brought to you by TCORE

vii

TABLE OF CONTENTS

CHAPTER

TITLE

PAGE

1

1

1

2

8

9

TITLE PAGE	i
DECLARATION	ii
DEDICATION	iii
ACKNOWLEDGEMENT	iv
ABSTRACT	v
ABSTRAK	vi
TABLE OF CONTENTS	vii
LIST OF TABLES	xiii
LIST OF FIGURES	xvi
LIST OF SYMBOLS	xviii
APPENDICES	xxiii

1.3	Justification of the Research	13
1.4	Objectives of the Research	16
1.5	Scope of the Study	17
1.6	Thesis layout	18

LITI	ERATU	RE REVIEW	19
2.1	Introd	luction	19
2.2	Fluidi	zation Concept	19
2.3	Physic	cal Properties of Particles	23
	2.3.1	Bed Voidage (ε)	23
	2.3.2	Particle Sphericity (ϕ)	24
	2.3.3	The Geldart Classification of Particles	24
2.4	Bubbl	e Dynamics	26
	2.4.1	Bubble Rising Velocity and Bubble Size	27
2.5	Entrai	nment and Elutriation	29
2.6	Fluidi	zed Bed Air Distributors	33
	2.6.1	Current Research Work on the Standpipes Air	
		Distributors	35
2.7	Comb	oustion Theory	36
	2.7.1	Moisture Evaporation	37
	2.7.2	De-volatilization/pyrolysis	37
	2.7.3	Char Combustion	41
2.8	Comb	oustion Technology of Municipal Solid Waste	42
2.9	Comb	oustion of Solid Waste in a Fluidized Bed	44
	2.9.1	Combustion of Biomass in a Fluidized Bed	47
	2.9.2	Combustion of Coal in a Fluidized Bed	49
	2.9.3	Combustion of Refuse Derived Fuel (RDF) in a	
		Fluidized Bed	50
	2.9.4	Combustion of High Moisture Content Waste	
		in a Fluidized Bed	52
	2.9.5	Current Combustion Research Work	54

2

3	MET	HODOI	LOGY	56
	3.1	Introd	luction	56
	3.2	Scope	of Research Activities	56
	3.3	Formu	lation of the Simulated Municipal Solid Wastes	
		and its	Chemical and Physical Characterization	58
		3.3.1	Analytical Tests	58
	3.4	Measu	rement of the Physical Properties of Sand	61
	3.5	Geome	etrical Design of a Standpipe Air Distributor	61
		3.5.1	Single Orifice Study	63
		3.5.2	Orifice Distance Study	64
		3.5.3	Pipe Distance Study	65
	3.6	Hydro	dynamic of Circular and Rectangular Columns	
		(Small	l Scale)	66
		3.6.1	Circular Hydrodynamic Studies (CHS)	68
		3.6.2	Rectangular Hydrodynamic Studies (RHS)	75
		3.6.3	Combustor Selection Procedures	76
	3.7	Hydro	dynamics of Bigger Scale Rectangular Column	77
		3.7.1	Equal Flow Studies	80
		3.7.2	Centre High Studies (CH)	81
		3.7.3	Two-Side High Studies (TSH)	81
		3.7.4	One-Side High Studies (OSH)	82
		3.7.5	Sample Preparation	83
	3.8	Calori	fic Value of Solid Waste	83
	3.9	Comb	ustion of Simulated Municipal Solid Waste in a	
		Rectar	ngular Column	85
		3.9.1	Sample Preparation and Experimental Set-up	88
		3.9.2	Temperature, Emission Measurement and	
			Data Logging System	90
		3.9.3	Combustion Calculation for the Simulated	
			Municipal Solid Waste Combustion Studies	95
		3.9.4	Calculation of Adiabatic Flame Temperature	97
		3.9.5	Thermal Efficiency	99

	3.9.6	Study on Effect of Fluidization Numbers on	
		the Combustion of Simulated Municipal	
		Solid Waste	102
	3.9.7	Study on Effect of Air Factor (AF)	106
	3.9.8	Bed Pre-heating	108
3.10	Comb	ustion of Municipal Solid Waste in a Rectangular	
	Colun	n	110
	3.10.1	Study on the Effect of Different Fluidization	
		Numbers (Primary Air) on the Sustainability	
		of the Combustion of Municipal Solid Waste	113
	3.10.2	Calculation of Combustion Quality and Carbon	
		Utilization Efficiency	115
	3.10.3	Study on the Effect of Secondary Air on the	
		Combustion of Municipal Solid Waste	117
3.11	Comb	ustion of Municipal Solid Waste in a Circular	
	Fluidi	zed Bed	118
	3.11.1	Experimental Set-up	120
RESU	ULTS A	ND DISCUSSION	123
4.1	Introd	uction	123
4.2	Effect	of Sand Physical Properties on the	
	Minim	num Fluidization Velocity	124
4.3	Effect	of Air Distributor Geometrical Design	
	on the	Fluidization Behaviour	126
	4.3.1	Effect of Orifice Diameter	126
	4.3.2	Effect of Orifice Distance	129
	4.3.3	Effect of Pipe Distance	131
4.4	Summ	nary – Geometrical Design of Standpipes	
	Air Di	istributor	132
4.5	Hydro	dynamic Studies of Circular and Rectangular	
	Colum	nns (Small Scale)	133
	4.5.1	Effect of Sand Sizes on Fluidization Behaviour	133
	4.5.2	Effect of Aspect Ratio on Fluidization Behaviour	140

4

4.6	Hydro	dynamics of Bigger Scale Rectangular Column	149
	4.6.1	Effect of Equal Air Flow (EF) Strategy	150
	4.6.2	Effect of Centre High Air Flow (CH) Strategy	153
	4.6.3	Effect of One Side High Air Flow (OSH) Strategy	156
	4.6.4	Effect of Two Side High Air Flow (TSH) Strategy	158
4.7	Summ	ary – Hydrodynamic Studies	161
4.8	Combu	ustion Studies in a Fluidized Bed	165
	4.8.1	Properties of Simulated Municipal Solid Waste	165
4.9	Combu	ustion Study of Simulated Municipal Solid Waste	167
	4.9.1	Effect of Fluidization Number on the Combustion	
		of the Simulated Municipal Solid Waste	168
	4.9.2	Adiabatic Flame Temperature and Thermal	
		Efficiency of Simulated Municipal Solid Waste	173
	4.9.3	Effect of Air Factor on the Combustion of	
		Simulated Municipal Solid Waste	177
	4.9.4	Overall Thermal Efficiency at Different	
		Air Factors	180
	4.9.5	Optimum Throughput Rate of Simulated	
		Municipal Solid Waste Rectangular Fluidized	
		Bed Combustor	182
4.10	Combu	astion Study Using Municipal Solid Waste	183
	4.10.1	Effect of Fluidization Number on the Combustion	
		of the Municipal Solid Waste	184
	4.10.2	Overall Thermal Efficiency η_{TH} and Carbon	
		Utilization Efficiency η_{CU} of Municipal Solid	
		Waste Combustion	188
	4.10.3	Gases Emission in the Combustion of Municipal	
		Solid Waste at 5 U_{mf} and AF = 0.8	190
	4.10.4	Effect of Secondary Air on the Combustion of	
		Municipal Solid Waste	194
	4.10.5	Gas Emission Yield at Different Total	
		Air Factors	199

		4.10.6 Combustion Quality Efficiency	200
	4.11	Combustion of Municipal Solid Waste in a Circular	
		Fluidized Bed	202
	4.12	Comparison of Bed Combustion Profiles of Municip	al
		Solid Waste in a Rectangular and Circular Fluidized	Bed 205
		4.12.1 Bed Temperature Profile of Circular and	
		4.12.2 Rectangular Fluidized Bed	205
	4.13	Summary – Combustion Studies	207
5	CON	CLUSIONS AND RECOMMENDATIONS	212
	5.1	Conclusions	212
	5.2	Recommendations for Future Study	214
	REFE	CRENCES	217
	APPE	NDICES A - D	225 - 253

LIST OF TABLES

TABL	E NO. TITLE	PAGE
1.1	Waste components of municipal solid waste for Thailand and the UK	4
1.2	Compositions of municipal solid waste generated from residential	
	medium income in Kuala Lumpur	5
1.3	Composition of simulated municipal solid waste	6
1.4	Heat content of municipal solid waste	8
1.5	Investment cost of small cogeneration plants in Finland	12
2.1	Correlations for the estimation of bubble diameter	29
2.2	Composition of volatile and fixed carbon for selected fuels	46
2.3	RDF fuel analyses	51
3.1	Column shape and size	68
3.2	Dimensions of air distributors in the CHS studies	70
3.3	Flow rates at 1 U_{mf} for different sand sizes for the CHS	71
3.4	Grading system for the CHS study	71
3.5	Flow rates at 1 U_{mf} for different sand sizes for the RHS	76
3.6	Experimental set-up for the Centre High Studies	81
3.7	Experimental set-up for the Two-Side High Studies	82
3.8	Experimental set-up for the One Side High Studies	82
3.9	Samples used in big rectangular study	83
3.10	Design and operating parameters for the combustion studies	87
3.11	Composition of simulated municipal solid waste	88
3.12	Tapped holes locations for online monitoring system	92
3.13	General specification of SWG 300 ⁻¹ gas analyzer	95
3.14	Measuring ranges and accuracy as given by the manufacturer	95
3.15	Flow rate of incoming air for various fluidizing numbers	103

3.16	Air requirement for fluidization at different fluidizing numbers	104
3.17	Air distribution in each air distributor at different fluidization numbers	105
3.18	Feed input needed at different fluidization numbers	106
3.19	Feed input needed at 5 U_{mf} at different air factors	107
3.20	Flow of incoming air into each air distributor pipe	107
3.21	Design and operating parameters for the combustion of MSW	111
3.22	Operating parameters for the combustion of municipal solid waste at	
	5, 6 and 7 U_{mf}	114
3.23	Operating parameters on the study of the effect of the secondary air	118
3.24	Selected operating parameters for circular and rectangular fluidized bed	119
3.25	Operating parameters of circular fluidized bed studies	119
3.26	Position of thermocouple probes	120
4.1	Sand physical properties	124
4.2	U_{mf} for both observation and calculated from correlations	125
4.3	Effect of stand pipe orifice diameter on the fluidizing behaviour in a	
	single orifice study	129
4.4	Effect of orifice distance	130
4.5	Effect of pipe distance on the bubbling behaviours	131
4.6	Final distributor design dimensions for CHS and RHS	132
4.7	Fluidization quality for Sand Sieve No. 10/20 at different fluidization	
	numbers at 1 D _c and 1 W	134
4.8	Fluidization quality for Sand Sieve No. 20/30 at different fluidization	
	numbers at 1 D _c and 1 W	135
4.9	Fluidization quality for Sand Sieve No. 30/60 at different fluidization	
	numbers at 1 D _c and 1 W	135
4.10	Grade point at different aspect ratios for Sand Sieve No. 10/20	140
4.11	Grade point at different aspect ratios for Sand Sieve No. 20/30	142
4.12	Grade point at different aspect ratios for Sand Sieve No. 30/60	144
4.13	The onset of slugging for circular and rectangular columns using	
	different mean sand sizes	148
4.14	Grade point for samples at different fluidization numbers using	
	Equal Flow strategy	152

4.15	Grade point for samples at different fluidization numbers using	
	Centre High Flow strategy	154
4.16	Grade point for samples at different fluidization numbers using	
	One-Side High Flow strategy	157
4.17	Grade point for samples at different fluidization numbers using	
	Two-Side High Flow strategy	160
4.18	Summary of best operating conditions for CHS and RHS	163
4.19	Properties of SMSW and MSW	166
4.20	Average temperature profile in bed (T1), bed surface (T2) and	
	freeboard (T3, T4, T5) at different fluidization numbers at $AF = 1$	168
4.21	Adiabatic flame, highest and average temperatures at Location T4	173
4.22	Percentage heat loss at different fluidization numbers	175
4.23	Thermal efficiency of the simulated municipal solid waste at	
	5, 6 and 7 U_{mf}	176
4.24	Average temperature profile at various temperature probe locations	
	operating at 5 U_{mf} at different air factors	179
4.25	Overall thermal efficiency at different air factors operated at 5 U_{mf}	181
4.26	Throughput rate at fluidization number 5	183
4.27	Average temperature profile at $AF = 0.8$ at different fluidization	
	numbers for the combustion of municipal solid waste	186
4.28	Overall thermal and carbon utilization efficiency of municipal	
	solid waste operated at 5 and 6 U_{mf} and Air Factor = 0.8	189
4.29	Secondary air flow rate at different Total Air Factor	194
4.30	Average bed (T1), surface (T2) and freeboard (T3, T4, T5, T6)	
	conducted at secondary air $AF = 0$	197
4.31	Average bed surface (T2) and freeboard temperature (T3, T4, T5, T6)	
	at different secondary Air Factors	198
4.32	Product gases at different Total Air Factors	199
4.33	Combustion quality efficiency at different Total Air Factors	201

LIST OF FIGURES

FIGU	RE NO. TITLE	PAGE
1.1	Solid waste generation in states in Malaysia	3
1.2	Schematic of Bubbling and Circulating Fluidized Bed Combustors	12
2.1	Fluidization states	20
2.2	A powder classification diagram by Geldart	25
2.3	Interchange of solids and the rising bubble	26
2.4	Chart for determining the terminal velocity falling through fluids	31
2.5	TDH in a bubbling fluidized bed	32
2.6	Processes occurring during incineration	36
2.7	Schematic diagram of mass burn incinerator with travelling grate	43
2.8	Typical municipal solid waste sorting for RDF production	44
3.1	Single orifice study	64
3.2	Orifice distance study	65
3.3	Experimental-layout in determining the optimum pipe distance	66
3.4	Test rig for CHS	69
3.5	Layout of standpipe for air distributor (20 cm internal diameter)	70
3.6	Mixing behaviour at selected grade point	74
3.7	Steps for determining the suitable operating conditions for CHS	74
3.8	RHS experimental layout with three air distributors	75
3.9	Procedure for column type selection	77
3.10	Big scale rectangular experimental rig with three air distributors	80
3.11	General overview of the research work on the combustion of the	
	simulated municipal solid waste	85
3.12	Air distributors of the rectangular fluidized bed	89
3.13	Photograph of rectangular fluidized bed combustor	90

3.14	Schematic of the experimental layout of rectangular fluidized	
	bed combustor	91
3.15	SWG 300 ⁻¹ gas analyzer	92
3.16	Oxygen measurement principle	94
3.17	Schematic diagram of heat balance of a fluidized bed	100
3.18	Pre-drying of palm shell	108
3.19	Heated fluidized bed at 700^{0} C	109
3.20	Experimental procedures in the combustion of municipal solid waste	110
3.21	Municipal solid waste dried-up area	112
3.22	Packed municipal solid wastes for combustion studies	113
3.23	Schematic diagram for the determination of carbon utilization	
	Efficiency	115
3.24	Experimental layout of circular fluidized bed combustor	121
3.25	Photograph of circular fluidized bed combustor	122
4.1	Stagnant and mixing zones in the Perspex column of fluidized bed	
	single orifice study	128
4.2	Solids slugs observed at 1.5 $D_c,3~U_{mf}$ and using Sand Sieve No. 20/30	147
4.3	Circulation and dead zones in rectangular column	151
4.4	Mixing and sand circulation pattern in Centre High Flow strategy	153
4.5	Flow pattern in One Side High strategy	157
4.6	Mixing behaviour by Two-Side High Flow strategy	159
4.7	Bed temperature at different fluidization numbers	171
4.8	Effect of air factors on bed temperature profile at 5 U_{mf}	178
4.9	Bed temperature (T1) at 5, 6 and 7 U_{mf} using municipal solid waste	
	in a rectangular fluidized bed combustor	185
4.10	Temperature profile at 5 U_{mf} and AF=0.8 for the combustion of	
	municipal solid waste in a rectangular fluidized bed combustor	188
4.11	Temperature and product gas profile at 5 U_{mf} and $AF{=}0.8$	191
4.12	Effect of secondary air on the bed temperature profile at 5 U_{mf} and	
	primary air factor 0.8	195
4.13	Temperature profile of bed and freeboard operating at 5 U_{mf} and	
	Total Air Factor = 1.4	203
4.14	Bed temperature profile using circular and rectangular fluidized bed	206

LIST OF SYMBOLS

A_t , A_v	Cross-sectional area of bed, (m ²)
A_D	Area of distributor plate per hole, (m ²)
Ar	Archimedes number, $Ar = \frac{\rho_f (\rho_p - \rho_f) g d_m^3}{\mu_f^2}$ (dimensionless)
Bi	Biot number (dimensionless)
C_{Pa}	Average heat capacity of air (J/g^0C)
C_{Pv}	Average heat capacity of volatiles (J/g ⁰ C)
$C_{p_{ca}}$	Average heat capacity of char and ash (J/g^0C)
C_{Pds}	Average heat capacity of dry waste (J/g ⁰ C)
C_{Pwv}	Average heat capacity of water vapour (J/g^0C)
$C_{x}H_{y}$	Hydrocarbon
D_c	Column diameter, (m)
D_b, d_b	Bubble diameter, (m)
D_G	Binary molecular diffusion coefficient of oxygen in air, (m^2/s)
d_{bo}	Initial bubble formed near the bottom of the bed, (m)
d_i	Diameter of the spherical fuel particle, (m)
d_m, d_p	Mean particle diameter (m), particle diameter (m)
d_{t}	Bed diameter, (m)
<i>d</i> *	Dimensionless particle size, $d_* = d_{sph} \left[\frac{g\rho_f (\rho_s - \rho_f)}{\mu^2} \right]^{\frac{1}{3}}$
8	Gravitational acceleration, (9.81 m/s ²

$$g_c$$
 Conversion factor, $\left(\frac{1kgm/s^2}{N}\right)$

$\stackrel{\wedge}{H}_i$	Specific enthalpy of the i^{th} component at 25 ⁰ C, (kJ/kg)
h	Heat transfer coefficient, $\left(\frac{W}{m^2 K}\right)$
k	Thermal conductivity, $\left(\frac{W}{mK}\right)$
L_{mf}	Height of bed at minimum fluidization, (m)
L_p	Pyrolysis endothermicity, (kJ/kg)
М	Mass of solid in bed, (kg)
M_{a}	Mass flow rate of air (g/min)
M_{ca}	Mass flow rate of residual char and ash (g/min)
M_{ds}	Mass flow rate of dry waste (g/min)
M_{f}	Mass flow rate of fuel (g/min)
M_{ν}	Mass flow rate of volatiles (g/min)
M_{w}	Mass flow rate of water (g/min)
n _d	Total number of orifices
n _i	Moles of the i th component in the feed or product
p_s	Partial pressure of oxygen at the carbon surface, (atm)
$Q_{\scriptscriptstyle rad}$	Radiative heat loss (W)
q,q	Heat flux $\left(\frac{W}{m^2}\right)$, heat liberated (J/g)
Re	Reynolds number, Re = $\left(\frac{\rho_f U d_p}{\mu_f}\right)$ (dimensionless)
T_a, T_a	Inlet air temperature (0 C), temperature of flame (K)
T_0	Temperature of particle (K), temperature of the surroundings (K)
T_{b}	Bed temperature (⁰ C)
T_{ad}	Adiabatic flame temperature, (⁰ C)
T_s	Burning char particle surface temperature, (K)

$$T_{v}, t_{v}$$
 De-volatilization time, (s)

$$t_b$$
 Burn-out time, (s)

$$U, u$$
 Fluidization velocity, $\left(\frac{m}{s}\right)$

 U_b Bubbles velocity in a bubbling fluidized bed, $\left(\frac{m}{s}\right)$

 U_{br} Single bubble velocity, $\left(\frac{m}{s}\right)$

$$U_0, u_0$$
 Fluidization velocity at the distributor, $\left(\frac{m}{s}\right)$

 U_{mf}, u_{mf} Minimum fluidization velocity, $\left(\frac{m}{s}\right)$

$$U_t, u_t$$
 Terminal-fall velocity, $\left(\frac{m}{s}\right)$

$$u_*$$
 Dimensionless gas velocity, $u_* = u_t \left[\frac{\rho_f^2}{g\mu(\rho_s - \rho_f)}\right]^{\frac{1}{3}}$

z Distance above the distributor, (m)

 z_{b0} Height of initial bubble formation, (m)

$$\Delta P_b$$
 Pressure drop across the bed, $\left(\frac{N}{m^2}\right)$

 $\Delta \hat{H_c}$ Heat of combustion of the fuel at reference temperature 25°C, $\left(\frac{kJ}{mol}\right)$

$$\Delta \hat{H_{v}}$$
 Heat of vaporization of water at 25^oC, $\left(\frac{kJ}{mol}\right)$

Greek Letters

$$\alpha$$
 Thermal diffusivity $\left(\alpha = k\rho_i^{-1}C_p^{-1}\right)$

 λ Amount of heat required to raise the moisture from ambient conditions to the boiling point and to evaporate the moisture, (J/g) *W*

$$\sigma$$
 Stefan-Boltzmann constant (5.67x10⁻⁸ $\frac{m}{m^2 K}$)

 ε , ε_{mf} Bed voidage, bed voidage at minimum fluidization

 ε_m Emissivity of the bed surface, (dimensionless)

 ϕ_s particle sphericity, (dimensionless)

$$\mu_f, \mu_g$$
 fluid viscosity $\left(\frac{kg}{ms}\right)$, gas viscosity, $\left(\frac{kg}{ms}\right)$

$$\rho_b$$
Bulk density, $\left(\frac{kg}{m^3}\right)$

 ρ_c Carbon density of a char particle, $\left(\frac{kg}{m^3}\right)$

$$\rho_g$$
 Density of fluidization gas, $\left(\frac{kg}{m^3}\right)$

$$\rho_p$$
 Particle density, $\left(\frac{kg}{m^3}\right)$

$$\rho_f$$
Fluid density $\left(\frac{kg}{m^3}\right)$, gas density $\left(\frac{kg}{m^3}\right)$

- ρ_i Density of the initial fuel particle, $\left(\frac{kg}{m^3}\right)$
- η_{CU} Carbon utilization efficiency, (%)
- η_{CQ} Combustion quality efficiency, (%)
- η_{TE} Thermal efficiency, (%)

Abbreviation

2D	Two-dimensional
3D	Three-dimensional
AF	Air Factor
ASEAN	Association of South East Asian Nations
BFB	Bubbling Fluidized Bed
СН	Centre High
CFB	Circulating Fluidized Bed
CHS	Circular Hydrodynamic Studies
EF	Equal Flow
GI	Galvanized Iron
HHV	High Heating Value, (MJ/kg)
ITA	Investment Tax Allowance
LHV	Lower Heating Value, (MJ/kg)
LDPE	Low Density Polyethylene
LPM	Litre Per Minute
MSW	Municipal Solid Waste
OSH	One Side High
PS	Pioneer Status
PAH	Polycyclic aromatic hydrocarbon
ppm	part per million
RC – 1	Rectangular column – 1
RC – 2	Rectangular column – 2
RDF	Refused Derived Fuel
RHS	Rectangular Hydrodynamic Studies
SEM	Scanning Electron Microscope
SPP	Small Power Producers
SREP	Small Renewable Energy Programme
TDH	Transport Disengaging Height
TSH	Two Side High
UK	United Kingdom

xxiii

APPENDICES

APPENDIX	TITLE	PAGE
А	Formulation of the Simulated Municipal Solid Waste	225
В	Calculation of Adiabatic Flame Temperature	234
С	Calculation of Thermal Efficiency	242
D	Calculation of Carbon Utilization Efficiency	248