5.2	Param	etric Identification Based Dynamic	85
		Equiva	alents	
		5.2.1	Steady State Preservation	87
		5.2.2	Model of Equivalent Generator	87
		5.2.3	Validation Test of the Parametric	89
			Identification Method	
	5.3	Non-p	arametric Identification Based	95
		Dynan	nic Equivalents	
		5.3.1	Descriptions of the Non-parametric	96
			Identification Method	
		5.3.2	Advantages of the Proposed Method	98
		5.3.3	Validation Test of the Non-	99
			parametric Identification Method	

		5.3.3.1	Data Preparation	99
		5.3.3.2	Artificial Neural Network	100
			Structure	
		5.3.3.3	Training Process	101
		5.3.3.4	Simulation Results and	102
			Discussion	
5.4	Optim	isation Al	gorithms	105
	5.4.1	Newton	's Method	106
	5.4.2	Gradier	t Method	106
	5.4.3	Levenb	erg-Marquardt (LM)	107
		Algorit	nm	
	5.4.4	Particle	Swarm Optimisation (PSO)	109
		Algoritl	nm	
	5.4.5	Applica	tion of ANN-PSO Based	117
		Dynami	ic Equivalent	
5.5	Summ	ary		122
APPI	LICATIO	ONS AND	DISCUSSIONS	123
6.1	Introd	uction		123
6.2	Descri	ption of T	NB-EGAT 300MW HVDC	124
	Netwo	ork		
	6.2.1	Descrip	tions of TNB-EGAT AC	125
		Networ	ks	
	6.2.2	Descrip	tion of HVDC Converter	127
6.3	Devel	opment of	Dynamic Equivalent for	131
	TNB-I	EGAT Po	wer Systems	
6.4	Time l	Domain S	imulation Analysis on	134
	Digita	l Power S	ystem Simulator	
	6.4.1	Modelli	ng of TNB-EGAT HVDC	135
		Systems	5	
	6.4.2	Power (Order Step Response Test of	145
		TNB-E	GAT HVDC Systems	

6

х

		6.4.3	Current Order Step Response Test of	148
			TNB-EGAT HVDC Systems	
		6.4.4	DC Voltage Order Step Response	151
			Test of TNB-EGAT HVDC Systems	
		6.4.5	Extinction Angle Step Response	154
			Test of TNB-EGAT HVDC Systems	
	6.5	Summ	ary	157
7	CON	CLUSIO	ONS AND FUTURE	158
	DEV	ELOPM	ENTS	
	7.1	Concl	usions	158
		7.1.1	Software Tool (PSDYNET)	159
		7.1.2	Identification Based Dynamic	159
			Equivalents and Optimisation	
			Algorithms	
		7.1.3	Application of the Dynamic	161
			Equivalents in Real TNB-EGAT	
			Network	
	7.2	Future	Developments	162
REFEREN	CES			163
Appendices A – D				171 - 185

LIST OF TABLES

TABLE NO.	TITLE	PAGE
2.1	Parameters of synchronous machine	28
2.2	Parameters of excitation system (IEEE type 1)	28
2.3	Parameters of gas turbine-governor system	28
4.1	Comparison of global power flow summary report	72
	generated by PSDYNET and ETAP [®] PowerStation [®]	
4.2	Estimated equivalent parameters for three fictitious	80
	generating units	
4.3	Comparison of RMS errors	83
5.1	Complex power flowing into the frontier buses	90
5.2	Steady state voltages at the frontier buses	90
5.3	Machine parameters for full system	91
5.4	Main electromechanical modes associated with the	91
	study system under the three operating cases	
5.5	Estimated parameters for the fictitious generators	92
5.6	PSO settings for neural network training	115
5.7	Comparison of RMS errors for parametric and non-	122
	parametric identification methods	
6.1	Details of TNB-EGAT Networks	125
6.2	Main parameters of TNB side converter transformers	129
6.3	Main parameters of EGAT side converter transformers	130
6.4	Estimated parameters for the fictitious generators at	131
	TNB side	
6.5	Estimated parameters for the fictitious generators at	133
	EGAT side	

LIST OF FIGURES

|--|

TITLE

PAGE

2.1	Internal and external subsystem	12
2.2	Development of power system dynamic equivalents	13
2.3	Overall procedure of power system dynamic	16
	equivalencing	
2.4	IEEE type 1 excitation system model	22
2.5	Turbine-governor system model	24
2.6	PSS model with speed input	26
2.7	Northern area of TNB power system with its	27
	equivalent system	
2.8	Relative rotor angles of full and equivalent system	29
2.9	Comparison of TMGR bus voltage	30
2.10	Comparison of the electrical power output	31
2.11	Comparison of the mechanical power output	31
2.12	Representing the replaced subsystem using reduced	36
	linear model	
2.13	Representing coherent generators by a single	37
	equivalent	
2.14	System before reduction (a) and after reduction (b)	38
3.1	Generator Transient Model Block Diagram	43
3.2	Generator Subtransient Model Block Diagram	44
3.3	Field Saturation Characteristic of Synchronous	46
	Machine	
3.4	Turbine Governor Type I model	47
3.5	Turbine Governor Type II model	48

3.6	Exciter Model Block Diagram (IEEE Type DC1A)	49
3.7	Power System Stabiliser Type I model	51
3.8	Power System Stabiliser Type II model	52
3.9	Power System Stabiliser Type III model	53
3.10	Power System Stabiliser Type IV model	53
3.11	Power System Stabiliser Type V model	54
3.12	Schematic structure of power system model for	57
	transient stability	
4.1	Main graphical user interface of PSDYNET	60
4.2	Synoptic scheme of PSDYNET program	61
4.3	GUI for data conversion	62
4.4	39-bus New England system for power flow	66
	validation test	
4.5	GUI for displaying power flow results	67
4.6	39-bus New England system by ETAP®	72
	PowerStation [®]	
4.7	Time domain integration flow diagram	75
4.8	GUI for PSDYNET during running time domain	76
	simulation	
4.9	GUI for plotting time domain simulation results	77
4.10	Rotor speeds for the generator 1 to 10 for fault	77
	applied at bus 4	
4.11	Rotor angles for the generator 1 to 10 for fault	78
	applied at bus 4	
4.12	Bus voltages at the generator busbars for fault	78
	applied at bus 4	
4.13	GUI for dynamic equivalents identification program	79
4.14	Reduced network of 39-bus New England system	80
4.15	Rotor angle (δ) of machine 31	81
4.16	Rotor speed (ω) of machine 31	81
4.17	Mechanical power of machine 31	82
4.18	Active power flow at line 10-11	82
5.1	Interactive buses in system classification	85

5.2	Flow chart of the proposed parametric identification	86
	method	
5.3	Test model with 25-busbar and 14 machines system	89
5.4	Equivalent system	90
5.5	Voltage magnitude at Bus 15	92
5.6	Voltage magnitude at Bus 24	93
5.7	Injected active power at Bus 15	93
5.8	Injected active power at Bus 24	94
5.9	Division of complex power networks in sub-systems	95
5.10	Artificial neural network based dynamic equivalents	96
5.11	Configuration of the ANN based dynamic equivalent	99
	circuit for 25-bus test system	
5.12	Overview flowchart of the proposed ANN structure	100
5.13	Structure of the proposed ANN	101
5.14	The ANN training results showing the values of	102
	biases and weights	
5.15	Comparing the real power at boundary bus 14 under a	103
	fault at bus 24	
5.16	Comparing the real power at boundary bus 15 under a	104
	fault at bus 24	
5.17	Comparing the real power at boundary bus 14 under a	104
	fault at bus 17 which is not used in the ANN training	
	process	
5.18	Comparing the real power at boundary bus 15 under a	105
	fault at bus 17 which is not used in the ANN training	
	process	
5.19	Concept of modification of searching point	111
5.20	Current position of Particle X	111
5.21	New position of Particle X	112
5.22	Movement of Particle X in 2D space after new	113
	iteration	
5.23	Graphical plot of neural network architecture	116

5.24	The pattern of the trained neural network for noisy	116
	sinusoinal function	
5.25	ANN-PSO based reduced network of 39-bus New	117
	England system	
5.26	ANN training performance based on gbest values	118
5.27	Comparison of rotor angle dynamic response	119
5.28	Comparison of rotor speed dynamic response	120
5.29	Comparison of mechanical power flowing into bus 31	120
5.30	Comparison of active power flowing from bus 10 to	121
	bus 11	
6.1	Map of TNB-EGAT HVDC link	124
6.2	TNB National Grid System (2001)	126
6.3	Southern Thailand Networks	127
6.4	Overview of the TNB-EGAT HVDC networks	128
6.5	Simple HVDC model of TNB-EGAT HVDC	128
	networks	
6.6	Internal network of TNB AC networks	132
6.7	Internal network of EGAT AC networks	133
6.8	Main interfacing page of TNB-EGAT HVDC	135
	networks	
6.9	HVDC converter model at TNB side	136
6.10	HVDC converter model at EGAT side	137
6.11	Extended AC equivalents at TNB side	138
6.12	Layout of TNB sub-page 1	139
6.13	Layout of TNB sub-page 2	140
6.14	Bersia hydropower plant model	141
6.15	Temengor hydropower plant model	142
6.16	Segari combined cycle power plant model	143
6.17	Extended AC equivalents of EGAT networks	144
6.18	Power Order Step from commissioning test	146
6.19	Power Order Step from PSCAD/EMTDC model	147
6.20	Current Order Step from commissioning test	149
6.21	Current Order Step from PSCAD/EMTDC model	150

6.22	DC Voltage Step from commissioning test	152
6.23	DC Voltage Step from PSCAD/EMTDC model	153
6.24	Extinction Angle Step from commissioning test	155
6.25	Extinction Angle Step from PSCAD/EMTDC model	156

LIST OF SYMBOLS AND ACRONYMS

A	-	Eigenvalues' diagonal matrix of the state matrix
ANN	-	Artificial neural network
<i>C</i> ₁	-	Constant weighting factor related to pbest
<i>c</i> ₂	-	Constant weighting factor related to gbest
D	-	Damping coefficient
$E_{q}^{'}$	-	q-axis transient electro-motive forces
$E_{d}^{'}$	-	d-axis transient electro-motive forces
E_{fd}	-	Excitation voltage
EGAT	-	Electricity Generating Authority of Thailand
FACTs	-	Flexible AC Transmission Systems
FDPF	-	Fast Decoupled Power Flow
gbest	-	Global best
GSMD	-	Grid System Division Management
GUI	-	Graphical user interfaces
Н	-	Inertia constant
HVDC	-	High Voltage Direct Current
HVAC	-	High Voltage Alternating Current
I _d	-	d-axis armature currents
I_q	-	q-axis armature currents
\underline{I}_{G}	-	Complex vector of currents in subsystem
J	-	Jacobian matrix
$K_{_A}$	-	Voltage regulator gain
$K_{\scriptscriptstyle E}$	-	Exciter constant

K_F	-	Stabiliser gain
LM	-	Levenberg-Marquardt algorithm
M	-	Inertia coefficient
Р	-	Active power
pbest	-	Personal best
P_m	-	Mechanical input power, MW
PSS	-	Power System Stabiliser
PSCAD/	-	Power System Computer Aided Design/
EMTDC		Electromagnetic Transient for Direct Current
PSDYNET	-	Power System Dynamic Equivalents Toolbox
PSO	-	Particle Swarm Optimisation algorithm
PSSTMNETOMAC	-	Power System Simulator Network Torsion Machine
		Control
p.u.	-	Per unit system
Q	-	Reactive power
rand()	-	Random number between 0 and 1
R_{s}	-	Stator resistance
$S_{\scriptscriptstyle E}$	-	Exciter saturation function value
SESCO	-	Sarawak Electricity Supply Corporation
SVC	-	Static VAR compensator
S_i^k	-	Position of particle <i>i</i> at iteration <i>k</i>
S_i^{k+1}	-	Position of particle <i>i</i> at iteration $k+1$
T_A, T_B, T_C	-	Voltage regulator time constants
$T_{do}^{'}$	-	d-axis open-circuit time constant
$T^{'}_{qo}$	-	q-axis open-circuit time constant
$T_{\rm max}$ and $T_{\rm min}$	-	Maximum and minimum turbine outputs, p.u.
TNB	-	Tenaga Nasional Berhad
TNBR	-	TNB Research Sdn. Bhd.
T_R	-	Input filter time constant
T_{S}	-	Governor time constant, sec.
V _T	-	Terminal voltage

v_i^k	-	Velocity of particle <i>i</i> at iteration <i>k</i>
v_i^{k+1}	-	Velocity of particle <i>i</i> at iteration $k+1$
V _{err}	-	Terminal voltage error signal
\underline{V}_{G}	-	Complex vector of generator voltages in subsystem
V _{SI}	-	Power system stabiliser input signal
X	-	State vectors of subsystem
X_d	-	d-axis synchronous reactance
$X_{d}^{'}$	-	d-axis transient reactance
$X_{d}^{''}$	-	d- axis subtransient reactance
X_q	-	q-axis synchronous reactance
$X_{q}^{'}$	-	q-axis transient reactance
$X_q^{''}$	-	q- axis subtransient reactance
Y	-	Network admittance matrix
Ζ	-	Modal components' vector of the state variables
δ	-	Power angle position, degree
Δ	-	Deviation
ΔI_f	-	Injected current deviation vectors at the
		interconnection buses
ΔV_f	-	Voltage deviation vectors at the interconnection buses
ε	-	Tolerance
γ	-	Inverter side extinction angle, degree
ψ	-	Armature flux linkages
Ŷ	-	Demapping component
ω	-	Machine angular speed, rad/s
θ	-	Rotor angle, degree or terminal bus angle, degree
\hat{arphi}	-	Mapping component

LIST OF APPENDICES

APPENDIX

TITLE

PAGE

А	Input data format for PSDYNET	171
В	Input data for 39-bus New England test system	175
С	Power flow report for 25-busbar system	179
D	List of Publications	185