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ABSTRACT 
 

 

 

The removal of acid gases from natural gas stream is an important process in 
many gas processing plants and for environmental protection. The most widely used 
acid gas removal technology nowadays is the absorption process using amine-based 
solvent. Foaming is the major cause that leads operational problems, resulting in 
excessive solvent losses, failure to meet treated gas specification and a reduction in 
gas treating capacity. Therefore, the main objectives of this research were to study 
the foam characteristics and the surface tension phenomenon of alkanolamines 
solution and to reduce their foaming promoters. The effect of natural gas impurities 
(foam promoters) in the blended methyldiethanolamine (MDEA)-piperazine solution 
such as hydrocarbon liquids, iron sulfide (dissolved solid), sodium chloride (salt), 
acetic acid (organic acid), methanol (hydrate inhibitor) and glycol (dehydrating 
agent) were investigated. The concentration of MDEA was found to significantly 
influence the foam activity in the solution. Iron sulfide, hydrocarbon and sodium 
chloride present in the solution had been identified as the impurities which 
apparently contributed to the high foaming tendency. At 5000 ppm concentration of 
impurities, the foam height achieved was 425 ml. Iron sulfide appeared to be the 
major foam promoter in the range of concentration solutions studied. Response 
surface methodology and central composite design had been applied to optimize the 
three factors that affected the foaming phenomenon. These factors were then 
correlated to the surface tension and foaming tendency. Asymmetric mixed matrix 
membrane (MMM) was applied to remove foam promoters in the amine solvent in 
order to reduce its foaming tendency. The MMM characteristics and performance 
were tested using scanning electron microscope, differential scanning calorimetry, 
Fourier transform infrared and membrane filtration tests. The contents of iron sulfide, 
hydrocarbon and sodium chloride as the main foam promoters had been successfully 
reduced as indicated by reduction of surface tension values by 12 %, 6.3% and 16 % 
respectively. These results indicated that membrane is a promising and viable 
technology to enhance the effectiveness of gas treatment system through the 
reduction of foam formation. 
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ABSTRAK 

 

 

 

Penyingkiran gas berasid daripada aliran gas asli adalah proses yang penting 
dalam kebanyakan loji pemprosesan gas dan untuk perlindungan alam sekitar. 
Penggunaan yang paling luas bagi teknologi penyingkiran gas berasid pada masa kini 
adalah proses serapan menggunakan pelarut berasaskan pelarut amina. Pembuihan 
adalah punca utama yang menyebabkan masalah operasi, yang juga mengakibatkan 
kehilangan besar pelarut, gagal mematuhi spesifikasi bagi gas terawat dan penurunan 
dalam keupayaan merawat gas. Oleh kerana itu, objektif utama penyelidikan ini 
adalah mengkaji ciri-ciri pembuihan dan fenomena tegangan permukaan larutan 
alkanolamina dan strategi untuk mengurangkan agen pembuihan. Kesan bendasing 
gas asli (agen pembuih) dalam larutan campuran metildiethanolamina (MDEA)- 
piperazina seperti cecair hidrokarbon, ferum sulfida (pepejal terlarut), natrium 
klorida (garam), asid asetik (asid organik), metanol (perencat hidrat) dan glikol (agen 
penghidratan) telah dikaji. Kepekatan MDEA didapati amat mempengaruhi aktiviti 
buih dalam larutan. Ferum sulfida, hidrokarbon dan natrium klorida adalah 
bendasing yang telah menyumbang kepada kecenderungan pembuihan yang tinggi. 
Pada kepekatan bendasing 5000 ppm, ketinggian buih yang dicapai adalah 425 ml. 
Ferum sulfida merupakan agen pembuih utama dalam julat kepekatan larutan yang 
dikaji. Metodologi permukaan respon dan rekabentuk eksperimen pusat telah diguna 
bagi mengoptimum tiga faktor yang mempengaruhi fenomena pembuihan. Faktor ini 
telah diguna untuk menghubungkaitkan kepada tegangan permukaan dan 
kecenderungan pembentukan buih. Membran tak simetrik campuran matrik telah 
diguna untuk menyingkir agen pembuihan di dalam larutan amina untuk mengurang 
kecenderungan pembentukan buih. Ciri-ciri dan prestasi membran campuran matrik 
telah diuji menggunakan mikroskopi imbasan elektron, pembezaan imbasan 
kalorimeter, Fourier pengubahan sinar infra merah dan ujian penurasan membran. 
Kandungan ferum sulfida, hidrokarbon dan natrium klorida sebagai agen pembuih 
utama telah berjaya dikurangkan seperti yang ditunjukkan dengan pengurangan nilai 
tegangan permukaan sebanyak 12 %, 6.3 % dan 16 % dengan menggunakan 
teknologi membran. Keputusan ini menunjukkan bahawa membran merupakan 
teknologi yang berdaya saing untuk meningkatkan keberkesanan sistem rawatan gas 
melalui pengurangan pembentukan buih.   
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CHAPTER 1 

 

 

 

INTRODUCTION 

 

 

 

1.1 Introduction 

 

Natural gas, whether produced from a condensate field or as associated gas 

from an oil reservoir, usually contains water vapor and frequently contains Hydrogen 

Sulfide (H2S) and Carbon Dioxide (CO2).  The separation of gas impurities such as 

CO2 and H2S from the gas mixtures is an important operation in natural gas treating, 

petroleum refining, coal gasification and ammonia manufacturing industries. The 

level of acid gas concentration in the feed gas is an important consideration for 

selecting the proper sweetening process. Some processes are applicable for removal 

of large quantities of acid gas but these processes might not sweeten to product 

specifications. Other processes have the capacity for removing acid gas constituents 

to the parts per million (ppm) ranges, which are only applicable to low 

concentrations of acid gas constituents in the feed gas to be treated. This process is 

called deep acid gas removal. 

 

Carbon dioxide present in the natural gas needs to be removed in order to; 

increase the heating value of the gas, prevent corrosion of pipeline and gas 

processing equipment and prevent crystallization of CO2 during cryogenic processing 

It is also found to be the major cause of the catalyst poisoning in ammonia synthesis 

(Astarita et al., 1983). Natural gas pipe lines usually permit from 1% to 2% of CO2 

and sometimes as high as 5% (Buckingham, 1964). In the past decades, CO2 removal 

from flue gas streams started as a potentially economic source of CO2, mainly for the 

enhanced oil recovery (EOR) operations.  
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Organo-sulfur compounds and hydrogen sulfide are common contaminants in 

natural gas stream, which must be removed prior to most applications. The removal 

is not only aimed for the environmental protection but also to avoid problems such as 

corrosion and process blockage (Astarita et al., 1983). Gas with a significant amount 

of sulfur impurities, such as hydrogen sulfide, is termed as sour gas; gas with sulfur 

or carbon dioxide impurities is called acid gas. The removal of these main impurities 

is called acid gas removal process.  

 

1.2. Acid Gas Removal Technology 

 

Acid gas removal is the absorption of acid gases such as carbon dioxide and 

hydrogen sulfide from natural gas, synthesis gas, refinery tail gas, and flue gas. There 

are many methods that can be employed to remove acid components from gas 

streams. The available methods can be categorized as those depending on chemical 

reaction, absorption, adsorption or permeation through a membrane. Process 

selection of gas separation depends on the raw gas conditions and treated gas 

specification. The most important raw gas condition is the partial pressure of the acid 

gas (mole fraction of acid gas times the total pressure, usually expressed in mm Hg). 

The alkanolamines are the most generally accepted and widely used of many 

available solvents for the removal of carbon dioxide and hydrogen sulfide in the 

natural and refinery gas treating unit. The alkanolamines use was patented since 1930 

and is mainly used for the gas sweetening process (Maddox and Morgan, 1998). The 

alkanolamines, which are usually considered in the acid gas removal, are 

monoethanolamine (MEA), diethanolamine (DEA), diglycolamine (DGA) 

diisopropanolamine (DIPA) and methyldiethanolamine (MDEA). However, 

triethanolamine is rarely used. All of these materials may be classified as 

“chemically reactive” substances and this is what accounts for their popularity for the 

sweetening natural gas.  

 

The absorption of CO2 by solutions of alkanolamines is mainly through 

chemical reactions where both kinetic and thermodynamic equilibrium play 
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important roles in determining the ultimate gas loading that can be achieved 

(Huntington, 1950). Alkanolamines are weak basic compounds that react with certain 

acid gases, forming weak chemical bonds. These bonds are easily broken upon mild 

heating. The strength of the alkanolamine's bond and the corresponding heat needed 

to break it depends on the number of organic hydrocarbon groups attached to the 

nitrogen atom. Depending on the number of such groups, alkanolamines are 

classified into three types, namely primary, secondary and tertiary. Alkanolamines 

are used primarily to absorb carbon dioxide and hydrogen sulfide (Koh and 

Riesenfeld, 1960). Carbon monoxide and nitrous oxides are very weak and do not 

chemically react with alkanolamines. Sulfur dioxide and nitrogen dioxide form very 

strong chemical bonds with alkanolamines. The heat required to break these bonds 

would decompose the alkanolamines themselves. They must be removed before 

treatment. Carbonyl sulfide and carbon disulfide react with primary amines, forming 

non-regenerative decomposition products, except in the case of diglycolamine 

(DGA).  

 

Primary and secondary amines such as MEA and DEA respectively are very 

reactive and therefore exhibit high rates of absorption. MEA and DGA are primary 

amines (Libreros et al., 2004a). However, MEA was the most widely used solvent 

compared to DGA. MEA with one ethanol group attached to the basic nitrogen atom 

is the strongest amine. It reacts quickly with both hydrogen sulfide and carbon 

dioxide, forming strong but thermally regenerative chemical bonds. MEA is virtually 

effective in removing all hydrogen sulfide and carbon dioxide, but requires a large 

quantity of heat to regenerate in order to break the chemical bonds formed. MEA is 

used when the specification requires maximum hydrogen sulfide and carbon dioxide 

removal, particularly at low pressure. MEA reacts with carbonyl sulfide and carbon 

disulfide, forming non-regenerative degradation products. DGA is similar to MEA in 

term of their performance, but DGA has a lower vapor pressure, which results in less 

solvent vaporization losses. DGA forms regenerable reaction products with carbonyl 

sulfide and carbon disulfide. Typically, this regeneration is carried out in the 

reclaimer at elevated temperature, as opposed to the reboiler where carbon dioxide 

and hydrogen sulfide are removed. DGA was specifically developed to replace MEA 

in low-pressure applications as a means of reducing vaporization losses.  
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DEA came into use in refineries as a replacement for MEA. DEA and DIPA 

are included as secondary amines with two ethanol groups or two isopropanol 

groups, respectively, attached to the nitrogen atom. The additional alcohol groups 

draw most of the free electron characters away from the nitrogen atom, which in turn 

makes the secondary amines somewhat weaker bases. Secondary amines are suited 

for gas steams with less stringent product specifications. DEA was resistant to COS 

degradation which caused high corrosion rate. DEA is used when the specification 

allows for some carbon dioxide to be left in the treated gas. DEA does not form non-

regenerative degradation products with carbonyl sulfide, which makes it a suitable 

choice for treating refinery gases. DIPA is used almost exclusively in refinery 

operations to remove carbonyl sulfide and hydrogen sulfide. DIPA is used with the 

presence of additives in both the Adip process and Sulfinol process. Secondary 

amines are less corrosive, require less heat to regenerate and can be used to treat the 

gas streams that contain carbonyl sulfide and carbon disulfide. However, secondary 

amines are not effective at deep carbon dioxide removal.  

 

MDEA and triethanolamine (TEA) are tertiary amines (Libreros et al., 

2004a). MDEA has two ethanol groups attached to the nitrogen atom, along with a 

methyl group. MDEA is a weak base that reacts much faster with hydrogen sulfide 

than with carbon dioxide, making it particularly selective under the proper design 

conditions (Maddox and Morgan, 1998). MDEA’s general acceptance followed after 

DEA. MDEA is a relative newcomer to the group of ethanolamines used for natural 

gas sweetening. It received a great deal of attention during the 1980’s due to the 

lower energy costs for regeneration, its degradation resistance, lower corrosion and 

because of its capability for “selective” reaction with hydrogen sulphide in the 

presence of carbon dioxide. TEA is also a tertiary amine. TEA has three ethanol 

groups attached to the nitrogen atom. It is the weakest amine and requires the least 

heat to regenerate. TEA is only applicable on high-pressure gas streams when even 

moderate acid gas removal is not essential. Tertiary amines are less inherently 

corrosive and can be used in higher concentrations, but tertiary amines are not a good 

choice when the raw gas pressure is low or the specification calls for deep carbon 
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dioxide removal. However, tertiary amines, particularly MDEA, are well suited for 

selective absorption on high-pressure gas streams.  

The general process flow for an amine sweetening unit is shown in Figure 

1.1: 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 

Figure 1.1: Typical amine-based process (Ratman, 2002) 
 

 
The recent technology for CO2 removal uses activator like piperazine (PZ) to 

enhance the rate of absorption especially when it is added to conventional 

alkanolamines. When added to conventional amines, PZ accelerates the carbon 

dioxide absorption due to the formation of di-carbamate which can be attributed to 

the unique six-sided ring structure of the molecule (Bishnoi and Rochelle, 2000). 

They observed that at low solution loading, the dominant reaction products are 

piperazine carbamate and protonated piperazine. However, at higher loading, the 

dominant reaction product obtained was protonated piperazine carbamate. From the 

kinetic mechanism of PZ, they also concluded that piperazine (PZ) can be an 
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effective promoter for carbon dioxide removal from gas streams. The carbon dioxide 

absorption follows the following reaction: 

MDEA + H2O + CO2                MDEAH+ + HCO3
- 

 

This reaction is slow and an activator (additive) is required to speed up the 

kinetics of the reaction. Piperazine (secondary amine) is added as an activator, which 

serves as both liquid catalyst and chemical corrosion inhibitor. In addition, some 

proprietary ingredients are added to enhance the solvent capability. The mechanism 

of absorption is illustrated in Figure 1.2. 

 

 
 
 
 
 
 
 

 

 

 

 

 

 

Figure 1.2: General absorption mechanism in the reaction of MDEA-

piperazine (Hasanah and Ratman, 2003) 

 

The main advantage of activated MDEA is its high pick-up ratio of carbon 

dioxide compared to other solvents. This will result in a lower solvent circulation 

rate. It is claimed that there are no degradation products and very low hydrocarbon 

co-absorption. General important advantages of amine-based processes include low 

operating costs, as the chemical solvent is regenerated continuously. Another 

advantage are the capability to handle important turndowns and selective removal of 

hydrogen sulphide (Loo et al., 2007). They are acceptably suited for low operating 

pressure applications where the acid gas partial pressure is low and low level of acid 
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gas is desired in the residue gas since their acid gas removal capacity is relatively 

high and insensitive to acid gas partial pressure, as compared to physical solvents. 

Alkanolamines are widely used in both natural gas and refinery gas processing 

industries. The process involved has an important acceptance in the industry.  

 

1.3. Problem Statement 

 

In the acid gas removal plant, there are several common problems may be 

encountered during operations, such as failure to meet treated gas specifications, 

corrosion, excessive solvent losses and foaming (Blauwhoff et al., 1985 and Aquila 

et al., 2004). A failure to meet the treated gas specifications during operations are 

normally contributed by many factors, which can not be easily detected in the short 

time (Maddox and Morgan, 1998). The causes could be coming from the feed gas 

operating conditions, poor regeneration, mechanical failure of equipment, 

contaminated solvent and etc. The operator should investigate at the soonest and find 

the solution to sustain the production. If it could not be solved, a long term solution 

should be taken, such as repairing the mechanical failure and reclamation of 

contaminated solvent  

 

Corrosion is another problem that can be detected in the long term period 

(Veldman, 2000). For all the types of alkanolamines, the presence of oxygen, a high 

content of acid gas, high temperature and also thermal degradation of the amine in 

the regenerator increase the likelihood of product degradation and corrosion 

problems. Corrosion management and monitoring the causes are normally applied for 

its mitigation. Like corrosion, the excessive solvent loss is known during long term 

period. It may be caused by the poor separation of demister pad and the solvent loss 

via acid gas venting. In the normal operation, it is very rare to loose huge amount of 

solvent, except when there is a big leak of the solvent inventory equipment, such as 

flash drum leaks, which isa due to the severe stress corrosion cracking which is 

commonly happened in the amine units. 

    

Foaming is the most common cause of an upset of acid gas removal unit, 

resulting in excessive solvent losses, off specification treated gas and a reduction of 

treating capacity, which subsequently may affect the operating costs, revenues and 
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reputations (Bullin and Donnelly, 2006). Generally, when the amine solvents become 

contaminated, they can show a tendency to foam. In order for foaming to occur in 

gas liquid systems, the gas/liquid interface must be stabilized. This may comprise 

resistance of the surface against changes in the surface area as well as prevention of 

drainage of liquid from the boundary layer between foam cells. When the foaming 

appears, some actions and efforts are usually taken to control it, in order to avoid 

situation to be worsen that may give further significant impact to the plant operation. 

Therefore, the present study is devoted to studying the foaming phenomenon in the 

amine unit and to find the solutions in curing the basic foaming problems. 

 
  

1.4. Objectives of Study 

 

The aims of this study are to find the main foaming promoter in the amine 

solvent and to control the foaming tendency down to non-foamability level. The 

objectives are: 

a) To characterize the foaming phenomenon in the amine solvent. 

b) To identify the root causes that give major contribution to foaming. 

c) To find the most influential foaming promoter by using the amine 

foamability and surface tension data.  

d) To study the possibility of applying membrane-based technology to further 

reduces foaming promoter concentration. 

 

 

1.5. Scope of Study 

 

In order to achieve all of the objectives set above, several scopes have been 

outlined, which are: 

a) Preparing of blending MDEA-piperazine at various of concentration. 

b) Preparing the natural gas stream impurities such as hydrocarbon, iron sulfide, 

sodium chloride, methanol, organic acid and ethylene glycol at various 

concentrations. 

c) Preparing the solution of blending MDEA-piperazine with the several of 

impurities and concentration.  
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d) Testing the MDEA-piperazine with natural gas stream impurities on foaming 

tendency and surface tension.  

e) Optimization of the effect of natural gas stream impurities on the surface 

tension using response surface methodology.  

f) Analyzing the possibility of the application of asymmetric mixed matrix 

membrane to reduce the foam promoter concentration into the level of non 

foamability solvent. 

 

1.6. Significance of the Study 

 

In the recent gas and LNG industry, gas-treating unit stability is very 

important to achieve treated gas specification to the downstream units. Foaming is 

the most common cause of upset in the unit. In normal operation, the symptoms of 

foaming can be detected by fluctuating pressure drops in absorber and/or regenerator, 

amine carry over from absorber and/or regenerator, swinging liquid levels in any 

vessels/ columns, off-specification of treated gas and poorly stripped gas. In addition, 

the foam test results are the indication of increasing foam activity. When the foaming 

occurs, it may result in a number of different problems. Plant gas throughput may be 

severely reduced and treating efficiency may decrease to the point that treated gas 

cannot be met. In addition, amine losses may be significantly increased. Therefore, 

managing foam activity is crucial to maintain plant stability and to avoid significant 

financial and opportunity losses 

 

In the case of uncontrolled foaming problem, amine circulation rate may be 

decreased to allow for the liquid bubbling to drop rapidly thus avoiding, more amine 

to be carried over to downstream equipment. As a result, gas throughput may be 

reduced as order to anticipate any acid gas breakthrough which will cause serious 

impact to the whole plant operation. The worst case, that may happen, is to trip 

amine pumps as a result of uncontrolled regenerator level drop. If this occurs, the 

whole plant will be shutdown to stop acid gas breakthrough to the unanimous 

number. The shutdown will result a loss of million dollars since the plant can not 

produce as expected. In addition, restarting up the plant takes time and efforts in 
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order to recover the plant back to the stable operation. Further impacts to the above 

problem are company reputation (and images), which may cause not to fulfill the 

commitment, environmental protection due to amine carry over and public 

complaint, which resulted in a shutdown with smoky flares. 

 

1.5. Organization of the Thesis 

 

The thesis consists of sixth chapters. Chapter 1 presents the background, 

research problem, objectives and the significance of the study. Chapter 2 describes 

the background and discusses the theory of natural gas and carbon dioxide removal 

from natural gas. In addition, a review of previous experimental studies of foaming 

problem in carbon dioxide removal from natural gas using conventional process is 

also covered. Chapter 3 discusses the results of foam behavior of pure blended 

MDEA-piperazine solution as well as the effect of natural gas impurities against its 

foam behavior.   

 

Chapter 4 extends the study to investigate the influences of natural gas 

impurities (as foam promoters) against surface tension parameter of the MDEA-

piperazine solution. From the result obtained, the most influential impurities that 

produce high surface tension can be determined. Since some of the identified main 

foam promoters can be presented altogether in the MDEA solution during operation, 

in this chapter, the effect of these combined impurities in the solution is also 

investigated as well as to predict the maximum surface tension that can be achieved. 

The prediction of maximum surface tension is obtained by using statistical analysis, 

which is performed by a Statistica software version 6, in order to develop its 

mathematical model. In the final stage of this research (Chapter 5), the possible 

application of asymmetric mixed matrix membrane-carbon nanotube to reduce the 

concentrations of the main foam promoters that have been identified in the chapter 4 

is discussed. This means to control the foam formation and to reduce the surface 

tension of the blended MDEA-piperazine solution. The general conclusions drawn 

from this research are provided in Chapter 6. Some recommendations for future 

research are also listed in this chapter.  
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