

THE CHARACTERIZATION AND REMOVAL OF FOAM PROMOTING IMPURITIES FROM THE BLENDED METHYLDIETHANOLAMINE-PIPERAZINE SOLUTION USING MEMBRANE

IWAN RATMAN

UNIVERSITI TEKNOLOGI MALAYSIA

THE CHARACTERIZATION AND REMOVAL OF FOAM PROMOTING IMPURITIES FROM THE BLENDED METHYLDIETHANOLAMINE-PIPERAZINE SOLUTION USING MEMBRANE

IWAN RATMAN

A thesis submitted in fulfilment of the requirement for the award of the degree of Doctor of Philosophy (Gas Engineering)

Faculty of Chemical and Natural Resources Engineering Universiti Teknologi Malaysia

MAY 2009

DEDICATIONS

For my beloved Mother & Father My wife Wiriasti Ramadani My Children Nadilla, Devira and Valdano

ACKNOWLEDGEMENT

In the name of Allah, most benevolent, ever-merciful, All praises be to Allah, Lord of all the worlds, Alhamdulillahi Robbil 'Alamin. First and foremost, I would like to deeply express my sincere gratitude to my supervisor Prof. Dr. Ahmad Fauzi Ismail for his enthusiasm, support and advice towards my development as a researcher. His cheerful and friendship personality makes my working experience with him very useful for my future research activities. He puts a tremendous amount of effort into providing opportunities for me to learn and grow. I would also like to thank Dr. Ir. Tutuk Djoko Kusworo for his support, advise, guidance, mentoring and friendship during the period of this research. His enthusiasm and efforts made me always confidence and drive me to complete my research in UTM.

My special sincere thanks is extended to the rest of the previous and current Advanced Membrane Technology Research Center (AMTEC) members i.e., Mr. Lau, Mrs Suhaila, Ms Dayang, Ms Goh Pei Seon and others. Their direct and indirect involvement in this study really inspired my work. I am very grateful to Mr. Suhaimi Abdullah, Mr. Ng Be Cheer, Mr Anam and Mr Razis for their prompt assistance in membrane testing and fruitful discussion.

Last but not least, I am deeply and gratefully acknowledge my beloved wife Wiriasti Ramadani who gave encouragement and valuable support throughout my study. Her great patience in caring our children is deeply appreciated. Thanks also to my lovely children, Nadila, Devira and Valdano as your presence inspires my life.

ABSTRACT

The removal of acid gases from natural gas stream is an important process in many gas processing plants and for environmental protection. The most widely used acid gas removal technology nowadays is the absorption process using amine-based solvent. Foaming is the major cause that leads operational problems, resulting in excessive solvent losses, failure to meet treated gas specification and a reduction in gas treating capacity. Therefore, the main objectives of this research were to study the foam characteristics and the surface tension phenomenon of alkanolamines solution and to reduce their foaming promoters. The effect of natural gas impurities (foam promoters) in the blended methyldiethanolamine (MDEA)-piperazine solution such as hydrocarbon liquids, iron sulfide (dissolved solid), sodium chloride (salt), acetic acid (organic acid), methanol (hydrate inhibitor) and glycol (dehydrating agent) were investigated. The concentration of MDEA was found to significantly influence the foam activity in the solution. Iron sulfide, hydrocarbon and sodium chloride present in the solution had been identified as the impurities which apparently contributed to the high foaming tendency. At 5000 ppm concentration of impurities, the foam height achieved was 425 ml. Iron sulfide appeared to be the major foam promoter in the range of concentration solutions studied. Response surface methodology and central composite design had been applied to optimize the three factors that affected the foaming phenomenon. These factors were then correlated to the surface tension and foaming tendency. Asymmetric mixed matrix membrane (MMM) was applied to remove foam promoters in the amine solvent in order to reduce its foaming tendency. The MMM characteristics and performance were tested using scanning electron microscope, differential scanning calorimetry, Fourier transform infrared and membrane filtration tests. The contents of iron sulfide, hydrocarbon and sodium chloride as the main foam promoters had been successfully reduced as indicated by reduction of surface tension values by 12 %, 6.3% and 16 % respectively. These results indicated that membrane is a promising and viable technology to enhance the effectiveness of gas treatment system through the reduction of foam formation.

ABSTRAK

Penyingkiran gas berasid daripada aliran gas asli adalah proses yang penting dalam kebanyakan loji pemprosesan gas dan untuk perlindungan alam sekitar. Penggunaan yang paling luas bagi teknologi penyingkiran gas berasid pada masa kini adalah proses serapan menggunakan pelarut berasaskan pelarut amina. Pembuihan adalah punca utama yang menyebabkan masalah operasi, yang juga mengakibatkan kehilangan besar pelarut, gagal mematuhi spesifikasi bagi gas terawat dan penurunan dalam keupayaan merawat gas. Oleh kerana itu, objektif utama penyelidikan ini adalah mengkaji ciri-ciri pembuihan dan fenomena tegangan permukaan larutan alkanolamina dan strategi untuk mengurangkan agen pembuihan. Kesan bendasing gas asli (agen pembuih) dalam larutan campuran metildiethanolamina (MDEA)piperazina seperti cecair hidrokarbon, ferum sulfida (pepejal terlarut), natrium klorida (garam), asid asetik (asid organik), metanol (perencat hidrat) dan glikol (agen penghidratan) telah dikaji. Kepekatan MDEA didapati amat mempengaruhi aktiviti buih dalam larutan. Ferum sulfida, hidrokarbon dan natrium klorida adalah bendasing yang telah menyumbang kepada kecenderungan pembuihan yang tinggi. Pada kepekatan bendasing 5000 ppm, ketinggian buih yang dicapai adalah 425 ml. Ferum sulfida merupakan agen pembuih utama dalam julat kepekatan larutan yang dikaji. Metodologi permukaan respon dan rekabentuk eksperimen pusat telah diguna bagi mengoptimum tiga faktor yang mempengaruhi fenomena pembuihan. Faktor ini telah diguna untuk menghubungkaitkan kepada tegangan permukaan dan kecenderungan pembentukan buih. Membran tak simetrik campuran matrik telah diguna untuk menyingkir agen pembuihan di dalam larutan amina untuk mengurang kecenderungan pembentukan buih. Ciri-ciri dan prestasi membran campuran matrik telah diuji menggunakan mikroskopi imbasan elektron, pembezaan imbasan kalorimeter, Fourier pengubahan sinar infra merah dan ujian penurasan membran. Kandungan ferum sulfida, hidrokarbon dan natrium klorida sebagai agen pembuih utama telah berjaya dikurangkan seperti yang ditunjukkan dengan pengurangan nilai tegangan permukaan sebanyak 12 %, 6.3 % dan 16 % dengan menggunakan teknologi membran. Keputusan ini menunjukkan bahawa membran merupakan teknologi yang berdaya saing untuk meningkatkan keberkesanan sistem rawatan gas melalui pengurangan pembentukan buih.

TABLE OF CONTENTS

CHAPTER

TITLE

PAGE

TITLE	i
Declaration	ii
Dedication	iii
Acknowledgment	iv
Abstract	v
Abstrak	vi
Table of Contents	vii
List of Tables	xiii
List of Figures	xiv
List of Symbol	xviii

1 INTRODUCTION

1.1	Introduction	1
1.2	Acid Gas Removal Technology	2
1.3	Problem Statement	7
1.4	Objectives of Study	8
1.5	Scope of Study	8
1.6	Significant of Study	9
1.7	Organization of the Thesis	10

2 LITERATURE REVIEW

2.1	Natura	l Gas	11
2.2	Acid Gas Removal Processes		18
	2.2.1	Absorption Process	19

	2.2.2	Adsorption Process	25
	2.2.3	Cryogenic Gas Separation	26
	2.2.4	Membrane Gas Separation	27
2.3	CO ₂ At	osorption using Conventional Alkanolamine	28
	2.3.1	Primary Amines	32
	2.3.2	Secondary Amines	33
	2.3.3	Tertiary Amines	34
	2.3.4	Amines Blends	35
2.4	Amines	s Contaminants	36
2.5	Impact	of Contaminants	39
	2.5.1	Reduction in Solution Capacity	39
	2.5.2	Corrosion	39
	2.5.3	Foaming and Fouling	42
2.6	Remedi	iation of Amine Solution Contamination	42
	2.6.1	Solution Purge	43
	2.6.2	Solution Replacement	43
	2.6.3	Addition of Caustic (NaOH)	43
2.7	Foamin	ng Phenomenon	44
	2.7.1	Foaming Mechanisms	45
	2.7.2	Causes of Foaming in Amine Systems	45
	2.7.3	Anti Foaming Agents	47
		2.7.3.1 Anti Foam Agent Deactivation	50
2.8	Surface	Tension	53
	2.8.1	Measuring Methods of Surface Tension	56
2.9	Statistic	cal Design of Experiments	57
	2.9.1	Response Surface Methodology	58
	2.9.2	Determination of Optimum	
		Conditions	59
	2.9.3	Central Composite Design	61
	2.9.4	Analysis of Variance	61
	2.9.5	Statistic Aspect	63
	2.9.6	R-Squared	65
2.10	Mixed	Matrix Membrane for Separation Processes	65

3

4

3.1	Resear	ch Design	69
3.2	Materia	als	71
3.3	Experi	mental Procedure	72
	3.3.1	Foam Characterization Test	72
	3.3.2	Surface Tension Test	74
	3.3.3	Membrane Application Procedure	85

FOAM BEHAVIOUR OF AN AQUEOUS SOLUTION OF BLENDS PIPERAZINE- N-METHYLDIETHANOLAMINE (MDEA) AS A FUNCTION OF THE TYPE OF IMPURITIES AND CONCENTRATIONS

Introdu	ction	91
Experin	nental	95
4.2.1	Materials	95
4.2.2	Preparation of Solution	95
4.2.3	Foamability	96
Results	and Discussion	97
4.3.1	Foam Behaviour of Blends Piperazine-	
	MDEA at Various Concentrations	97
4.3.2	Foam Behaviour of Blends Piperazine-	
	MDEA in the Presence of Contaminants	99
4.3.3	Effect of Hydrocarbon on the	
	Foam Formation	99
4.3.4	Effect of Iron Sulfide on	
	Foam Formation	100
4.3.5	Effect of Sodium Chloride (NaCl)	
	on Foam Formation	102
4.3.6	Effect of Acetic Acid, Methanol, and	
	Polyethylene Glycol on the	
	Foam Formation	103
	Introdu Experin 4.2.1 4.2.2 4.2.3 Results 4.3.1 4.3.2 4.3.3 4.3.4 4.3.5 4.3.5 4.3.6	IntroductionExperimutal4.2.1Materials4.2.2Preparation of Solution4.2.3FoamabilityResultsDiscussion4.3.1Foam Behaviour of Blends Piperazine- MDEA at Various Concentrations4.3.2Foam Behaviour of Blends Piperazine- MDEA in the Presence of Contaminants4.3.3Effect of Hydrocarbon on the Foam Formation4.3.4Effect of Iron Sulfide on Foam Formation4.3.5Effect of Sodium Chloride (NaCl) on Foam Formation4.3.6Effect of Acetic Acid, Methanol, and Polyethylene Glycol on the Foam Formation

4.3.7	Effect of Types of Impurities on the Foam		
	Formation and Collapse Time of Foam	106	

4.4 Conclusion

INFLUENCES OF FOAM PROMOTING IMPURITIES ON THE SURFACE TENSION OF THE BLENDED PIPERAZINE- N-METHYLDIETHANOLAMINE (MDEA) SOLUTION

5

5.1	Introduction	109
5.2	Experimental	112
	5.2.1. Material	112
	5.2.2. Preparation of Solution	113
	5.2.3. Surface Tension	113
	5.2.4. Experimental Design	113
5.3	Results and Discussion	116
	5.3.1. Effect of Concentration MDEA Solution of	n
	Surface Tension	116
	5.3.2. Effect of MDEA Concentration and	
	Hydrocarbon as the Natural Gas Impuritie	S
	on the Surface Tension	117
	5.3.3. Effect of Iron Sulfide on	
	the Surface Tension	119
	5.3.4. Effect of Sodium Chloride (NaCl) on the	
	Surface Tension of Amine Solution	120
	5.3.5. Effect of acetic acid, methanol, and polyet	hylene
	glycol on the surface tension	121
	5.3.6. Determination of effect mixed aqueous	
	impurities on the surface tension using	
	statistical analysis	125
	5.3.6.1. Significance of Regression	
	Coefficients	129

108

5.3.7. Opti	mization by Analyzing the Response Sur	face
Cont	our Plots	132
5.3.7	.1. Effect of NaCl and Hydrocarbon on	
	surface tension	132
5.3.7	.2. Effect of Iron Sulfide and	
	Hydrocarbon on surface tension	133
5.3.7	.3 Effect of NaCl and Iron Sulfide	
	on surface tension	134
5.4. Conc	clusion	136

6

APPLICATION OF ASYMMETRIC MIXED MATRIX MEMBRANE TO REDUCE FOAM PROMOTING IMPURITIES IN THE BLENDED MDEA-PIPERAZINE SOLUTION

6.1	Introduction	137
6.2	Experimental	142
	6.2.1. Materials	142
	6.2.2. Preparation of Solution	143
	6.2.3. Functionalization of	
	Carbon Nanotubes (CNTs)	143
	6.2.4. Fabrication of Asymmetric Mixed Matrix	
	Membrane	143
	6.2.5. Experimental System	145
	6.2.6. FESEM Study	146
	6.2.7. Differential Scanning Calorimetry	146
	6.2.8. Thermogravimetric Analysis	147
6.3	Results and Discussion	147
	6.3.1. The Morphology and Structure of	
	Mixed Matrix Membrane	147
	6.3.2. Differential Scanning Calorimetry (DSC) of	
	Mixed Matrix Membrane	156
	6.3.3. Thermogravimetric Analysis	157

		6.3.4. Performance of Asymmetric Mixed Matrix	
		Membrane to Reduce the Main Foam	
		Promoting Impurities in the Blended MDEA	-
		Piperazine Solution	158
	6.4	Conclusion	163
7.	GENE	RAL CONCLUSION AND	
	RECO	MENDATION	164
	7.1	General Conclusion	164 166
	1.2	Recommendations	100

REFERENCES	168
Appendices A-D	183

LIST OF TABLES

TABLES	NO.
---------------	-----

TITLE

PAGE

2.1	Natural gas hydrocarbons	12
2.2	Natural gas impurities	13
2.3	Typical gas product specifications	17
2.4	Factorial central composite experimental design	62
2.5	The analysis of variance table	63
3.1	Reduction of Variance	83
5.1	Levels of variables chosen for surface tension of MDEA- Piperazine	114
5.2	Factorial central composite experimental design for surface tension of MDEA-piperazine	115
5.3	Factorial central composite design three variables with the observed responses and predicted values	127
5.4	ANOVA for the surface tension	128
5.5	Multiple regression result and significance of regression coefficient for the surface tension	130
5.6	Comparison of response between predicted and observed optimization values	132
6.1.	Glass transition temperature for PES-CNT	156
6.2.	Weight loss of thermal decomposing of PES-CNT-silane	157

LIST OF FIGURES

FIGURES 1	NO. TITLE	PAGE
1.1	Typical amine-based process	5
1.2	General absorption mechanism in the reaction of MDEA- Piperazine	6
2.1	Schematic flow diagram of a typical natural gas processing plant	18
2.2	Typical amine absorption unit for CO ₂ recovery from flue gas	20
2.3	Chemical structure of MEA and DGA	33
2.4	Chemical structure of DEA and DIPA	34
2.5	Chemical structure of MDEA and TEA	35
2.6	Proposed mechanisms for anti-foam action	49
2.7	Action of hydrophobic antifoam particles	50
2.8	Surface tension of cohesive energy molecule	53
2.9	Surface tension phenomenon	55
2.10	Contour plot perspective: estimated selectivity of membrane	60
2.11	Surface plot perspective: estimated selectivity of membrane	61
2.12	Schematic of a mixed matrix membrane	67
3.1	Research design	70
3.2	Foaming test equipment	72
3.3	Syringe, cuvet and needles	76
3.4	Example of needles	77

3.5	Pendant drop image	79
3.6	Pendant bubble image	79
3.7	Surfactant adsorbing on surface	81
3.8	Clean water and needle	82
3.9	Re-plotting clean water and needle	82
3.10	Sessile drop surface tension	84
3.11	Dope preparation vessel	86
3.12	Pneumatically-controlled flat sheet membrane casting system	87
3.13	Membrane system to remove foam promoting impurities	88
3.14	ABBE 60 refractometer	89
4.1	Foamability test	97
4.2	Foam behaviour of MDEA-water system	98
4.3	Effect of hydrocarbon on the foam formation	100
4.4	Effect of iron sulphide concentration on the foam formation	102
4.5	Effect of NaCl concentration on the foam formation	103
4.6	Effect of acetic acid concentration on the foam formation	104
4.7	Effect of methanol concentration on the foam formation	105
4.8	Effect of polyethylene glycol concentration on the foam formation	105
4.9	Effect of type of impurities at 5,000 ppm on the foam formation	106
4.10	Effect of type of impurities at 5,000 ppm on the collapse time	107
4.11	Effect of type of impurities at 10,000 ppm on the foam formation	107
4.12	Effect of type of impurities at 10,000 ppm on the collapse time	108
5.1	Effect of concentration MDEA on surface tension (a) this work (b) data from literature	117
5.2	Effect of concentration MDEA and hydrocarbon as impurities on surface tension (a) 500 ppm (b) 5,000 ppm (c) 10,000 ppm	118

5.3	Effect of concentration MDEA and iron sulphide as impurities on surface tension (a) 500 ppm (b) 5,000 ppm (c) 10,000 ppm	120
5.4	Effect of concentration MDEA and sodium chloride as impurities on surface tension	121
5.5	Effect of concentration MDEA and various impurities at 500 ppm on surface tension	122
5.6	Effect of concentration MDEA and various impurities at 5,000 ppm on surface tension	123
5.7	Effect of concentration MDEA and various impurities at 10,000 ppm on surface tension	123
5.8	Relation between foam height and surface tension of hydrocarbon impurity on the MDEA solution	124
5.9	Relation between foam height and surface tension of iron sulfide impurity on the MDEA solution	124
5.10	Relation between foam height and surface tension of sodium chloride impurity on the MDEA solution	125
5.11	Contour plot of the effect concentration of hydrocarbon and NaCl on surface tension at constant level of concentration of iron sulfide = 6000 ppm	133
5.12	Contour plot of the effect concentration of hydrocarbon and iron sulfide on surface tension at constant level of concentration of NaCl = 8250 ppm	134
5.13	Contour plot of the effect concentration of NaCl and iron sulfide on surface tension at constant level of concentration of hydrocarbon $= 7750$ ppm	135
6.1	Pneumatically-controlled flat sheet membrane casting system	145
6.2	Nanofiltration membrane system testing	146
6.3	FESEM micrograph unmodified carbon nanotubes	148
6.4	FESEM micrograph close arranged modified CNT contain porosity of nanofilter	149
6.5	FESEM micrograph of carbon nanotubes bundles size after surface modification	150

	••
XV/	11
ΛV	ш

6.6	TEM image of carbon nanotubes with 25 nm diameter	150
6.7	Curve of adsorption desorption isotherm	151
6.8	Curve pore size distribution	151
6.9	FESEM micrograph of PES-unmodified carbon nanotubes at surface image	154
6.10	FESEM micrograph of PES-unmodified carbon nanotubes at cross-section image	154
6.11	FESEM micrograph of PES-modified carbon nanotubes at surface image	155
6.12	FESEM micrograph of PES-modified carbon nanotubes at cross-section image	155
6.13	Effect of salt concentration on the salt rejection of mixed matrix membrane-carbon nanotubes	159
6.14	Effect of MDEA concentration on the salt rejection of mixed matrix membrane-carbon nanotubes	159
6.15	Separation performance of mixed matrix membrane-carbon nanotubes on feed of salt at 10000 ppm on the surface tension and foam height	160
6.16	Effect of MDEA concentration on the iron sulfide rejection of PES-modified carbon nanotubes matrix membrane	161
6.17	Separation performance of mixed matrix membrane-carbon nanotubes on feed of iron sulfide at 10000 ppm on the surface tension and foam height	161
6.18	Effect of MDEA concentration on the hydrocarbon rejection of PES-modified carbon nanotubes matrix membrane	162
6.19	Separation performance of mixed matrix membrane-carbon nanotubes to the hydrocarbon at 10000 ppm against surface tension and foam height	162

LIST OF SYMBOLS

PI	:	Polyimide
PES	:	Polyethersulfone
NMP	:	1-methyl-2pyrrolidinone
CNTs	:	Carbon nanotubes
MMM	:	mixed matrix membrane
Tg	:	Glass transition temperature
FESEM	:	Field emission scanning electron microscopy
DSC	:	Differential scanning calorimetry
RSM	:	Response surface methodology
CCD	:	Central composite design
ANOVA	:	Analysis of variant
γ	:	Surface tension
W_{adh}	:	Weight adhesion
W_{coh}	:	Weight cohesion
L	:	Length
Р	:	Pressure
F	:	Force
fv	:	Force vertical
fs	:	Force surface
α	:	Contact angle
А	:	Area
Т	:	Temperature
Å	:	Angstrom
X_i	:	Independent variable
n	:	Number of independent variables
α	:	Star Point
No	:	Number of experiment at center point

Y _p	:	Predicted response
Yo	:	Response variable
β_{O}	;	Offset term/constant
$\beta_{\rm I}$:	Linear term
β_{Ii}	:	Squared term
β_{Ij}	:	Interaction term
β_1	:	Linear coefficient
β_2	:	Linear coefficient
β_3	:	Linear coefficient
β_{11}	:	Quadratic coefficient
β_{22}	:	Quadratic coefficient
β ₃₃	:	Quadratic coefficient
β_{12}	:	Cross product coefficient
β_{13}	:	Cross product coefficient
β_{23}	:	Cross product coefficient
\mathbf{R}^2	:	Coefficient of determination

LIST OF APPENDICES

APPENDIX	TITLE	PAGE
А	List of Publications	183
В	Statistic Table	184
С	Formulas for Calculating the Coefficient in a Second Degree Model	185
D	Material Safety Data Sheet MDEA-Piperazine	187

CHAPTER 1

INTRODUCTION

1.1 Introduction

Natural gas, whether produced from a condensate field or as associated gas from an oil reservoir, usually contains water vapor and frequently contains Hydrogen Sulfide (H_2S) and Carbon Dioxide (CO₂). The separation of gas impurities such as CO₂ and H_2S from the gas mixtures is an important operation in natural gas treating, petroleum refining, coal gasification and ammonia manufacturing industries. The level of acid gas concentration in the feed gas is an important consideration for selecting the proper sweetening process. Some processes are applicable for removal of large quantities of acid gas but these processes might not sweeten to product specifications. Other processes have the capacity for removing acid gas constituents to the parts per million (ppm) ranges, which are only applicable to low concentrations of acid gas constituents in the feed gas to be treated. This process is called deep acid gas removal.

Carbon dioxide present in the natural gas needs to be removed in order to; increase the heating value of the gas, prevent corrosion of pipeline and gas processing equipment and prevent crystallization of CO_2 during cryogenic processing It is also found to be the major cause of the catalyst poisoning in ammonia synthesis (Astarita *et al.*, 1983). Natural gas pipe lines usually permit from 1% to 2% of CO_2 and sometimes as high as 5% (Buckingham, 1964). In the past decades, CO_2 removal from flue gas streams started as a potentially economic source of CO_2 , mainly for the enhanced oil recovery (EOR) operations.

Organo-sulfur compounds and hydrogen sulfide are common contaminants in natural gas stream, which must be removed prior to most applications. The removal is not only aimed for the environmental protection but also to avoid problems such as corrosion and process blockage (Astarita *et al.*, 1983). Gas with a significant amount of sulfur impurities, such as hydrogen sulfide, is termed as sour gas; gas with sulfur or carbon dioxide impurities is called acid gas. The removal of these main impurities is called acid gas removal process.

1.2. Acid Gas Removal Technology

Acid gas removal is the absorption of acid gases such as carbon dioxide and hydrogen sulfide from natural gas, synthesis gas, refinery tail gas, and flue gas. There are many methods that can be employed to remove acid components from gas streams. The available methods can be categorized as those depending on chemical reaction, absorption, adsorption or permeation through a membrane. Process selection of gas separation depends on the raw gas conditions and treated gas specification. The most important raw gas condition is the partial pressure of the acid gas (mole fraction of acid gas times the total pressure, usually expressed in mm Hg). The alkanolamines are the most generally accepted and widely used of many available solvents for the removal of carbon dioxide and hydrogen sulfide in the natural and refinery gas treating unit. The alkanolamines use was patented since 1930 and is mainly used for the gas sweetening process (Maddox and Morgan, 1998). The alkanolamines, which are usually considered in the acid gas removal, are diethanolamine monoethanolamine (MEA), (DEA), diglycolamine (DGA) diisopropanolamine (DIPA) and methyldiethanolamine (MDEA). However, triethanolamine is rarely used. All of these materials may be classified as "chemically reactive" substances and this is what accounts for their popularity for the sweetening natural gas.

The absorption of CO_2 by solutions of alkanolamines is mainly through chemical reactions where both kinetic and thermodynamic equilibrium play important roles in determining the ultimate gas loading that can be achieved (Huntington, 1950). Alkanolamines are weak basic compounds that react with certain acid gases, forming weak chemical bonds. These bonds are easily broken upon mild heating. The strength of the alkanolamine's bond and the corresponding heat needed to break it depends on the number of organic hydrocarbon groups attached to the nitrogen atom. Depending on the number of such groups, alkanolamines are classified into three types, namely primary, secondary and tertiary. Alkanolamines are used primarily to absorb carbon dioxide and hydrogen sulfide (Koh and Riesenfeld, 1960). Carbon monoxide and nitrous oxides are very weak and do not chemically react with alkanolamines. Sulfur dioxide and nitrogen dioxide form very strong chemical bonds with alkanolamines. The heat required to break these bonds would decompose the alkanolamines themselves. They must be removed before treatment. Carbonyl sulfide and carbon disulfide react with primary amines, forming non-regenerative decomposition products, except in the case of diglycolamine (DGA).

Primary and secondary amines such as MEA and DEA respectively are very reactive and therefore exhibit high rates of absorption. MEA and DGA are primary amines (Libreros et al., 2004a). However, MEA was the most widely used solvent compared to DGA. MEA with one ethanol group attached to the basic nitrogen atom is the strongest amine. It reacts quickly with both hydrogen sulfide and carbon dioxide, forming strong but thermally regenerative chemical bonds. MEA is virtually effective in removing all hydrogen sulfide and carbon dioxide, but requires a large quantity of heat to regenerate in order to break the chemical bonds formed. MEA is used when the specification requires maximum hydrogen sulfide and carbon dioxide removal, particularly at low pressure. MEA reacts with carbonyl sulfide and carbon disulfide, forming non-regenerative degradation products. DGA is similar to MEA in term of their performance, but DGA has a lower vapor pressure, which results in less solvent vaporization losses. DGA forms regenerable reaction products with carbonyl sulfide and carbon disulfide. Typically, this regeneration is carried out in the reclaimer at elevated temperature, as opposed to the reboiler where carbon dioxide and hydrogen sulfide are removed. DGA was specifically developed to replace MEA in low-pressure applications as a means of reducing vaporization losses.

DEA came into use in refineries as a replacement for MEA. DEA and DIPA are included as secondary amines with two ethanol groups or two isopropanol groups, respectively, attached to the nitrogen atom. The additional alcohol groups draw most of the free electron characters away from the nitrogen atom, which in turn makes the secondary amines somewhat weaker bases. Secondary amines are suited for gas steams with less stringent product specifications. DEA was resistant to COS degradation which caused high corrosion rate. DEA is used when the specification allows for some carbon dioxide to be left in the treated gas. DEA does not form nonregenerative degradation products with carbonyl sulfide, which makes it a suitable choice for treating refinery gases. DIPA is used almost exclusively in refinery operations to remove carbonyl sulfide and hydrogen sulfide. DIPA is used with the presence of additives in both the Adip process and Sulfinol process. Secondary amines are less corrosive, require less heat to regenerate and can be used to treat the gas streams that contain carbonyl sulfide and carbon disulfide. However, secondary amines are not effective at deep carbon dioxide removal.

MDEA and triethanolamine (TEA) are tertiary amines (Libreros *et al.*, 2004a). MDEA has two ethanol groups attached to the nitrogen atom, along with a methyl group. MDEA is a weak base that reacts much faster with hydrogen sulfide than with carbon dioxide, making it particularly selective under the proper design conditions (Maddox and Morgan, 1998). MDEA's general acceptance followed after DEA. MDEA is a relative newcomer to the group of ethanolamines used for natural gas sweetening. It received a great deal of attention during the 1980's due to the lower energy costs for regeneration, its degradation resistance, lower corrosion and because of its capability for "selective" reaction with hydrogen sulphide in the presence of carbon dioxide. TEA is also a tertiary amine. TEA has three ethanol groups attached to the nitrogen atom. It is the weakest amine and requires the least heat to regenerate. TEA is only applicable on high-pressure gas streams when even moderate acid gas removal is not essential. Tertiary amines are less inherently corrosive and can be used in higher concentrations, but tertiary amines are not a good choice when the raw gas pressure is low or the specification calls for deep carbon

dioxide removal. However, tertiary amines, particularly MDEA, are well suited for selective absorption on high-pressure gas streams.

The general process flow for an amine sweetening unit is shown in Figure 1.1:

Figure 1.1: Typical amine-based process (Ratman, 2002)

The recent technology for CO_2 removal uses activator like piperazine (PZ) to enhance the rate of absorption especially when it is added to conventional alkanolamines. When added to conventional amines, PZ accelerates the carbon dioxide absorption due to the formation of di-carbamate which can be attributed to the unique six-sided ring structure of the molecule (Bishnoi and Rochelle, 2000). They observed that at low solution loading, the dominant reaction products are piperazine carbamate and protonated piperazine. However, at higher loading, the dominant reaction product obtained was protonated piperazine carbamate. From the kinetic mechanism of PZ, they also concluded that piperazine (PZ) can be an effective promoter for carbon dioxide removal from gas streams. The carbon dioxide absorption follows the following reaction:

$$MDEA + H_2O + CO_2 \qquad \longrightarrow \qquad MDEAH^+ + HCO_3^-$$

This reaction is slow and an activator (additive) is required to speed up the kinetics of the reaction. Piperazine (secondary amine) is added as an activator, which serves as both liquid catalyst and chemical corrosion inhibitor. In addition, some proprietary ingredients are added to enhance the solvent capability. The mechanism of absorption is illustrated in Figure 1.2.

Figure 1.2: General absorption mechanism in the reaction of MDEApiperazine (Hasanah and Ratman, 2003)

The main advantage of activated MDEA is its high pick-up ratio of carbon dioxide compared to other solvents. This will result in a lower solvent circulation rate. It is claimed that there are no degradation products and very low hydrocarbon co-absorption. General important advantages of amine-based processes include low operating costs, as the chemical solvent is regenerated continuously. Another advantage are the capability to handle important turndowns and selective removal of hydrogen sulphide (Loo *et al.*, 2007). They are acceptably suited for low operating pressure applications where the acid gas partial pressure is low and low level of acid

gas is desired in the residue gas since their acid gas removal capacity is relatively high and insensitive to acid gas partial pressure, as compared to physical solvents. Alkanolamines are widely used in both natural gas and refinery gas processing industries. The process involved has an important acceptance in the industry.

1.3. Problem Statement

In the acid gas removal plant, there are several common problems may be encountered during operations, such as failure to meet treated gas specifications, corrosion, excessive solvent losses and foaming (Blauwhoff *et al.*, 1985 and Aquila *et al.*, 2004). A failure to meet the treated gas specifications during operations are normally contributed by many factors, which can not be easily detected in the short time (Maddox and Morgan, 1998). The causes could be coming from the feed gas operating conditions, poor regeneration, mechanical failure of equipment, contaminated solvent and etc. The operator should investigate at the soonest and find the solution to sustain the production. If it could not be solved, a long term solution should be taken, such as repairing the mechanical failure and reclamation of contaminated solvent

Corrosion is another problem that can be detected in the long term period (Veldman, 2000). For all the types of alkanolamines, the presence of oxygen, a high content of acid gas, high temperature and also thermal degradation of the amine in the regenerator increase the likelihood of product degradation and corrosion problems. Corrosion management and monitoring the causes are normally applied for its mitigation. Like corrosion, the excessive solvent loss is known during long term period. It may be caused by the poor separation of demister pad and the solvent loss via acid gas venting. In the normal operation, it is very rare to loose huge amount of solvent, except when there is a big leak of the solvent inventory equipment, such as flash drum leaks, which isa due to the severe stress corrosion cracking which is commonly happened in the amine units.

Foaming is the most common cause of an upset of acid gas removal unit, resulting in excessive solvent losses, off specification treated gas and a reduction of treating capacity, which subsequently may affect the operating costs, revenues and reputations (Bullin and Donnelly, 2006). Generally, when the amine solvents become contaminated, they can show a tendency to foam. In order for foaming to occur in gas liquid systems, the gas/liquid interface must be stabilized. This may comprise resistance of the surface against changes in the surface area as well as prevention of drainage of liquid from the boundary layer between foam cells. When the foaming appears, some actions and efforts are usually taken to control it, in order to avoid situation to be worsen that may give further significant impact to the plant operation. Therefore, the present study is devoted to studying the foaming phenomenon in the amine unit and to find the solutions in curing the basic foaming problems.

1.4. Objectives of Study

The aims of this study are to find the main foaming promoter in the amine solvent and to control the foaming tendency down to non-foamability level. The objectives are:

- a) To characterize the foaming phenomenon in the amine solvent.
- b) To identify the root causes that give major contribution to foaming.
- c) To find the most influential foaming promoter by using the amine foamability and surface tension data.
- d) To study the possibility of applying membrane-based technology to further reduces foaming promoter concentration.

1.5. Scope of Study

In order to achieve all of the objectives set above, several scopes have been outlined, which are:

- a) Preparing of blending MDEA-piperazine at various of concentration.
- b) Preparing the natural gas stream impurities such as hydrocarbon, iron sulfide, sodium chloride, methanol, organic acid and ethylene glycol at various concentrations.
- c) Preparing the solution of blending MDEA-piperazine with the several of impurities and concentration.

- d) Testing the MDEA-piperazine with natural gas stream impurities on foaming tendency and surface tension.
- e) Optimization of the effect of natural gas stream impurities on the surface tension using response surface methodology.
- f) Analyzing the possibility of the application of asymmetric mixed matrix membrane to reduce the foam promoter concentration into the level of non foamability solvent.

1.6. Significance of the Study

In the recent gas and LNG industry, gas-treating unit stability is very important to achieve treated gas specification to the downstream units. Foaming is the most common cause of upset in the unit. In normal operation, the symptoms of foaming can be detected by fluctuating pressure drops in absorber and/or regenerator, amine carry over from absorber and/or regenerator, swinging liquid levels in any vessels/ columns, off-specification of treated gas and poorly stripped gas. In addition, the foam test results are the indication of increasing foam activity. When the foaming occurs, it may result in a number of different problems. Plant gas throughput may be severely reduced and treating efficiency may decrease to the point that treated gas cannot be met. In addition, amine losses may be significantly increased. Therefore, managing foam activity is crucial to maintain plant stability and to avoid significant financial and opportunity losses

In the case of uncontrolled foaming problem, amine circulation rate may be decreased to allow for the liquid bubbling to drop rapidly thus avoiding, more amine to be carried over to downstream equipment. As a result, gas throughput may be reduced as order to anticipate any acid gas breakthrough which will cause serious impact to the whole plant operation. The worst case, that may happen, is to trip amine pumps as a result of uncontrolled regenerator level drop. If this occurs, the whole plant will be shutdown to stop acid gas breakthrough to the unanimous number. The shutdown will result a loss of million dollars since the plant can not produce as expected. In addition, restarting up the plant takes time and efforts in

order to recover the plant back to the stable operation. Further impacts to the above problem are company reputation (and images), which may cause not to fulfill the commitment, environmental protection due to amine carry over and public complaint, which resulted in a shutdown with smoky flares.

1.5. Organization of the Thesis

The thesis consists of sixth chapters. Chapter 1 presents the background, research problem, objectives and the significance of the study. Chapter 2 describes the background and discusses the theory of natural gas and carbon dioxide removal from natural gas. In addition, a review of previous experimental studies of foaming problem in carbon dioxide removal from natural gas using conventional process is also covered. Chapter 3 discusses the results of foam behavior of pure blended MDEA-piperazine solution as well as the effect of natural gas impurities against its foam behavior.

Chapter 4 extends the study to investigate the influences of natural gas impurities (as foam promoters) against surface tension parameter of the MDEApiperazine solution. From the result obtained, the most influential impurities that produce high surface tension can be determined. Since some of the identified main foam promoters can be presented altogether in the MDEA solution during operation, in this chapter, the effect of these combined impurities in the solution is also investigated as well as to predict the maximum surface tension that can be achieved. The prediction of maximum surface tension is obtained by using statistical analysis, which is performed by a Statistica software version 6, in order to develop its mathematical model. In the final stage of this research (Chapter 5), the possible application of asymmetric mixed matrix membrane-carbon nanotube to reduce the concentrations of the main foam promoters that have been identified in the chapter 4 is discussed. This means to control the foam formation and to reduce the surface tension of the blended MDEA-piperazine solution. The general conclusions drawn from this research are provided in Chapter 6. Some recommendations for future research are also listed in this chapter.

REFERENCES

Aboudheir, P., Tontiwachwuthikul, A., Chakma, P., and Raphael I., (2003). Kinetics of the reactive absorption of carbon dioxide in high CO₂-loaded, concentrated aqueous monoethanolamine solutions, *Chemical Engineering Science*, 58:5195-5210.

Adamson, A.W., (1990), Physical Chemistry of Surfaces, 5th edn. Wiley: New York.

- Aguila-Hernández, J., Trejo, A,. Gracia-Fadrique, J., (2000) Surface Tension of Aqueous Solutions of Alkanolamines: Single Amines, Blended Amines and Systems with Nonionic Surfactants, *Proceeding Fourteenth Symposium on Thermophysical Properties*, June 25-30, Boulder, Colrado, U.S.A
- Aguila-Hernández, J., Trejo, A,. Gracia-Fadrique, J., (2001), Surface tension of Aqueous Solutions of Alkanolamines: Single Amines, Blended Amines and Systems with Nonionic Surfactants, *Fluid Phase Equilibria* 185: 165–175.
- Alargova, R.G., Warhadpande, D.S. Paunov, V.N. Velev, O.D. (2004) Foam Super-Stabilization by Polymer Microrods, *Langmuir* 20: 10371–10374.
- Alberto, G.D. and Phillips, D.T. (1995). *Principles of Experimental Design and Analysis*. first ed. London: Chapman and Hall.
- Ali, S.H., Merchant, S.Q., and Fahim, M. A., (2002), Reaction Kinetics of Some Secondary Alkanolamines with Carbon Dioxide in Aqueous Solutions by Stopped Flow Technique, *Separation and Purification Technology*, 27, 121-136.

- Anderson, M.D., Hegarty, M. J., and Johnson, J.E., (1992) Flexible Selective Solvent Design. Proc. Annu. Conv. Gas Proc. Assoc. 71, 292–309.
- Asit K. S., Bandyopadhyay, S.S. Saju, P.and Biswas, A. K. (1993), Selective Removal of Hydrogen Sulfide from Gases Containing Hydrogen Sulfide and Carbon Dioxide by Absorption into Aqueous Solutions of 2-amino-2-methyl-1propanol, *Ind. Eng. Chem. Res*, 32: 3051 – 3055.
- Aspelund, AT.E. Sandvik, L., and Krogstad, H. (2004) Offshore unloading of CO₂ to an oilfield, *Proceedings of the 7th International Conference on Greenhouse Gas Control Technologies (GHGT-7)* Vancouver, Canada.
- Astarita, G.D., Savage, W. and Bisio, A. (1983), *Gas Ttreating with Chemical Solvents*, John Wiley and Sons, New York.
- Aveyard, R., Clint, J.H., Nees, D., (2000) Small Solid Particles and Liquid Lenses at Fuid/Fuid Interfaces, *Colloid Polym. Sci.* 278, 155–163.
- Baker, R, (2002). Future Directions of Membrane Gas Separation Technology, Ind. Eng. Chem. Res. 41: 1393-1411.
- Belton, J.W., Evans, M.G., (1945) Studies in the Molecular Forces Involved in Surface Formation. 2. The Surface Free Energies of Simple Liquid Mixtures. *Transactions of the Faraday Society*, 41:. 1–12.
- Benson, H.E., Field, J. H., and Haynes, W.P., (1956) Improved Process for CO₂
 Absorption Uses Hot Carbonate Solutions, *Chem. Eng. Prog.*, 52, 433.
- Bhide, B.D., Voskericyan, A., Stem, S.A. (1998) Hybrid processes for the removal of acid gases from natural gas, *Journal of Membrane Science* 140: 27-49

Bikerman, J.J. (1973), Foams, Springer-Verlag, New York.

- Binks, B.P. (2002), Particles as Surfactants-Similarities and Differences, Current. Opinion, *Colloid Interface Sci.* 7: 21–41.
- Binks, B.P. and Horozov, T.S (2005), Aqueous Foams Stabilized Solely by Silica Nanoparticles, Angew. Chem. Int. Ed. 44: 3722–3725.
- Blauwhoff, P.M., Kamphuis, M.B., van Swaaij, W. P.M. and Westerterp, K.R., (1985), Absorber Design in Sour Natural Gas Treatment Plants — impact of Process Variables on Operation and Economics, *Chem. Eng. Process.* 19:1–25.
- Boom, J.P. Punt, I.G.M., Zwijnenberg, H., de Boer, R., Bargeman, D., Smolders, C.A., Strathmann, H., (1998) Transport Through Zeolite Filled Polymeric Membranes, J. Membr. Sci. 138: 237–258.
- Bosch, H., Versteeg, G. F., and Van Swaaij, W. P. M., (1990), Kinetics of the Reaction of CO₂ with the Sterically Hindered Amine 2-Amino-2methylpropanol at 298 K, *Chemical Engineering Science*, 45: 1167-1173.
- Box, G.E.P., Hunter, W.G. and Hunter, J.S. (1978). Statistics for Experiment, An Introduction to Design, Data Analysis and Model Building. New York: John Wiley & Sons Inc, USA.
- Bright R.L. and Leister D.A., (1987) Gas Treaters Need Clean Amines, *Hydrocarbon Processing*, 66:47-8.
- Buckingham, P.A., (1964), Fluor Solvent Process Plants: How They Are Working, *Hydrocarbon Process* 43:113–116.
- Bullin, J.A., and Donnelly, S.T., (2006), The Use of MDEA and Mixtures of Amines for Bulk CO₂ Removal, *Bryan Research & Engineering*, Inc., Technical paper 1-9.
- Cavenati, S., (2005). Separation of Mixtures CH₄/CO₂/N₂ by Asorption Processes. Ph.D. Dissertation, University of Porto, Portugal.

- Chakma A. and Meisen A., (1989) Activated Carbon Adsorption of Diethanolamine, Methyl-Diethanolamine and Their Degradation Products, Carbon, 27: 573-84.
- Chakma A. and Tontiwachwuthikul, P. (1998), Designer Solvents for Energy Efficient CO₂ Separation from Flue Gas Streams. In *Greenhouse Gas Control Technologies;* Proceedings of the 4th International Conference on Greenhouse Gas Control Technologies.
- Chakravarty, T., Phukan, U. K., & Weiland, R. H. (1985). Reaction of Acid Gases with Mixtures of Amines. Chemical Engineering Progress, 81: 32–36.
- Chang, T.M., Dang, L.X., (2006), Recent Advances in Molecular Simulations of Ion Solvation at Liquid Interfaces. *Chemical Reviews* 106: 1305–1322.
- Cornel, J.H. (1990). *How to Apply Response Surface Methodology*. Volume 8 USA. ASQC.
- Cornelissen, A.E., (1980), Simulation of Absorption of H₂S and CO₂ into Aqueous Alkanolamines in Tray and Packed Columns. *Trans. Inst. Chem. Eng.* 58: 242– 250.
- Davis, R. A. and Sandall, O.C. (1993), Kinetics of the Reaction of Carbon Dioxide with Secondary Amines in Polyethylene Glycol, *Chemical Engineering Science*, 48: 3187-3193.
- Dickinson, E., Ettelaie, R., Kostakis, T., Murray, B.S., (2004), Factors Controlling the Formation and Stability of Air Bubbles Stabilized by Partially Hydrophobic Silica Nanoparticles, *Langmuir* 20: 8517–8525.
- Dindore, V.Y., Brilman D.W.F., Geuzebroek, F.H., Versteeg G.F., (2004) Membrane–Solvent Selection for CO₂ Removal using Membrane Gas–Liquid Contactors, *Separation and Purification Technology* 40: 133–145.

- Du, Z., Bilbao-Montoya, B.M.P., Binks, B.P., Dickinson, E., Ettelaie, R., Murray, B.S., (2003), Outstanding Stability of Particle-Stabilized Bubbles, *Langmuir* 19: 3106–3108.
- Dukhin SS, Kretzschmar G., Miller R., (1995) *Dynamics of Adsorption at Liquid Surfaces*. Elsevier: Amsterdam.
- Dupart, R.S., Abry, R.G.F., (1995), Amine plant trouble shooting and optimization, Hydrocarbon Processing, April 1995 ed., 41-50
- Duval, J.M., Kemperman, A.J.B., Folkers, B., Mulder, M.H.V., Desgrandchamps, G., and Smolders, C.A., (1994) Separation of Zeolite Filled Glassy Polymer Membranes. J. Appl. Poly. Sci., 54: 409-418.
- Florentino M.-G, Libreros, R., Ma. E., Martínez, A. R., and Trejo, A., (1998), Solubility of CO₂ in Aqueous Mixtures of Diethanolamine with Methyldiethanolamine and 2-amino-2-methyl-1-propanol, *Fluid Phase Equilibria*, 150: 721-729.
- Friberg, S.E., Blute, I., Stenius, P., (1989) Foam Stability in a Glycerol System, J. Colloid Interface Sci. 127: 573–582.
- Hacarlioglu, P., Toppare, L. and Yilmaz, L. (2003). Polycarbonate–Polypyrrole Mixed Matrix Gas Separation Membranes, *Journal of Membrane Science*, 225: 51-62.
- Hassanah, N., and Ratman, I. (2003) Pros and Cons of BASF's aMDEA and Shell's Sulfinol for CO2 Removal: A Handy De-bottlenecking option", Gas and LNG Users Network Workshop, Sur - Oman LNG.
- Hesselink, W.H. van Huuksloot, A. (1985), Foaming of Amine Solutions, *Inst. Chem. Eng. Symp. Series* 94: 193–202.
- Huntington, R.L., (1950), *Natural Gas and Natural Gasoline*, McGraw-Hill, New York.

- Idris, A. Kormin, F. Noordin, M.Y. (2006), Application of Response Surface Methodology in Describing the Performance of Thin Film Composite Membrane. Separation and Purification Technology. 49: 271–280.
- Iijima, S. (1991). Helical Microtubles of Graphitic Carbon, *Nature*, 354: 56-8.
- Islam, M.F., Eojas, E., Bergey, D.M., Johnson, A.T., Yodh, A.G, (2003) Nano Letter, 3: 269.
- Ismail, A.F. and Lai. P.Y. (2004), Development of Defect-Free Asymmetric Polysulfone Membranes for Gas Separation Using Response Surface Methodology. Separation and Purification Technology 40: 191–207.
- Ismail, A.F. Ng, B.C. Abdul Rahman. W.A.W. (2003). Effects of Shear Rate And Forced Convection Residence Time on Asymmetric Polysulfone Membranes Structure and Gas Separation Performance. Separation and Purification Technology, 33: 255-272.
- Jia, M., Peinemann, K.-V., and Behling, R.-D., (1991). Molecular Sieving Effects of Zeolite-Filled Silicone Rubber Membranes in Gas Permeation. *Journal of Membrane Science*, 57: 289-296.
- Jiraratananon, R. Sungpet, A and Luangsowan, P. (2000), Performance Evaluation of Nanofiltration Membranes for Treatment of Effluents Containing Reactive Dye and Salt, *Desalination*, 130:177-183.
- Jou F.Y., Carroll J.J., Mather A.E. and Otto F.D., (1996) Phase Equilibria in the System n- Butane-Water-Methyldiethanolamine, *Fluid Phase Equilibria*, 116: 407.
- Jou, F.Y. Otto, F. D., and Mather, A. E., (1996a), Solubility of Mixtures of Hydrogen Sulfide and Carbon Dioxide in Aqueous Solutions of Triethanolamine, J. Chem. Eng. Data, 41:1181 – 1183.

- Jou, F.Y. Mather, A. E., and Otto, F. D., (1995), The Solubility of CO₂ in a 30 Mass Percent Monoethanolamine Solution, *Can J Chem Eng* 73: 140–147.
- Jungwirth, P., Tobias, D.J., (2006). Specific Ion Effects at the Air/Water Interface. *Chemical Reviews* 106: 1259–1281.
- Kaewsichan, L., Al-Bofersen, O., Yesavage, V. F., and Selim, M. S., (2001), Predictions of the solubility of acid gases in monoethanolamine (MEA) and methyldiethanolamine (MDEA) solutions using the electrolyte-UNIQUAC model, *Fluid Phase Equilibria*, 183-184: 159-171.
- Kaptay, G. (2004), Interfacial criteria for stabilization of liquid foams by solid particles, Colloids Surf. A: Physicochem. Eng. Aspects. 230 67–80.
- Kim, Y.S. and Yang, S.-M., (2000), Absorption of Carbon Dioxide Through Hollow Fiber Membranes using Various Aqueous Absorbents, *Separation and Purification Technology*, 21: 101-109.
- Klare, M., Scheen, J., Vogelsang, K., Jacobs, H., and Broekaer, J. A. C., (2000), Degradation of Short-Chain Alkyl- and Alkanolamines by TiO₂- and Pt/TiO₂-Assisted Photocatalysis, *Chemosphere*, 41: 353-362.
- Koh., A.L. and Riesenfeld, F.C (1960), Gas Purification, 1st Ed., McGraw-Hill.Gulf Publishing Company, Houston, Texas.
- Koros, W.J and Fleming, G.K., (1993), Membrane-based Gas Separation, *Journal Membrane Science*, 83, 1-80.
- Kusworo, T.D. Ismail, A.F., Mustafa, A. and Matsuura, T. (2008). Dependence of Membrane Morphology and Performance on Preparation Conditions: The Shear Rate Effect in Membrane Casting Separation and Purification Technology. *Separation and Purification Technology*, 61: 249-257.

- Lau, K.T.and Hui, D. (2002). The Revolutionary Creation of New Advanced Materials-Carbon Nanotubes Composites. *Composites: Part B*, 33: 263-277.
- Li, M. H and Chang, B.C., (1994), Solubilities of Carbon Dioxide in Water + Monoethanolamine + 2-Amino-2-methyl-1-propanol, *J. Chem. Eng. Data*, 39: 448.
- Li, S.L. Li, C., Liu, Y.S., Wang, X.L and Cao, Z.A. (2003), Separation of Lglutamine from Fermentation Broth by Nanofiltration, *J. Membr. Sci.*, 222: 191–201.
- Li, Y.Chung, T.S. Huang, Z. Kulprathipanja, S. (2006). Dual-Layer Polyethersulfone (PES)/BTDA-TDI/MDI Co-Polyimide (P84) Hollow Fiber Membranes With A Submicron PES-Zeolite Beta Mixed Matrix Dense-Selective Layer For Gas Separation, *Journal of Membrane Science*, 227: 28-37.
- Li, J.H., Xu, Y-Y., Zhu, L-P, Wang, J-H., Du, C-H., (2009), Fabrication and Characterization of a Novel TiO₂ Nanoparticle Self-assembly Membrane with Improved Fouling Resistance, *Journal of Membrane Science* 326: 659–666
- Libreros, M. E.R. and Trejo, A., (2004), Gas solubility of CO₂ in Aqueous Solutions of N-methyldiethanolamine and Diethanolamine with 2-amino-2-methyl-1-Propanol, *Fluid Phase Equilibria*, 218: 261-267.
- Libreros, M. E.R. and Trejo, A. (2004a), Gas Solubility of H₂S in Aaqueous Solutions of N-methyldiethanolamine and Diethanolamine with 2-amino-2methyl-1-propanol at 313, 343, and 393 K in the range 2.5–1036 kPa, *Fluid Phase Equilibria*, 224: 83-88.
- Lin, Y. Zhou, B. Shiral Fernando, K.A. Liu, P. Allard, L.F. Sun, Y.-P. (2003). Polymeric Carbon Nanocomposites from Carbon Nanotubes Functionalized With Matrix Polymer, *Macromolecules*, 36: 7199-7204.

- Loo, S.V., van Elk, E.P. and Versteeg, G.F., (2007), The Removal of Carbon Dioxide with Activated Solutions of Methyl-diethanol-amine, *Journal of Petroleum Science and Engineering*, 55: 135-145.
- Lu, J.G., Zheng, Y.F. and He, D.L., (2006), Selective Absorption of H₂S from Gas Mixtures into Aqueous Solutions of Blended Amines of Methyldiethanolamine and 2-tertiarybutylamino-2-ethoxyethanol in a Packed Column, *Separation and Purification Technology* 52: 209-217.
- Maddox, R.N., Morgan, D.J. (1998), *Gas Conditioning and Processing*, Campbell Petroleum Series, Oklahama, USA.
- Maddox, R.R., (1974) *Gas and Liquid Sweetening*, Campbell Petroleum Series, Norman, UK, 2nd edition.
- Mahajan, R. Burns, R. Schaeffer, M. Koros, W.J. (2002). Challenges In Forming Successful Mixed Matrix Membranes With Rigid Polymerics Materials, *Journal of Applied Polymer Science*, 86: 881-889.
- Mandal, B. P., Guha, M.,Biswas, A. K., Bandyopadhyay, S. S., (2001), Removal of Carbon Dioxide by Absorption in Mixed Amines: Modelling of Absorption in Aaqueous MDEA-MEA and AMP-MEA Solutions, *Chemical Engineering Science*, 56: 6217–6224.
- Mandal, B. P., Biswas, A. K., and Bandyopadhyay, S. S., (2004), Selective Absorption of H₂S from Gas Sreams Containing H₂S and CO₂ into Aqueous Solutions of *N*-methyldiethanolamine and 2-amino-2-methyl-1-propanol, *Separation and Purification Technology*, 35: 191-202.
- Manuel A. P., Shoichi, K., and Gary T. R., (2000), CO₂ absorption into Aqueous Mixtures of Diglycolamine and Methyldiethanolamine, *Chemical Engineering Science*, 55: 5125-5140.

- McCarthy, J., Trebble, M.A., (1996), An Experimental Investigation into the Foaming Tendency of Diethanolamine Gas Sweetening Solutions, *Chem. Eng. Commun.* 144: 159–171.
- Meisen A., Kennard M.L. (1987), DEA Degradation Mechanism, Hydrocarbon *Processing*, 61:105-8.
- Mimura, T., Suda, T., Iwaki, I., Honda, A., Kumazawa, H. (1998), Kinetics of Reaction Between Carbon Dioxide and Sterically Hindered Amines for Carbon Dioxide Recovery from Power Plant Flue Gases, *Chemical Engineering Communications*, 170: 245-260.
- Montgomery, D.C. (1997). *Design and Analysis of Experiments*, 4th.ed., New York, John Wiley and Sons, NY, USA. pp. 704.
- Mostafavi, S.T. Mehrnia, M.R. Rashidi, A.M. (2009), Preparation of Nanofilter from Carbon Nanotubes for Application in Virus Removal from Water, *Desalination* 238: 271–280
- Murphy, T.D., (1977). Design and Analysis of Industrial Experiments. *Chemical Engineering*. 6: 168-182
- Murray, B.S., Ettelaie, R. (2004), Foam stability: proteins and nanoparticles, *Curr. Opin. Colloid Interface Sci.* 4: 314–320.
- Nakao, S.I. (1994) Determination of pore size and pore size distribution 3. Filtration membranes, J. Membr. Sci., 96: 131–165.
- Nele, M., Vidal, A., Bhering, D.L., Pinto, J.C. and Salim, V.M.M. (1999), Preparation of High Loading Silica Supported Nickel Catalyst: Simultaneous Analysis of the Precipitation and Aging Steps. *Applied Catalysis A : General*. 178: 177-189.

- Nordenkamp, M. B., Friedl, A., Koss, U., and Tork, T., (2004), Modelling Selective H₂S Absorption and Desorption in an Aqueous MDEA-solution Using a Ratebased Non-equilibrium Approach, *Chemical Engineering and Processing*, 43: 701.
- Petersen, R.J. (1993) Composite Reverse Osmosis and Nanofiltration Membranes, J. Membr. Sci., 83:81–150.
- Prud'homme, R.K., Khan, S.A., (1996), *Foams: Theory, Measurement and Applications*, Marcel Dekker, Inc., New York.
- Rangwala, H.A., Morrell, B.R. Mather, A.E. Otto, F.D. (1992) Absorption of CO₂ into Aqueous Tertiary Amine/MEA Solutions, *Can. J. Chem. Eng.* 70: 482– 490.
- Rao, A.B. and Rubin, E.S., (2002)A Technical, Economic, and Environmental Assessment of Amine-based CO₂ Capture Technology for Power Plant Greenhouse Gas Control, *Environ Sci Technol* 36: pp. 4467–4475.
- Ratman, I (2002), BLNG Experience with SS-410 Tray material & Shell snap-in valves", Distillation Meeting, Shell Global Solutions, Amsterdam
- Reza, T., Hamid M., John, S., (2005), Surface Tension Prediction and Thermodynamic Analysis of the Surface for Binary Solutions, *Chemical Engineering Science* 60: 4935 – 4952.
- Reza, J., and Trejo A. (2006) Degradation of Aqueous Solutions of Alkanolamine Blends at High Temperature, Under the Presence of CO₂ and H₂S, *Chem. Eng. Commun.* 193: 129–138.
- Romeroa,, C.M., Manuel S. P., Jes´us A. M., David J. H., Luis E. O. (2007) Effect of Temperature on the Surface Tension of Diluted Aqueous Solutions of 1,2-Hexanediol, 1,5-Hexanediol, 1,6-Hexanediol and 2,5-Hexanediol, *Fluid Phase Equilibria* 258: 67–72.

- Saha, A.K., Bandyopadhyay, S.S., and Biswas, A. K. (1995), Kinetics of Absorption of CO₂ into Aqueous Solutions of 2-amino-2-methyl-1-propanol, *Chemical Engineering Science*, 50: 3587-3598.
- Sartori, G. and Savage, D.W., (1983), Sterically Hindered Amines for CO₂ Removal from Gases, *Ind. Eng. Chem. Fundam.* 22, pp. 239–249.
- Savage, D.W., Funk, E.W., Yu, W.C., and Astarita, G. (1986), Selective Absorption of Hydrogen Sulfide and Carbon Dioxide into Aqueous Solutions of Methyldiethanolamine, *Ind. Eng. Chem. Fund.*; 25(3): 326 – 330.
- Schafer, A.I. Fane, A.G. and Waite, T.D., (2003), *Nanofiltration: Principles and Applications*, Elsevier Science B V.
- Sethumadahavan, G.N., Nikolov, A.D., Wasan, D.T., (2001) Stability of Liquid Flms Containing Monodisperse Colloidal Particles, J. Colloid Interface Sci. 240:105–112.
- Shen, J., Huang, W., Wu, L., Hu, Y., Ye, M. (2007). The Reinforcement Role of Different Amino-functionalized Multi-walled Carbon Nanotubes in Epoxy Nanocomposites. *Comp. Sci. Tech.* 67: 3041-3150.
- Shieh, J.J. and Chung, T.S. (2000). Cellulose Nitrate-Based Multilayer Composite Membranes for Gas Separation, *Journal of Membrane Science*, 166: 259-269.
- Shieh, J.J., Chung, T.S., Wang, R., Srinivasan, M.P. and Paul, D.R. (2001). Gas Separation Performance of Poly(4-Vinylpyridine)/Polyetherimide Composite Hollow Fibers, *Journal of Membrane Science*, 182: 111-123.
- Shrestha, L.K., Acharya, D.P., Sharma, S.C., Aramaki, K., Asaoka, H., Ihara, K., Tsunehiro, T., Kunieda, H., (2006) Aqueous Foam Stabilized by Dispersed Surfactant Solid and Lamellar Liquid Crystalline Phase, J. Colloid Interface Sci. 301: 274–281.

- Shrestha, L.K. Saito, E., Shrestha, R.G., Kato, H., Takase, Y., Aramaki, K., (2007) Foam Stabilized by Dispersed Surfactant Solid and Lamellar Liquid Crystal in Aqueous Systems of Diglycerol Fatty Acid Esters, *Colloids and Surfaces A: Physicochem. Eng. Aspects* 293: 262–271.
- Shu, L. Waite, T. D. Bliss, P. J., Fane, A. and Jegatheesan, V., (2005), Nanofiltration for the Possible Reuse of Water and Recovery of Sodium Chloride Salt from Textile Effluent, *Desalination*, 172: 235-243.
- Tan, S.N. Fornasiero, D. Sedev, R. Ralston, J., (2005), Marangoni Effects in Aqueous Polypropylene Glycol Foams, *Journal of Colloid and Interface Science* 286: 719–729
- Tang, F., Xiao, Z., Tang, J., Jiang, L., (1989), The Effect of SiO₂ Particles Upon Stabilization of Foam, J. Colloid Interface Sci. 131: 498–502.
- The Wittemann Company LLC (2005). Acid gas removal system, viewed 20 Febuary 2007 (<u>http://www.wittemann.com/agr.htm</u>).
- Thompson J., (1985) Reclaim Gas Treating Solvent, *Hydrocarbon Processing.*, 64:75-8
- Vacques, M., and Martin, A.M., (1998). Optimization of Phaffia Rhodozymactic Continuous Culture Through Response Surface Methodology. *Biotechnology* and Bioengineering. 57 (3): 314-320.
- Veawab, A. A, (2002), Identification of Oxidizing Agents in Aqueous Amine–CO₂ Systems Using a Mechanistic Corrosion Model, *Corrosion Science*, 44: 967-987
- Veldman, R.R., (2000), Alkanolamine Solution Corrosion Mechanisms and Inhibition From Heat Stable Salts and CO₂ Corrosion, 00496

- Vijayaraghavan, K. Nikolov, A., Wasan, D. (2006). Foam formation and mitigation in a three-phase gas–liquid–particulate system, *Advances in Colloid and Interface Science* 123–126: 49–61.
- Vu, D.Q., Koros, W.J. and Miller, S.J. (2003). Mixed Matrix Membranes Using Carbon Molecular Sieves I. Preparation and Experimental Results, *Journal of Membrane Science*, 211: 311-334.
- Wang, D.X.. Wang, X.L., Tomi, Y., Ando, M., and Shintani, T., (2006) Modeling the Separation Performance of Nanofiltration membranes for the mixed salts solution, J. Membr. Sci., 280:734–743.
- Wang, X.L., Tsuru, T., Nakao, S.I., and Kimura, S., (1995) Electrolyte Transport Through Nanofiltration Membranes By The Space-Charge Model and the Comparison With Teorell–Meyer–Sievers Model, J. Membr. Sci., 103: 117– 133.
- Wang, X.L. Zhang, C.H. and Ouyang, P.K. (2002) The Possibility of Separating Saccharides From a NaCl Solution By Using Nanofiltration in Diafiltration Mode, J. Membr. Sci., 204: 271–281.
- Weiland, R.H., Chakravarty, T., and Mather, A.E., (1993), Solubility of Carbon Dioxide and Hydrogen Sulfide in Aqueous Alkanolamines. *Ind. Eng. Chem. Res.* 32: 1419–1430.
- Yang, H. Z., Xu, M., Fan, R., Gupta, R.B., Bland, A.E., and Wright, I., (2008) Progress in Carbon Dioxide Separation and Capture: A Review, *Journal of Environmental Sciences*, 20: 14-27.
- Yanicki, G., Trebble, M.A. (2006), Experimental Measurements of Foaming Tendencies in Aqueous Gas Sweetening Solutions Containing MDEA Over a Temperature Range of 297–358K and a Pressure Range of 101–500 kPa, *Chem. Eng. Commun.* 193: 1151–1163.

- Yong, H.H., Park, H.C., Kang, Y.S., Won, J., and Kim, W.N., (2001) Zeolite-Filled Polyimide Membrane Containing 2,4,6-Triaminopyrimidine. *Journal of Membrane Science*, 188: 151-163.
- Younger, A.H. (2004) Natural Gas Processing Principles and Technology," University of Calgary Canada, April 2004.
- Zeng, J., Yeb, H., Hua, Z., (2009) Application of The Hybrid Complexation– Ultrafiltration Process for Metal Ion Removal from Aqueous Solutions, *Journal* of Hazardous Materials 161: 1491–1498
- Zimmerman, C.M., Singh, A., and Koros, W.J., (1997). Tailoring Mixed Matrix Composite Membranes for Gas Separations. *Journal of Membrane Science*, 137:145-154.