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` Abstract
Parabolic Partial Differential Equations (PDE) are well suited to 
multiprocessor implementation. However, the performance of a 
parallel program can be damaged by the mismatches between 
the parallelism available in the application and that available in 
the  architecture.  Communication  cost,  memory  requirements, 
execution time, implementation cost, and others from a problem 
specific  function  should  be  considered  to  estimate  a  parallel 
program.  In  this  paper,  we  present  an  optimizing  technique 
called granularity  analysis  to  evaluate  the parallel  algorithms 
particularly AGE families without degrading the performances. 
The  resultant  granularity  analysis  scheme  is  appropriate  for 
developing  adaptive  parallelism  of  declarative  programming 
languages on multiprocessors. The results recommend that the 
proposed method  can  be used  for  performance  estimation  of 
parallel programs. Red Black Gauss Seidel (GSRB) is selected 
as the benchmark for the differences numerical methods.

Keywords:  Parallel  programme,  performance  evaluation,  
granularity  analysis,  multiprocessor,  multidimensional  
parabolic equation,  AGE.

1.0 Introduction

      All the parallel approaches are based on the non-overlapping 
subdomain [1, 2]. There is no data swap between the neighboring 
processors  at  the  iteration  (q)  but  there  are  inter-processor 
communications between the iteration (q) and the next iteration 
(q+1).  A  typical  parallel  implementation  of  a  parallel  AGE 
assigns several mesh points to each processor  p such that each 
processor only communicates with its two nearest neighbors [3]. 
The computations of the approximation solutions in subdomain wp 

are  executed  independently.  The  stopping  criteria  in  the 
processors  p are investigated by measuring the size of the inner 
residuals. Let us define the residual computed in the processors p. 
This  quantity  is  kept  in  the  processor's  memory  between 
successive iterations and it is checked if the residual is reduced by 
the  convergence  criterion.  The  master  processor  checked  the 
maximum of local convergence criterion and the iteration stopped 
when the global convergence criterion is met.

     In Evans & Sahimi [4, 5] the discretization of parabolic partial  
deferential  equation  is  derived  from  Iterative  Alternating 
Decomposition Explicit Method (IADE) [3, 4, 5] and Alternating 
Group Explicit Method (AGE) [4, 5]. In Norma et al. [3, 8] the six 
strategies  of  parallel  algorithms  in  solving  parabolic  partial 
differential equations is implemented. These strategies were found 
to  be  more  effective  using  a  distributed  memory  machines.  In 
Alias, Sahimi & Abdullah [8], the Conjugate Gradient on AGE 
method  (AGE-CG)  was  found  to  be  more  convergence  and 
accurate  compared  to  AGE.  In  this  paper,  the  computational 
analysis of the proposed strategies is presented by using explicit 

block )22( × . These schemes can be effective in reducing data 
storage accesses in distributed memory and communication time 
on a distributed computer systems [3]. This research focuses on 
the cost communication and computational complexity for these 
iterative  methods  [6,  9].  All  the  parallel  strategies  have  been 
developed to runs on a cluster of workstations based on Parallel 
Virtual Machine environment [10, 11, 12].

     As the AGE class is fully explicit its feature can be fully 
utilized for parallelism [4]. Firstly,  Domain is distributed to  p 
subdomain by the master processor. The partitioning is based on 
data  decomposition  technique.  Secondly,  the  subdomain  p of 
AGE_BRIAN and AGE_DOUGLAS methods are assigned into 
processors in block ordering [7, 8].The domain decomposition 
for  AGE_BRIAN  and  AGE_DOUGLAS  methods  are 
implemented  in  four  and  five  time  level,  respectively.  The 
communication schemes among the slave processors are needed 
for  the  computations  in  the  next  iterations  [10].  The 
parallelization  of  AGE_BRIAN  and  AGE_DOUGLAS  are 
achieved by assigning the explicit block )22( × in this way and 
proved that the computations involved are independent between 
processors. The parallelism strategy is straightforward and the 
domain is distributed to non over lapping subdomain[1,9]. Based 
on  the  limited  parallelism,  this  scheme  can  be  effective  in 
reducing computational complexity and data storage accesses in 
distributed  parallel  computer  systems  [6,11].  The  iterative 
procedure is continued until convergence is reached.

2.0 Fine and Coarse-grain Parallelism

     Computational grid for high performance computing is the 
current research focus of computer science [2, 11]. Moreover, 
the performance analysis and evaluation of parallel programs are 
crucial  in  grid  computing  platform.  According  to  [12-17], 
granularity  analysis  of  parallel  program  is  one  of  the  key 
technologies in parallel computing.

    As hardware components become more powerful  and less 
expensive,  parallel  processing  has  become  an  indispensable 
means for achieving higher performance. From the well-known 
Amdahl’s  law  [9],  software  issues  are  very  critical  in  such 
parallel  systems.  Due  to  the  added  complexity  in  multiple 
system  components,  the  interaction  between  software  and 
hardware  becomes  more  complicated.  For  example,  it  is  no 
longer  adequate  just  to  manage  register  sets,  to  decrease 
operation strength, and to pass parameters between procedures 
effectively. We analysed one of the more complex issues in this 
study,  such as determining the granularity in order to estimate 
the performances of the parallel algorithms. 
  
      According to AGE_DOUGLAS et al. [9]  granularity is a 
measure  of  the  size  of  program  sections  that  are  executable 
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without  communication  with  other  processes.  In  parallel 
computing,  granularity  is  a  qualitative  measure  of  the  ratio  of 
computation to communication [14, 15]. Computational times are 
normally separated from communication times by synchronization 
events.  Fine  grain  and  coarse  grain  algorithms  are  the  two 
extremes for this [9, 18]. In Fine-grain Parallelism, comparatively 
small  quantities  of  computational  work  are  done  between 
communication events, low computation to communication ratio, 
facilitates load balancing, implies high communication overhead 
and  fewer  opportunity  for  performance  improvement  and  if 
granularity is too fine it is possible that the overhead required for 
communications and synchronization between tasks takes longer 
than  the  computation.  On  the  other  hand,  in  Coarse-grain 
parallelism, comparatively large amounts of computational work 
are  done  between  communication/synchronization  events,  high 
computation to communication ratio, involves more chances for 
performance boost and harder to load balance efficiently [9]. The 
most competent granularity is dependent on the algorithm and the 
hardware environment in which it runs [12, 14]. In most cases the 
overhead  associated  with  communications  and  synchronization 
are  high  relative  to  execution  speed so it  is  beneficial  to  have 
coarse  granularity.  Fine-grain  parallelism  can  help  reduce 
overheads due to load imbalance [18]. 

      In this paper we discuss some of those performances analysis  
metrics and especially a short explanation about granularity. We 
concentrate  on  multidimensional  parallel  equations  especially 
AGE  families  only.  How  granularity  helps  to  evaluate  the 
performances  on  parallel  computing  platform  are  illustrated. 
Experimental  results  show  the  importance  of  granularity  is  to 
obtain  the  performances  of  different  multidimensional  parallel 
algorithms.

In  this  research,  one,  two  and  three  dimensional  parabolic 
problem had  been  considered  for  the  application  of  numerical 
methods [3,4,5]. 

3.0 Granularity

3.1 Parallel Program Execution Time 
        According to Foster I. [21], parallel program execution time  
can be define as the time that elapses from the initial  starts by 
master hosts until the last slaves accomplished the task allocated. 
In  every  execution  of  a  parallel  program,  the  timing  being 
measured  is  the decomposition  of  computation,  communication 
and idle time [22, 23] .

idleTcommTcompTparaT ++=                   (1)

paraT   is defined as overall time needed for execution of parallel  
program and can be calculated by adding time for computation, 

)( compT and time for  communication,   )( commT as well  as idle 

times idleT .This definition of parallel execution time is useful in 
measuring  communication  cost,  granularity  as  well  as  other 
parallel  performance  evaluation,  namely  speedup,  efficiency, 
effectiveness and temporal performance. The usage of paraT   for 
the analysis of communication cost is as shown in Table 1, 2 and 
3. Additionally, the parallel performance evaluation is shown in 
Table 7, 8 and 9.

3.2     Computation time and communication time ratio
       Scientists who work with parallel architectures define the 
ratio between the computation time and the communication time 
as the granularity of an application. This comes from the fact 
that  in  traditional  algorithms  (i.e.,  synchronous  algorithms, 
iterative or not), periods of computation are typically separated 
from periods of communication by synchronizations. However, 
dealing  with  granularity,  there  are  no  more  synchronizations, 
thus that traditional definition is not very appropriate. In order to 
be scalable,  an algorithm must  be coarse grained [4] 18,  i.e., 
have long computation parts without communications. That is to 
say, messages must be gathered in order to decrease the number 
of  communications.  The  granularity  of  parallel  algorithm  are 
investigated using coarse grain of multisplitting method. On the 
other hand, even though an algorithm has been designed to be 
coarse-grained, the ratio between the computation time and the 
communication time may affect its execution times in a given 
computing  context.  Hence,  in  our  opinion,  this  ratio  is  more 
important  than the notion of the granularity of an application. 
The main reason lies in the fact that the granularity definition 
does not involve the speed of the interconnection network which 
affects the communication time. 

4.0 Granularity Analysis

Many metrics are used throughout the performance evaluation of 
parallel  programs  [1,  2,  9,  15,  24].  Perhaps  the  simplest  and 
most intuitive metric of parallel performance are the parallel run 
time. It is the time from the moment when computation starts to 
the moment when the last processor finishes its execution. The 
parallel run time is composed as an average of three different 
components:  computation  time,  communication  time  and  idle 
time [14]. )( compT   is the time spent on performing computation 

by  all  processors,  )( commT is  the  time  spent  on  sending  and 

receiving messages by all processors.  idleT  is when processors 
stay idle. The problem with parallel run time is that it does not 
account  for  the resources used to  achieve  the execution time. 
Specifically, if one were to indicate that the parallel run time of 
a program, which took 10s on a serial processor, is 2s, we would 
have  no  way  of  knowing  whether  the  parallel  program  (and 
associated algorithm) performs well or not. The second metric is 
scalability. The property of a program to adapt automatically to 
a given number of processors is called scalability [1]. Scalability 
is more sought after than efficiency (ire., gain of computing time 
by parallelism) on any specific  architecture/topology.  Another 
one is speedup. Speedup is the ratio of the running time on a 
single processor to the parallel running time on p processors [1, 
6, 3]. In other word, the ratio of two program execution times, 
particularly when times are from execution on 1 and p nodes of 
the same computer. Speedup is usually discussed as a function 
of the number of processors and the problem size. 

    An application is called linear scaling if the speedup on  p 
processors is close to  p. With scaled speedup, an application is 
said to be scalable if,  when the number of processors and the 
problem size are increased by a factor  of  p,  the running time 
remains the same. While we have a sense of how much faster 
our program is compared to its serial counterpart, we still cannot 
estimate  its  performance,  since  we  do  not  know  how  many 
resources were consumed to achieve this speedup. Some people 
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only want to measure flops (floating point operations per second), 
others only want to measure speedup. Actually,  only wall clock 
time  counts for  a parallel  code.  The parallel  efficiency tells us 
how close our parallel implementation is to the optimal speedup. 
The efficiency is a measure of hardware utilization, equal to the 
ratio of speedup achieved on p processors to p itself. 
     The  numerical  efficiency  compares  the  fastest  sequential 
algorithm with the fastest parallel algorithm implemented on one 
processor  via  the  relationship.  Load  balance  also  a  metric  to 
evaluate  the  performance  of  parallel  programs.  The  equal 
distribution the computation workload on all processors is called 
load  balance  [1].  Statistic  and  dynamic  are  the  two  types  of 
opportunities to achieve a load balance. Effectiveness is used to 
calculate the speedup and the efficiency [6] . It also can be said 
that the efficiency of a parallel program divided by the execution 
time.  Temporal  performance  is  a  parameter  to  measure  the 
performance of a parallel algorithm [3, 6]. The cost of solving a 
problem by  the  parallel  system  is  another  one  term,  which  is 
regularly used in the performance estimation of parallel programs. 
The cost is generally defined as a product of the parallel run time 
and the number of processors. 
      We need to evaluate the run time of sequential and parallel 
programs during experimental performance estimation according 
to  the  above  brief  sketch  of  different  performance  metrics. 
Granularity is a qualitative estimation of the ratio of computation 
to  communication  in  parallel  computing  [12-17].  In  this  study 
parallel  performances through granularity are shown on various 
multidimensional parallel algorithms.

5.0 Parallel Performance Measurement

       A study of granularity is important if one is going to choose 
the  most  efficient  architecture  of  parallel  hardware  for  the 
algorithm  at  hand.  In  general  the  granularity  of  a  parallel 
computer  is defined as  a ratio  of the time required for  a basic 
communication  operation  to  the  time  required  for  a  basic 
computation  operation  [15],  and  for  parallel  algorithms  as  the 
number of instructions that can be performed concurrently before 
some form of synchronization needs to take place.
    As  we  can  demonstrate  that,  granularity  G of  a  parallel 
algorithm  can  be  defined  as  the  ratio  of  the  amount  of 
computation )( compT  to the amount of )( commT  within a parallel 

algorithm implementation (G= )( compT / )( commT ) [14][15].  This 
definition of granularity will be applied in this paper.

     Therefore to analyse the granularity of a single process the 
above definition will be utilised executing on the single processor 
and  for  the  entire  program  with  total  communication  and 
computation  times  of  all  processors.  With having this  goal  we 
described  the  overhead  function.  The  overhead  function  is  a 
function  of  problem size  and  the  number  of  processors  and  is 
defined as follows [24]:

WpTppWoT −= *),( (2)
Where  W denotes the problem size,  Tp denotes time of parallel 
program  execution  and  p is  the  number  of  processors.  The 
problem  size  is  defined  as  the  number  of  basic  computation 
operations  required  to  solve  the  problem  using  the  best  serial 
algorithm. Let us assume that a basic computation operation takes 
one unit of time. Thus the problem size is equal to the time of 

performing the best serial algorithm on a serial computer. Based 
on the above  assumptions after  rewriting the equation (2)  we 
obtain the following expression for parallel run time:

p

pWoTW
pT

),(+
=          (3)

Then the resulting expression for efficiency takes the form:

W

pWoT
E

),(
1

1

+

=
                          (4)

Recall that the parallel run time consists of computation time, 
communication time and idle time. If we assume that the main 
overhead of parallel program execution is communication time 
and the idle time can be added to the communication time during 
run  time  measurement  then  equation  (4)  can  be  rewritten  as 
follows:

W

commtotalT
E

_
1

1

+

=
               (5)

The  total  communication  time  is  equal  to  the  sum  of  the 
communication  time  of  all  performed  communication  steps. 
Assuming that the distribution of data among processors is equal 
then the communication time can be calculated using equation 
Ttotal_comm= p *  )( commT . Note that the above is true when the 
distribution of work between processors and their performance 
is equal. Similarly, the computation time is the sum of the time 
spent  by  all  processors  performing  computation.  Then  the 
problem size W is equal to p * )( compT . Finally, substituting the 
problem size and total communication time in equation (5) by 
using above equations we get:

11
1

1

1

1

+
=

+

=

+

=
G

G

GcompT

commT
E

                                      (6)

It means that using granularity we can calculate the efficiency 
and speedup of parallel algorithms. So, it is possible to evaluate 
a  parallel  program  using  such  metrics  like  efficiency  and 
speedup by executing only a parallel version of a program on a 
parallel computer.

6.0 Numerical Results and Discussion

6.1 Numerical Analysis

Sufficient  accuracy  is  needed  as  numerical  methods 
continuously being applied in various fields. Thus, any selection 
of appropriate method for problem solving should consider the 
errors that definitely will affect the outcomes. By the mean of 
numerical  analysis,  the  level  of  accuracy  achieved  and 
appropriate  number  of  iterations  should  be  taken  into 
consideration.  Numerical  analysis  is  resulting  from  the 
sequential  execution  of  GSRB and AGE method is  shown  in 
Table 1, 2 and 3.

Different  performance  variety  can  be  seen  across  different 
method with different size of problems. It can be conclude that 
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as  problem  size  increase  AGE  method  shows  significance 
performance improvement and produce better result than classical 
GSRB iterative method.

6.2 Communication cost

Communication exists in any computation that takes into account 
the use of more than one processor. Communication session that 
is  established  during  the  process  of  data  exchange  among 
processors  affects  the  overall  parallel  execution  time. 
Communication cost is total number of communication operation 
needed during the execution of one parallel algorithm. Therefore, 
by analyzing the communication cost, the rate of communication 
activities exist and time allocated for communication in solving 
multidimensional  parabolic  problem.  The  communication  cost 
results for one, two and three- dimension problem are as shown in 
Table 4, 5 and 6 below,

Table  1-3  depicts  the  ability  of  AGE_BRIAN  and 
AGE_DOUGLAS  to  reduce  communication  cost  compared  to 
GSRB in solving multidimensional problem. Low communication 
rate for the usage of AGE_BRIAN method continues for two- and 
three-dimensional problem as it is superior compared to the other 
two AGE_DOUGLAS and GSRB. 

6.3 Computational complexity

Computational complexity depends on total number of arithmetic 
operations  exist  in  the  problem  being  modeled.  Instead  of 
arithmetic operations, the use of trigonometry functions such as 
sinus, cosines and tangent as well as square root function will also 
affecting the computational complexity. Different method results 
in  different  complexity as  they have  different  rate of  ability to 
iterate until meet the convergence criterion. In this research, the 
analysis  of  computational  complexity  for  multidimensional 
problem under consideration is as shown in table 7, 8 and 9.

Analysis of computational complexity shows the bright potential 
of  AGE family  method  (DOUGLAS  and  BRIAN)  same  as  in 
communication cost evaluations. In terms of rank, AGE_BRIAN 
will be the best method to choose for problem solution and this 
followed  by  AGE_BRIAN  method.  GSRB  classical  iterative 
method will  serve as benchmark to ease the comparison among 
methods used.

6.4 Evaluation of Granularity
The performance evaluation of parallel  computing has obtained 
based on the numerical results, in respect of communication and 
computational  ratio  [25].  For  this  experiment  we  have  used 
Pentium PC with Core2Duo processor each and PVM were used 
as the software environment [10, 11, 25].

According  to  [15],  The  experiment  results  of  AGE_BRIAN, 
AGE_DOUGLAS and GSRB are summarised in Tables 1-3. Here 
among  all  these  methods,  its  noticeable  that  granularity  is 
decreasing for all in terms of increasing number of processors (see 
Fig.  1).  Because of  granularity depends of computational  time, 
communication time and idle time. Hence in Fig. 1 and Table 4 
show  that  granularity  decreasing  while  communication  time 
decreasing as well. Therefore, from the comparative performance 
evaluation  through  granularity,  it’s  shown  that   AGE_BRIAN 
producing more granularities with lower computational time than 

AGE_DOUGLAS  method.  Furthermore,  AGE_BRAIN 
producing higher granularity in respect of increasing processing 
units among all the other methods shown in table 7-9.

Fig. 2 and Fig. 3 show the granularity distribution of (600×600) 
matrix and  (1000×1000) matrix multiply program executed on 
20  parallel  processing  nodes.  Granularity  analysis  of  two-
dimensional  AGE_BRIAN,  AGE_DOUGLAS  and  GSRB  in 
respect  of  the  number  of  processors  using  (600×600) and 
(1000×1000) sizes  of  matrices  respectively.  Here  granularity 
decreases  while  number  of  processors  increases.  Again 
granularity  increases  while  the  size  of  matrices  increases. 
According  to  the  granularity  distribution,  we  may exploit  the 
critical point between sequence execution and parallel execution, 
and design optimized parallel task scheduling strategy.

Fig.  4  and  Fig.  5  show  the  granularity  analysis  of  three-
dimensional  AGE_BRIAN  ,  AGE_DOUGLAS,  GSRB  with 
having  (100×100×100) and  (140×140×140) matrix.  Here also 
the  same  results  have  come  out  as  same  as  Table  6,  except 
BRIAN  and  DOUGLAS  with  having  (100×100×100) matrix 
size. In Fig. 4 – Fig. 5  shown that granularity were decreasing 
for  AGE_BRIAN,  AGE_DOUGLAS  and  GSRB  while  the 
number of processing unit increasing. Therefore, normally from 
all the tables it’s shown that granularity decreasing in respect of 
increasing processing units.
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Fig. 1: Granularity analysis of one-dimensional AGE_BRIAN, 
AGE_DOUGLAS, GSRB versus number of processors
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Fig. 2: Granularity analysis of two-dimensional AGE_BRIAN, 
AGE_DOUGLAS and GSRB versus number of processors using 
(600 × 600) sizes of matrices.
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Fig. 3: Granularity analysis of two-dimensional AGE_BRIAN, 
AGE_DOUGLAS and GSRB versus number of processors using 
(1000 × 1000) sizes of matrices.
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Fig. 4: Granularity analysis of three-dimensional AGE_BRIAN , 
AGE_DOUGLAS and GSRB versus number of processors using 
(100 × 100 × 100) sizes of matrices.
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Fig. 5: Granularity analysis of three-dimensional AGE_BRIAN, 
AGE_DOUGLAS and GSRB versus number of processors using 
(140×140×140) sizes of matrices.

From these results, it is quite clear that granularity can be applied 
as one of the performance metrics of parallel algorithms.  In the 
experiments  it’s  shown that multidimensional  of AGE methods 
perform well in parallel environments. The granularity changes in 
respect  of  number  of  processing  units,  computational  time, 

communication  time,  idle  time  and  even  matrix  size  and 
dimensionality of the parallel methods. Thus, from this study it’s 
come  out  that  granularity  can  be  used  significantly  for  the 
performance evaluation of the parallel strategies and performs to 
obtain  the  results  that  AGE_BRIAN  method  performs  better 
performance among other multidimensional parallel methods.

The results have proved that granularity can play a vital role to 
estimate the parallel performances of multidimensional parallel 
methods. PVM is used in the experiments of this study as a time-
saving  software  tools  in  terms  of  message  latency  and 
communication time [10, 11, 25].

7.0 Conclusion

The paper presents an analytical study to evaluate the numerical 
and parallel performances of different  parallelization methods. 
The AGE_BRAIN is the alternative and most suitable method 
for the solution of multidimensional parabolic problem among 
AGE families. This is based on results depicted in Table 1-10 
which shows the comparison among AGE families.  This clearly 
shows AGE_BRIAN  is the best method among AGE families. 
For one, two and three dimensional problem, experimental test 
had  been  done  among  the  standard  multidimensional  GSRB 
methods.  AGE  BRAIN  shows  significant  performance 
achievement  as  shown  in  Table  7-9  compared  to  two  other 
methods being tested. Thus, for the solution of multidimensional 
problem,  AGE type  of  BRAIN  is  the  most  suitable  iterative 
method as it converged faster than AGE_DOUGLAS and GSRB 

Since performance analysis is the most important branch of high 
performance computing research, the measurement is important 
aspect to be concern. Therefore, this study deals with ry the use 
of an idea as granularity in the estimation of parallel programs. 
The  results  acquired  from  the  analysis,  recommend  that  the 
presented method can be used for  performance  assessment  of 
parallel programs. Experimental results confirm that granularity 
measurement  can  be  use  for  all  investigated  algorithms. 
However,  it  cannot  be  used  for  algorithms  with  speedup 
inconsistency.  The  algorithms  which  do  not  require  frequent 
communication provides better results.

This research can be extended in future through improving the 
prediction  accuracy  and  solving  undetermined  operations  in 
programs. By the experimental outcomes it is confirmed that the 
offered method can be used for all studied algorithms [14, 15, 
16, 17].
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Table 1: Sequential Analysis of GSRB and AGE method for the solution of 1-dimensional parabolic heat conduction problem
(MSE=mean square error, RMSE = root mean square error, r=acceleration parameter  and x∆ = grid meshes at x-axis)

m )600600( × )10001000( ×

method GSRB AGE_DOUGLAS AGE_BRIAN GSRB AGE_DOUGLAS AGE_BRIAN

Execution time
(second) 40.1592 35.6894 33.8854 157.6732 143.2267 138.9811

Iteration 300 150 130 622 230 200
MSE 3.07461E-12 3.07398E-12 3.07166E-12 2.4482E-12 2.4416E-12 2.4396E-12

RMSE 1.0151E-11 1.0116E-11 1.0120E-11 2.4482E-12 8.0597E-12 8.0722E-12

r - 0.95 0.99 - 1.6 1.6

x∆ 1.67E-3 1.67E-3 1.67E-3 1.00E-3 1.00E-3 1.00E-3

y∆ 1.67E-3 1.67E-3 1.67E-3 1.00E-3 1.00E-3 1.00E-3

Table 2: Sequential Analysis of numerical methods for the solution of 2-dimensional parabolic heat conduction problem. ( y∆ = grid  meshes at y-axis)

Table 3: Sequential Analysis of GSRB and AGE method for the solution of 3-dimensional parabolic heat conduction problem 
( z∆ = grid meshes at z-axis)

method Communication cost

AGE_BRIAN )(15003000 idletstarttdatat ++

AGE_DOUGLAS )(15003000 idletstarttdatat ++

GSRB )(36007200 idletstarttdatat ++

method GSRB AGE_BRIAN AGE_DOUGLAS

Execution 
time

(second)
154.4432 48.743 50.0625

Iteration 600 250 250

MSE 1.5921E-9 1.5921E-9 1.5921E-9

RMSE 1.9846E-7 1.9846E-7 1.9845E-7

r - 0.8 0.6

x∆ 1.3889E-6 1.3889E-6 1.3889E-6

 

m )100100100( ×× )140140140( ××

method GSRB AGE_DOUGLAS AGE_BRIAN GSRB AGE_DOUGLAS AGE_BRIAN
Execution 

time
(second)

282.95 221.06 216.34 558.93 710.42 650.8

Iteration 760 125 115 650 120 110
MSE 4.117E-5 6.5350E-13 6.5119E-12 1.2012E-14 1.2009E-14 1.2012E-14

RMSE 1.0151E-11 1.0116E-11 1.0120E-11 2.4482E-12 8.0597E-12 8.0722E-12

r - 1 0.8 - 1.1 1.2

x∆ = y∆ 1.0E-2 1.0E-2 1.0E-2 7.143E-3 7.14E-3 7.143E-3

z∆ 1.0E-2 1.0E-2 1.0E-2 7.143E-3 7.143E-3 7.143E-3
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Table 4: Communication cost for one-dimensional problem

m
method

)600600( × (1000×1000)

AGE_BRIAN )(7801560 idletstarttdatamt ++ )(12002400 idletstarttdatamt ++

AGE_DOUGLAS )(9001800 idletstarttdatamt ++ )(13802760 idletstarttdatamt ++

GSRB )(30006000 idletstarttdatamt ++ )(37327464 idletstarttdatamt ++

Table 5: Communication cost for two-dimensional problem

m
method

)100100100( ×× )140140140( ××

AGE_BRIAN )(690)(1380 idletstarttdatatmm ++× )(660)(1320 idletstarttdatatmm ++×

AGE_DOUGLAS )(750)(1500 idletstarttdatatmm ++× )(720)(1440 idletstarttdatatmm ++×

GSRB )(4560)
2

(9120 idletstarttdatat
mm

++
×

)(3900)
2

(7800 idletstarttdatat
mm

++
×

Table 6: Communication cost for three-dimensional problem

m )100(

method multiplication addition

AGE_
BRIAN 510)(18 ++ mcons 58)(7 ++ mcons
AGE_
DOUG
LAS

712)(21 ++ mcons 58)(11 ++ mcons

GSRB 56 +m 34 +m
Table 7: Computational complexity for one-dimensional problem

m )600600( × )10001000( ×

method Multiplication addition multiplication addition

AGE_
BRIAN p

mm 22 1040)1(1832 +−
p

mm
2

1690
2

)1(3380 +−

p

mm 216002)1(2800 +−

p

mm 226002)1(5200 +−

AGE_
DOUG
LAS p

mm 22 1500)1(3000 +−
p

mm 219502)1(3900 +−

p

mm 223002)1(4600 +−

p

mm 229902)1(5980 +−

GSRB
p

mm 270002)1(5000 +−

p

mm 275002)1(5500 +−

p

mm 287082)1(6220 +−

p

mm 293302)1(6842 +−

Table 8: Computational complexity for two-dimensional problem

m )100100100( ×× )140140140( ××

method Multiplication addition multiplication addition

AGE_
BRIAN p

mmm 21610334503)1(1380 ++−

p

mmm 21725328753)1(2875 ++−

p

mmm 21540333003)1(1320 ++−

p

mmm 21650327503)1(2750 ++−

AGE_
DOUG
LAS p

mmm 22250337503)1(2376 ++−

p

mmm 21875331253)1(3125 ++−

p

mmm 22160336003)1(2280 ++−

p

mm 318003)1(3000 +−

GSRB
p

mm 3106403)1(11400 +−

p

mm 391203)1(9880 +−

p

mm 391003)1(9750 +−

p

mm 378003)1(8450 +−

Table 9: Computational complexity for three-dimensional problem
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