
Performance evaluation of Multidimensional Parabolic Type Problems on distributed computing systems

Norma Alias1, Rasiya Anwar1 , Che Rahim Che Teh2, Noriza Satam2, Norhafiza Hamzah2,
 Zarith Safiza Abd. Ghaffar2, Roziha Darwis2, Md. Rajibul Islam1,

1 Department of Information Technology, College of Computer and Information Sciences, KSU.
2Department of Mathematics, Faculty of Science, University Technology Malaysia, 81310 Skudai, Johor.

E-mail: norma@ibnusina.utm.my, crahim@utm.my
{Norizasatam, norhafizahamzah, zarithsafiza.ag, roziha.darwis, raziafaiz}@gmail.com, bd_rajib@yahoo.com

` Abstract
Parabolic Partial Differential Equations (PDE) are well suited to
multiprocessor implementation. However, the performance of a
parallel program can be damaged by the mismatches between
the parallelism available in the application and that available in
the architecture. Communication cost, memory requirements,
execution time, implementation cost, and others from a problem
specific function should be considered to estimate a parallel
program. In this paper, we present an optimizing technique
called granularity analysis to evaluate the parallel algorithms
particularly AGE families without degrading the performances.
The resultant granularity analysis scheme is appropriate for
developing adaptive parallelism of declarative programming
languages on multiprocessors. The results recommend that the
proposed method can be used for performance estimation of
parallel programs. Red Black Gauss Seidel (GSRB) is selected
as the benchmark for the differences numerical methods.

Keywords: Parallel programme, performance evaluation,
granularity analysis, multiprocessor, multidimensional
parabolic equation, AGE.

1.0 Introduction

 All the parallel approaches are based on the non-overlapping
subdomain [1, 2]. There is no data swap between the neighboring
processors at the iteration (q) but there are inter-processor
communications between the iteration (q) and the next iteration
(q+1). A typical parallel implementation of a parallel AGE
assigns several mesh points to each processor p such that each
processor only communicates with its two nearest neighbors [3].
The computations of the approximation solutions in subdomain wp

are executed independently. The stopping criteria in the
processors p are investigated by measuring the size of the inner
residuals. Let us define the residual computed in the processors p.
This quantity is kept in the processor's memory between
successive iterations and it is checked if the residual is reduced by
the convergence criterion. The master processor checked the
maximum of local convergence criterion and the iteration stopped
when the global convergence criterion is met.

 In Evans & Sahimi [4, 5] the discretization of parabolic partial
deferential equation is derived from Iterative Alternating
Decomposition Explicit Method (IADE) [3, 4, 5] and Alternating
Group Explicit Method (AGE) [4, 5]. In Norma et al. [3, 8] the six
strategies of parallel algorithms in solving parabolic partial
differential equations is implemented. These strategies were found
to be more effective using a distributed memory machines. In
Alias, Sahimi & Abdullah [8], the Conjugate Gradient on AGE
method (AGE-CG) was found to be more convergence and
accurate compared to AGE. In this paper, the computational
analysis of the proposed strategies is presented by using explicit

block)22(× . These schemes can be effective in reducing data
storage accesses in distributed memory and communication time
on a distributed computer systems [3]. This research focuses on
the cost communication and computational complexity for these
iterative methods [6, 9]. All the parallel strategies have been
developed to runs on a cluster of workstations based on Parallel
Virtual Machine environment [10, 11, 12].

 As the AGE class is fully explicit its feature can be fully
utilized for parallelism [4]. Firstly, Domain is distributed to p
subdomain by the master processor. The partitioning is based on
data decomposition technique. Secondly, the subdomain p of
AGE_BRIAN and AGE_DOUGLAS methods are assigned into
processors in block ordering [7, 8].The domain decomposition
for AGE_BRIAN and AGE_DOUGLAS methods are
implemented in four and five time level, respectively. The
communication schemes among the slave processors are needed
for the computations in the next iterations [10]. The
parallelization of AGE_BRIAN and AGE_DOUGLAS are
achieved by assigning the explicit block)22(× in this way and
proved that the computations involved are independent between
processors. The parallelism strategy is straightforward and the
domain is distributed to non over lapping subdomain[1,9]. Based
on the limited parallelism, this scheme can be effective in
reducing computational complexity and data storage accesses in
distributed parallel computer systems [6,11]. The iterative
procedure is continued until convergence is reached.

2.0 Fine and Coarse-grain Parallelism

 Computational grid for high performance computing is the
current research focus of computer science [2, 11]. Moreover,
the performance analysis and evaluation of parallel programs are
crucial in grid computing platform. According to [12-17],
granularity analysis of parallel program is one of the key
technologies in parallel computing.

 As hardware components become more powerful and less
expensive, parallel processing has become an indispensable
means for achieving higher performance. From the well-known
Amdahl’s law [9], software issues are very critical in such
parallel systems. Due to the added complexity in multiple
system components, the interaction between software and
hardware becomes more complicated. For example, it is no
longer adequate just to manage register sets, to decrease
operation strength, and to pass parameters between procedures
effectively. We analysed one of the more complex issues in this
study, such as determining the granularity in order to estimate
the performances of the parallel algorithms.

 According to AGE_DOUGLAS et al. [9] granularity is a
measure of the size of program sections that are executable

978-1-4577-0681-3/11/$26.00 ©2011 IEEE978-1-4577-0681-3/11/$26.00 ©2011 IEEE 103

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Universiti Teknologi Malaysia Institutional Repository

https://core.ac.uk/display/11788541?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

without communication with other processes. In parallel
computing, granularity is a qualitative measure of the ratio of
computation to communication [14, 15]. Computational times are
normally separated from communication times by synchronization
events. Fine grain and coarse grain algorithms are the two
extremes for this [9, 18]. In Fine-grain Parallelism, comparatively
small quantities of computational work are done between
communication events, low computation to communication ratio,
facilitates load balancing, implies high communication overhead
and fewer opportunity for performance improvement and if
granularity is too fine it is possible that the overhead required for
communications and synchronization between tasks takes longer
than the computation. On the other hand, in Coarse-grain
parallelism, comparatively large amounts of computational work
are done between communication/synchronization events, high
computation to communication ratio, involves more chances for
performance boost and harder to load balance efficiently [9]. The
most competent granularity is dependent on the algorithm and the
hardware environment in which it runs [12, 14]. In most cases the
overhead associated with communications and synchronization
are high relative to execution speed so it is beneficial to have
coarse granularity. Fine-grain parallelism can help reduce
overheads due to load imbalance [18].

 In this paper we discuss some of those performances analysis
metrics and especially a short explanation about granularity. We
concentrate on multidimensional parallel equations especially
AGE families only. How granularity helps to evaluate the
performances on parallel computing platform are illustrated.
Experimental results show the importance of granularity is to
obtain the performances of different multidimensional parallel
algorithms.

In this research, one, two and three dimensional parabolic
problem had been considered for the application of numerical
methods [3,4,5].

3.0 Granularity

3.1 Parallel Program Execution Time
 According to Foster I. [21], parallel program execution time
can be define as the time that elapses from the initial starts by
master hosts until the last slaves accomplished the task allocated.
In every execution of a parallel program, the timing being
measured is the decomposition of computation, communication
and idle time [22, 23] .

idleTcommTcompTparaT ++= (1)

paraT is defined as overall time needed for execution of parallel
program and can be calculated by adding time for computation,

)(compT and time for communication,)(commT as well as idle

times idleT .This definition of parallel execution time is useful in
measuring communication cost, granularity as well as other
parallel performance evaluation, namely speedup, efficiency,
effectiveness and temporal performance. The usage of paraT for
the analysis of communication cost is as shown in Table 1, 2 and
3. Additionally, the parallel performance evaluation is shown in
Table 7, 8 and 9.

3.2 Computation time and communication time ratio
 Scientists who work with parallel architectures define the
ratio between the computation time and the communication time
as the granularity of an application. This comes from the fact
that in traditional algorithms (i.e., synchronous algorithms,
iterative or not), periods of computation are typically separated
from periods of communication by synchronizations. However,
dealing with granularity, there are no more synchronizations,
thus that traditional definition is not very appropriate. In order to
be scalable, an algorithm must be coarse grained [4] 18, i.e.,
have long computation parts without communications. That is to
say, messages must be gathered in order to decrease the number
of communications. The granularity of parallel algorithm are
investigated using coarse grain of multisplitting method. On the
other hand, even though an algorithm has been designed to be
coarse-grained, the ratio between the computation time and the
communication time may affect its execution times in a given
computing context. Hence, in our opinion, this ratio is more
important than the notion of the granularity of an application.
The main reason lies in the fact that the granularity definition
does not involve the speed of the interconnection network which
affects the communication time.

4.0 Granularity Analysis

Many metrics are used throughout the performance evaluation of
parallel programs [1, 2, 9, 15, 24]. Perhaps the simplest and
most intuitive metric of parallel performance are the parallel run
time. It is the time from the moment when computation starts to
the moment when the last processor finishes its execution. The
parallel run time is composed as an average of three different
components: computation time, communication time and idle
time [14].)(compT is the time spent on performing computation

by all processors,)(commT is the time spent on sending and

receiving messages by all processors. idleT is when processors
stay idle. The problem with parallel run time is that it does not
account for the resources used to achieve the execution time.
Specifically, if one were to indicate that the parallel run time of
a program, which took 10s on a serial processor, is 2s, we would
have no way of knowing whether the parallel program (and
associated algorithm) performs well or not. The second metric is
scalability. The property of a program to adapt automatically to
a given number of processors is called scalability [1]. Scalability
is more sought after than efficiency (ire., gain of computing time
by parallelism) on any specific architecture/topology. Another
one is speedup. Speedup is the ratio of the running time on a
single processor to the parallel running time on p processors [1,
6, 3]. In other word, the ratio of two program execution times,
particularly when times are from execution on 1 and p nodes of
the same computer. Speedup is usually discussed as a function
of the number of processors and the problem size.

 An application is called linear scaling if the speedup on p
processors is close to p. With scaled speedup, an application is
said to be scalable if, when the number of processors and the
problem size are increased by a factor of p, the running time
remains the same. While we have a sense of how much faster
our program is compared to its serial counterpart, we still cannot
estimate its performance, since we do not know how many
resources were consumed to achieve this speedup. Some people

978-1-4577-0681-3/11/$26.00 ©2011 IEEE978-1-4577-0681-3/11/$26.00 ©2011 IEEE 104

only want to measure flops (floating point operations per second),
others only want to measure speedup. Actually, only wall clock
time counts for a parallel code. The parallel efficiency tells us
how close our parallel implementation is to the optimal speedup.
The efficiency is a measure of hardware utilization, equal to the
ratio of speedup achieved on p processors to p itself.
 The numerical efficiency compares the fastest sequential
algorithm with the fastest parallel algorithm implemented on one
processor via the relationship. Load balance also a metric to
evaluate the performance of parallel programs. The equal
distribution the computation workload on all processors is called
load balance [1]. Statistic and dynamic are the two types of
opportunities to achieve a load balance. Effectiveness is used to
calculate the speedup and the efficiency [6] . It also can be said
that the efficiency of a parallel program divided by the execution
time. Temporal performance is a parameter to measure the
performance of a parallel algorithm [3, 6]. The cost of solving a
problem by the parallel system is another one term, which is
regularly used in the performance estimation of parallel programs.
The cost is generally defined as a product of the parallel run time
and the number of processors.
 We need to evaluate the run time of sequential and parallel
programs during experimental performance estimation according
to the above brief sketch of different performance metrics.
Granularity is a qualitative estimation of the ratio of computation
to communication in parallel computing [12-17]. In this study
parallel performances through granularity are shown on various
multidimensional parallel algorithms.

5.0 Parallel Performance Measurement

 A study of granularity is important if one is going to choose
the most efficient architecture of parallel hardware for the
algorithm at hand. In general the granularity of a parallel
computer is defined as a ratio of the time required for a basic
communication operation to the time required for a basic
computation operation [15], and for parallel algorithms as the
number of instructions that can be performed concurrently before
some form of synchronization needs to take place.
 As we can demonstrate that, granularity G of a parallel
algorithm can be defined as the ratio of the amount of
computation)(compT to the amount of)(commT within a parallel

algorithm implementation (G=)(compT /)(commT) [14][15]. This
definition of granularity will be applied in this paper.

 Therefore to analyse the granularity of a single process the
above definition will be utilised executing on the single processor
and for the entire program with total communication and
computation times of all processors. With having this goal we
described the overhead function. The overhead function is a
function of problem size and the number of processors and is
defined as follows [24]:

WpTppWoT −= *),((2)
Where W denotes the problem size, Tp denotes time of parallel
program execution and p is the number of processors. The
problem size is defined as the number of basic computation
operations required to solve the problem using the best serial
algorithm. Let us assume that a basic computation operation takes
one unit of time. Thus the problem size is equal to the time of

performing the best serial algorithm on a serial computer. Based
on the above assumptions after rewriting the equation (2) we
obtain the following expression for parallel run time:

p

pWoTW
pT

),(+
= (3)

Then the resulting expression for efficiency takes the form:

W

pWoT
E

),(
1

1

+

=
 (4)

Recall that the parallel run time consists of computation time,
communication time and idle time. If we assume that the main
overhead of parallel program execution is communication time
and the idle time can be added to the communication time during
run time measurement then equation (4) can be rewritten as
follows:

W

commtotalT
E

_
1

1

+

=
 (5)

The total communication time is equal to the sum of the
communication time of all performed communication steps.
Assuming that the distribution of data among processors is equal
then the communication time can be calculated using equation
Ttotal_comm= p *)(commT . Note that the above is true when the
distribution of work between processors and their performance
is equal. Similarly, the computation time is the sum of the time
spent by all processors performing computation. Then the
problem size W is equal to p *)(compT . Finally, substituting the
problem size and total communication time in equation (5) by
using above equations we get:

11
1

1

1

1

+
=

+

=

+

=
G

G

GcompT

commT
E

 (6)

It means that using granularity we can calculate the efficiency
and speedup of parallel algorithms. So, it is possible to evaluate
a parallel program using such metrics like efficiency and
speedup by executing only a parallel version of a program on a
parallel computer.

6.0 Numerical Results and Discussion

6.1 Numerical Analysis

Sufficient accuracy is needed as numerical methods
continuously being applied in various fields. Thus, any selection
of appropriate method for problem solving should consider the
errors that definitely will affect the outcomes. By the mean of
numerical analysis, the level of accuracy achieved and
appropriate number of iterations should be taken into
consideration. Numerical analysis is resulting from the
sequential execution of GSRB and AGE method is shown in
Table 1, 2 and 3.

Different performance variety can be seen across different
method with different size of problems. It can be conclude that

978-1-4577-0681-3/11/$26.00 ©2011 IEEE978-1-4577-0681-3/11/$26.00 ©2011 IEEE 105

as problem size increase AGE method shows significance
performance improvement and produce better result than classical
GSRB iterative method.

6.2 Communication cost

Communication exists in any computation that takes into account
the use of more than one processor. Communication session that
is established during the process of data exchange among
processors affects the overall parallel execution time.
Communication cost is total number of communication operation
needed during the execution of one parallel algorithm. Therefore,
by analyzing the communication cost, the rate of communication
activities exist and time allocated for communication in solving
multidimensional parabolic problem. The communication cost
results for one, two and three- dimension problem are as shown in
Table 4, 5 and 6 below,

Table 1-3 depicts the ability of AGE_BRIAN and
AGE_DOUGLAS to reduce communication cost compared to
GSRB in solving multidimensional problem. Low communication
rate for the usage of AGE_BRIAN method continues for two- and
three-dimensional problem as it is superior compared to the other
two AGE_DOUGLAS and GSRB.

6.3 Computational complexity

Computational complexity depends on total number of arithmetic
operations exist in the problem being modeled. Instead of
arithmetic operations, the use of trigonometry functions such as
sinus, cosines and tangent as well as square root function will also
affecting the computational complexity. Different method results
in different complexity as they have different rate of ability to
iterate until meet the convergence criterion. In this research, the
analysis of computational complexity for multidimensional
problem under consideration is as shown in table 7, 8 and 9.

Analysis of computational complexity shows the bright potential
of AGE family method (DOUGLAS and BRIAN) same as in
communication cost evaluations. In terms of rank, AGE_BRIAN
will be the best method to choose for problem solution and this
followed by AGE_BRIAN method. GSRB classical iterative
method will serve as benchmark to ease the comparison among
methods used.

6.4 Evaluation of Granularity
The performance evaluation of parallel computing has obtained
based on the numerical results, in respect of communication and
computational ratio [25]. For this experiment we have used
Pentium PC with Core2Duo processor each and PVM were used
as the software environment [10, 11, 25].

According to [15], The experiment results of AGE_BRIAN,
AGE_DOUGLAS and GSRB are summarised in Tables 1-3. Here
among all these methods, its noticeable that granularity is
decreasing for all in terms of increasing number of processors (see
Fig. 1). Because of granularity depends of computational time,
communication time and idle time. Hence in Fig. 1 and Table 4
show that granularity decreasing while communication time
decreasing as well. Therefore, from the comparative performance
evaluation through granularity, it’s shown that AGE_BRIAN
producing more granularities with lower computational time than

AGE_DOUGLAS method. Furthermore, AGE_BRAIN
producing higher granularity in respect of increasing processing
units among all the other methods shown in table 7-9.

Fig. 2 and Fig. 3 show the granularity distribution of (600×600)
matrix and (1000×1000) matrix multiply program executed on
20 parallel processing nodes. Granularity analysis of two-
dimensional AGE_BRIAN, AGE_DOUGLAS and GSRB in
respect of the number of processors using (600×600) and
(1000×1000) sizes of matrices respectively. Here granularity
decreases while number of processors increases. Again
granularity increases while the size of matrices increases.
According to the granularity distribution, we may exploit the
critical point between sequence execution and parallel execution,
and design optimized parallel task scheduling strategy.

Fig. 4 and Fig. 5 show the granularity analysis of three-
dimensional AGE_BRIAN , AGE_DOUGLAS, GSRB with
having (100×100×100) and (140×140×140) matrix. Here also
the same results have come out as same as Table 6, except
BRIAN and DOUGLAS with having (100×100×100) matrix
size. In Fig. 4 – Fig. 5 shown that granularity were decreasing
for AGE_BRIAN, AGE_DOUGLAS and GSRB while the
number of processing unit increasing. Therefore, normally from
all the tables it’s shown that granularity decreasing in respect of
increasing processing units.

0

1

2

3

4

5

6

7

8

5 10 15 20

Processors

Gr
an
ula

rit
y

IADE_NEW
IADE
AGE_BRIAN
AGE_DOUGLAS
GSRB

Fig. 1: Granularity analysis of one-dimensional AGE_BRIAN,
AGE_DOUGLAS, GSRB versus number of processors

0

0.5

1

1.5

2

2.5

3

5 10 15 20

Processors

G
ra
nu
la
ri
ty BRIAN

DOUGLAS
GSRB

Fig. 2: Granularity analysis of two-dimensional AGE_BRIAN,
AGE_DOUGLAS and GSRB versus number of processors using
(600 × 600) sizes of matrices.

978-1-4577-0681-3/11/$26.00 ©2011 IEEE978-1-4577-0681-3/11/$26.00 ©2011 IEEE 106

0

1

2

3

4

5

6

7

5 10 15 20

Processors

G
ra
nu
la
rit
y BRIAN

DOUGLAS
GSRB

Fig. 3: Granularity analysis of two-dimensional AGE_BRIAN,
AGE_DOUGLAS and GSRB versus number of processors using
(1000 × 1000) sizes of matrices.

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

5 10 15 20

Processors

Gr
an
ul
ar
ity BRIAN

DOUGLAS
GSRB

Fig. 4: Granularity analysis of three-dimensional AGE_BRIAN ,
AGE_DOUGLAS and GSRB versus number of processors using
(100 × 100 × 100) sizes of matrices.

0

0.5

1

1.5

2

2.5

3

3.5

5 10 15 20

Processors

Gr
an
ul
ar
ity

BRIAN
DOUGLAS
GSRB

Fig. 5: Granularity analysis of three-dimensional AGE_BRIAN,
AGE_DOUGLAS and GSRB versus number of processors using
(140×140×140) sizes of matrices.

From these results, it is quite clear that granularity can be applied
as one of the performance metrics of parallel algorithms. In the
experiments it’s shown that multidimensional of AGE methods
perform well in parallel environments. The granularity changes in
respect of number of processing units, computational time,

communication time, idle time and even matrix size and
dimensionality of the parallel methods. Thus, from this study it’s
come out that granularity can be used significantly for the
performance evaluation of the parallel strategies and performs to
obtain the results that AGE_BRIAN method performs better
performance among other multidimensional parallel methods.

The results have proved that granularity can play a vital role to
estimate the parallel performances of multidimensional parallel
methods. PVM is used in the experiments of this study as a time-
saving software tools in terms of message latency and
communication time [10, 11, 25].

7.0 Conclusion

The paper presents an analytical study to evaluate the numerical
and parallel performances of different parallelization methods.
The AGE_BRAIN is the alternative and most suitable method
for the solution of multidimensional parabolic problem among
AGE families. This is based on results depicted in Table 1-10
which shows the comparison among AGE families. This clearly
shows AGE_BRIAN is the best method among AGE families.
For one, two and three dimensional problem, experimental test
had been done among the standard multidimensional GSRB
methods. AGE BRAIN shows significant performance
achievement as shown in Table 7-9 compared to two other
methods being tested. Thus, for the solution of multidimensional
problem, AGE type of BRAIN is the most suitable iterative
method as it converged faster than AGE_DOUGLAS and GSRB

Since performance analysis is the most important branch of high
performance computing research, the measurement is important
aspect to be concern. Therefore, this study deals with ry the use
of an idea as granularity in the estimation of parallel programs.
The results acquired from the analysis, recommend that the
presented method can be used for performance assessment of
parallel programs. Experimental results confirm that granularity
measurement can be use for all investigated algorithms.
However, it cannot be used for algorithms with speedup
inconsistency. The algorithms which do not require frequent
communication provides better results.

This research can be extended in future through improving the
prediction accuracy and solving undetermined operations in
programs. By the experimental outcomes it is confirmed that the
offered method can be used for all studied algorithms [14, 15,
16, 17].

Acknowledgment

Appreciated to the King Saud University, Riyadh, Saudi Arabia
for the research collaboration and financial support of the
publication.

Reference

[1] Craig C. Douglas, Gundolf Haase and Ulrich Langer, A
Tutorial on Elliptic PDE Solvers and their
Parallelization, vol. 16, Software, Environments, and
Tools (SET) series, SIAM Books, Philadelphia, 2003,
p.77.

978-1-4577-0681-3/11/$26.00 ©2011 IEEE978-1-4577-0681-3/11/$26.00 ©2011 IEEE 107

[2] Jacques Mohcine Bahi, Sylvain Contassot-Vivier, Raphaël
Couturier, Parallel Iterative Algorithms From Sequential
to Grid Computing, Chapman & Hall/CRC, Taylor &
Francis Group, Boca Raton, FL,2008, p.75.

[3] Norma Alias, Sahimi, M.S., and Abdullah, A.R., The
AGEB Algorithm for Solving the Heat Equation in Two
Space Dimensions and Its Parallelization on a Distributed
Memory Machine. Proceedings of the 10th European
PVM/MPI User's Group Meeting: Recent Advances In
Parallel Virtual Machine and Message Passing
Interface. Venice: Italy, pp. 214-221, 2003.

[4] Evans, D.J., Sahimi, M.S. The Alternating Group Explicit
(AGE) Iterative method for Solving Parabolic Equations
II: 3 Space Dimensional Problems. International Journal
Computer Mathematic.26:117-142 (1989).

[5] Evans, D.J., Sahimi, M.S.,The Alternating Group Explicit
Iterative Method (AGE) to Solve Parabolic and
Hyperbolic Partial Differential Equations. In Annual
Review of Numerical Fluid Mechanics and Heat
Transfer, Vol. 2. Hemisphere Publication Corporation,
New York Washington Philadelphia London .1989.

[6] Norma Alias, Roziha Darwis, Noriza Satam, Zarith Safiza
Abd. Gaffar, Norhafiza Hamzah, Md. Rajibul Islam and
Tan Yin San, “Parallel Iterative Block and Direct Block
Methods for 2-Space Dimension Problems on Distributed
Memory Architecture”, in Proc. of 6th International
Conference of Information Technology in Asia 2009
(CITA’09), Sarawak, Malaysia, July 6-9, 2009, pp. 170-
174.

[7] Louis A. Hageman, David M. Young, Applied Iterative
Methods, Academic, New York, 1981.

[8] Norma Alias, Sahimi, M.S., and Abdullah, A.R., Parallel
Strategies For The Iterative Alternating Decomposition
Explicit Interpolation-Conjugate Gradient Method In
solving Heat Conductor Equation On A Distributed
Parallel Computer Systems. Proceedings of The 3rd

International Conference On Numerical Analysis in
Engineering. 3: 31—38. 2003.

[9] Cosnard M. and Trystan D., Parallel Algorithms and
Architectures, International Thomson Publishing
Company, London, 1995.

[10] Blaise Barney, Lawrence Livermore National Laboratory,
Introduction to Parallel Computing [Available Online]:
https://computing.llnl.gov/tutorials/parallel_comp/

[11] Norma Alias, Noriza Satam, Roziha Darwis, Norhafiza
Hamzah, Zarith Safiza Abd. Ghaffar, Md. Rajibul Islam,
“Mathematical simulation for 3-Dimensional
Temperature Visualization on Open Source-based Grid
Computing Platform”, in Proc. of International
Conference on Computer Research and Development
(ICCRD 2009) Perth, Australia, July-10-12, pp. 553-559,
2009.

[12] Wei-guang Qiao and Guosun Zeng, The Granularity
Analysis of MPI Parallel Programs’, Lecture Notes in
Computer Science (LNCS) 3032, Springer-Verlag Berlin
Heidelberg pp. 192–195, 2004.

[13] Ding-Kai Chen, Hong-Men Su and Pen-Chung Yew, The
impact of synchronization and granularity on parallel
systems, Proceedings of the 17th annual international
symposium on Computer Architecture, Pages: 239 – 248,
vol-18 (3a), 1990.

[14] Jan Kwiatkowski, Evaluation of parallel programs by
measurement of its granularity, R. Wyrzykowski et al.
(Eds.): PPAM 2001, LNCS 2328, pp. 145–153, 2002.

[15] Kwiatkowski J., Performance Evaluation if Parallel
Programs, in Proc. of the International Conference
Parallel Processing and Applied Mathematics
PPAM’99, Kazimierz Dolny, Poland 1999, pp. 75-85

[16] Tian Xinmin, Wang Dingxing, Shen Meiming, Zheng
Weimin and Wen Dongchan, Granularity Analysis for
Exploiting Adaptive Parallelism of Declarative
Programs on Multiprocessors, Journal of Computer
Science & Technology, 9(2): 144-152 (1994).

[17] W. Hui, Visualizing Object/Method Granularity for
Program Parallelization, M.Sc. Thesis, Department of
Computing Science, University of Alberta, 1998.

[18] D. Rabideau, A. Steinhardt, Fast subspace tracking using
coarse grain and fine grain parallelism, in Proc. of the
International Conference on Acoustics, Speech, and
Signal Processing (ICASSP - 95), vol. 5, pp. 3211-
3214, 1995.

[19] Evans, D.J., Sahimi, M.S., The Alternating Group Explicit
(AGE) Iterative Method for Solving Parabolic
Equations I: 2-Dimensional Problems. Intern. J.
Computer Math. 24:311-341 (1988).

[20] Sahimi, M. S. and Muda Z., An iterative explicit method
for parabolic problems with cylindrical symmetry-
increased accuracy on Non-Uniform Grid. Pertanika J.,
12: 413-419 (1989).

[21] S. D. Conte, Elementary Numerical Analysis. McGraw-
Hill, 1965.

[22] Foster I., Designing and Building Parallel Programs.
Addison-Wesley Longman Publishing Co., Inc. 1995.

[23] Jeffrey S. Vetter and Michael O. McCracken, Statistical
Scalability Analysis of Communication Operations in
Distributed Applications, Proceedings of the eighth
ACM SIGPLAN symposium on Principles and practices
of parallel programming pp. 123 – 132, 2001.

[24] Grama A.Y., Gupta A., Kumar V., Isoefficiency,
Measuring the Scalability of Parallel Algorithms and
Architectures, IEEE Parallel & Distributed Technology,
August 1993, pp. 12-21.

[25] Zamoya, A.~Y., Parallel and Distributed Computing
Handbook. McGraw Hill, 1996.

978-1-4577-0681-3/11/$26.00 ©2011 IEEE978-1-4577-0681-3/11/$26.00 ©2011 IEEE 108

Table 1: Sequential Analysis of GSRB and AGE method for the solution of 1-dimensional parabolic heat conduction problem
(MSE=mean square error, RMSE = root mean square error, r=acceleration parameter and x∆ = grid meshes at x-axis)

m)600600(×)10001000(×

method GSRB AGE_DOUGLAS AGE_BRIAN GSRB AGE_DOUGLAS AGE_BRIAN

Execution time
(second) 40.1592 35.6894 33.8854 157.6732 143.2267 138.9811

Iteration 300 150 130 622 230 200
MSE 3.07461E-12 3.07398E-12 3.07166E-12 2.4482E-12 2.4416E-12 2.4396E-12

RMSE 1.0151E-11 1.0116E-11 1.0120E-11 2.4482E-12 8.0597E-12 8.0722E-12

r - 0.95 0.99 - 1.6 1.6

x∆ 1.67E-3 1.67E-3 1.67E-3 1.00E-3 1.00E-3 1.00E-3

y∆ 1.67E-3 1.67E-3 1.67E-3 1.00E-3 1.00E-3 1.00E-3

Table 2: Sequential Analysis of numerical methods for the solution of 2-dimensional parabolic heat conduction problem. (y∆ = grid meshes at y-axis)

Table 3: Sequential Analysis of GSRB and AGE method for the solution of 3-dimensional parabolic heat conduction problem
(z∆ = grid meshes at z-axis)

method Communication cost

AGE_BRIAN)(15003000 idletstarttdatat ++

AGE_DOUGLAS)(15003000 idletstarttdatat ++

GSRB)(36007200 idletstarttdatat ++

method GSRB AGE_BRIAN AGE_DOUGLAS

Execution
time

(second)
154.4432 48.743 50.0625

Iteration 600 250 250

MSE 1.5921E-9 1.5921E-9 1.5921E-9

RMSE 1.9846E-7 1.9846E-7 1.9845E-7

r - 0.8 0.6

x∆ 1.3889E-6 1.3889E-6 1.3889E-6

m)100100100(××)140140140(××

method GSRB AGE_DOUGLAS AGE_BRIAN GSRB AGE_DOUGLAS AGE_BRIAN
Execution

time
(second)

282.95 221.06 216.34 558.93 710.42 650.8

Iteration 760 125 115 650 120 110
MSE 4.117E-5 6.5350E-13 6.5119E-12 1.2012E-14 1.2009E-14 1.2012E-14

RMSE 1.0151E-11 1.0116E-11 1.0120E-11 2.4482E-12 8.0597E-12 8.0722E-12

r - 1 0.8 - 1.1 1.2

x∆ = y∆ 1.0E-2 1.0E-2 1.0E-2 7.143E-3 7.14E-3 7.143E-3

z∆ 1.0E-2 1.0E-2 1.0E-2 7.143E-3 7.143E-3 7.143E-3

978-1-4577-0681-3/11/$26.00 ©2011 IEEE978-1-4577-0681-3/11/$26.00 ©2011 IEEE 109

Table 4: Communication cost for one-dimensional problem

m
method

)600600(× (1000×1000)

AGE_BRIAN)(7801560 idletstarttdatamt ++)(12002400 idletstarttdatamt ++

AGE_DOUGLAS)(9001800 idletstarttdatamt ++)(13802760 idletstarttdatamt ++

GSRB)(30006000 idletstarttdatamt ++)(37327464 idletstarttdatamt ++

Table 5: Communication cost for two-dimensional problem

m
method

)100100100(××)140140140(××

AGE_BRIAN)(690)(1380 idletstarttdatatmm ++×)(660)(1320 idletstarttdatatmm ++×

AGE_DOUGLAS)(750)(1500 idletstarttdatatmm ++×)(720)(1440 idletstarttdatatmm ++×

GSRB)(4560)
2

(9120 idletstarttdatat
mm

++
×

)(3900)
2

(7800 idletstarttdatat
mm

++
×

Table 6: Communication cost for three-dimensional problem

m)100(

method multiplication addition

AGE_
BRIAN 510)(18 ++ mcons 58)(7 ++ mcons
AGE_
DOUG
LAS

712)(21 ++ mcons 58)(11 ++ mcons

GSRB 56 +m 34 +m
Table 7: Computational complexity for one-dimensional problem

m)600600(×)10001000(×

method Multiplication addition multiplication addition

AGE_
BRIAN p

mm 22 1040)1(1832 +−
p

mm
2

1690
2

)1(3380 +−

p

mm 216002)1(2800 +−

p

mm 226002)1(5200 +−

AGE_
DOUG
LAS p

mm 22 1500)1(3000 +−
p

mm 219502)1(3900 +−

p

mm 223002)1(4600 +−

p

mm 229902)1(5980 +−

GSRB
p

mm 270002)1(5000 +−

p

mm 275002)1(5500 +−

p

mm 287082)1(6220 +−

p

mm 293302)1(6842 +−

Table 8: Computational complexity for two-dimensional problem

m)100100100(××)140140140(××

method Multiplication addition multiplication addition

AGE_
BRIAN p

mmm 21610334503)1(1380 ++−

p

mmm 21725328753)1(2875 ++−

p

mmm 21540333003)1(1320 ++−

p

mmm 21650327503)1(2750 ++−

AGE_
DOUG
LAS p

mmm 22250337503)1(2376 ++−

p

mmm 21875331253)1(3125 ++−

p

mmm 22160336003)1(2280 ++−

p

mm 318003)1(3000 +−

GSRB
p

mm 3106403)1(11400 +−

p

mm 391203)1(9880 +−

p

mm 391003)1(9750 +−

p

mm 378003)1(8450 +−

Table 9: Computational complexity for three-dimensional problem

978-1-4577-0681-3/11/$26.00 ©2011 IEEE978-1-4577-0681-3/11/$26.00 ©2011 IEEE 110

