
Malaysian Journal of Computer Science, Vol. 22(1), 2009

AN OPTIMIZATION ALGORITHM BASED ON GRID-GRAPHS

FOR MINIMIZING INTERCONNECT DELAY IN VLSI LAYOUT DESIGN

Mohamed Khalil-Hani1, Nasir Shaikh-Husin2
VeCAD Research Laboratory

Faculty of Electrical Engineering
Universiti Teknologi Malaysia (UTM)
81310 UTM Skudai, Johor, Malaysia.

khalil@fke.utm.my1, nasirsh@utm.my2

ABSTRACT— In this paper, we describe a routing optimization algorithm based on grid-graphs for
application in a deep-submicron VLSI layout design. The proposed algorithm, named S-RABILA (for
Simultaneous Routing and Buffer Insertion with Look-Ahead), constructs a maze routing path,
simultaneously with buffer insertion and wire sizing, taking into account wire and buffer obstacles, such
that the interconnect delay from source to sink is minimized. In current nanometer VLSI layout design,
the interconnect delay has become the dominant factor affecting system performance. Research has
shown that routing algorithms, which include simultaneous buffer insertion and wire-sizing, have been
proven to be very effective in solving the timing optimization problem in VLSI interconnect design. A key
contribution of this work is a novel look-ahead scheme applied to speed up the runtime of the algorithm,
and aids in finding the exact solution. Hence, the algorithm is accurate, fast, scalable with problem size,
and can handle large routing graphs. Experimental results show the effectiveness of the look-ahead
scheme and indicate that S-RABILA provides significant performance improvements over similar existing
VLSI routing algorithms.

Keywords: Interconnect optimization, VLSI routing, Buffer insertion, Elmore delay.

1.0 INTRODUCTION

In deep submicron fabrication technology, transistors can now switch much faster, but wire resistances
are now larger, and delay due to wires can exceed gate delay. Consequently, the interconnect delay is the
dominant factor in the construction of wire routing in very large scale integrated (VLSI) circuits, which
today, has feature dimensions in the nanometer range. Today, the state-of-the-art circuit design involves
as much the engineering of the wires as the design of transistors. Hence, a successful VLSI design today
depends heavily on a successful interconnect design.

An effective approach for reducing the interconnect delay is buffer insertion [1]. In this method, a wire is
divided into segments with a buffer inserted between the segments [2]. Traditionally, buffer insertion is a
post-layout optimization technique, implying that the routing paths are first found, and then buffers are
inserted in these paths. However, today’s VLSI designs typically apply some form of design reuse
utilizing pre-designed cells, or macro blocks. Clearly, buffers cannot be inserted into areas in the VLSI
layout occupied by these macro blocks (here on, referred to as “buffer obstacle” areas). However, it is
possible to route a wire over these buffer obstacles (e.g. through a higher level interconnect).
Nevertheless, a wire routed for long stretches over the buffer obstacle areas can result in a huge wire
delay. Hence, the buffer insertions must take into account these buffer obstacle areas. It is clear that the
two-stage “routing then insert buffer” approach cannot give an optimal solution; that is, with the macro
blocks, a shortest path cannot guarantee minimum delay. Furthermore, since a wire adds loading to a
buffer, proper wire sizing can result in minimum delay. Proper wire sizing can reduce the interconnect
delay by a further 10% [3]. For nets that have macro blocks where wires can pass through but not buffers,
we can find the optimal interconnect path if routing, buffer insertion, and wire sizing are considered

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Universiti Teknologi Malaysia Institutional Repository

https://core.ac.uk/display/11788268?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

An Optimization Algorithm Based On Grid-Graphs for Minimizing Interconnect Delay In VLSI Layout Design pp 19-33

20
Malaysian Journal of Computer Science, Vol. 22(1), 2009

simultaneously. The problem at hand is essentially an interconnect optimization problem, and is
conceptually summarized as follows. Given a source and sink node of a net in a VLSI layout, we wish to
find a buffered routing path that connects these two nodes such that the end-to-end delay is a minimum.

This paper proposes an efficient algorithm to solve the above interconnect optimization problem. The key
goal of the algorithm is to construct a maze routing path, simultaneously with buffer insertion and wire
sizing in the presence of wire and buffer obstacles, such that the Elmore delay from source to sink is
minimized. The problem is formulated as a shortest-path problem in a weighted graph. The proposed
algorithm, named S-RABILA (Simultaneous Routing and Buffer Insertion with Look-Ahead), utilizes
three key concepts in order to find a solution efficiently. They are k-shortest path search, dominant path,
and a novel look-ahead feature. This look-ahead scheme, which significantly speeds up execution time of
the algorithm, is a key contribution of this work. The result is that the proposed algorithm is accurate,
fast, scalable with problem size, and can handle large routing graphs. The paper is organized as follows.
In Section 2, previous work that are related to this work are presented, followed by, in Section 3, a
discussion on the buffered path search problem, including Elmore delay formulations as applied in this
work. Section 4 describes the proposed algorithm, S-RABILA. The experimental result of the
performance tests conducted on S-RABILA is provided in Section 5. Finally, we present the conclusion
in Section 6.

2.0 PREVIOUS RELATED WORK

Many algorithms have been proposed to solve the interconnect optimization problem. van Ginneken
pioneered the optimum buffering in a routing tree structure [1]. This algorithm, which applies dynamic
programming, can only insert buffers after the routing tree is known. An existing algorithm called Fast
Buffer Insertion (FBI), proposed by Li and Shi [4], inserts buffers optimally for a given routing tree. This
algorithm can accommodate multiple buffers, although it cannot handle multiple wires. However, these
algorithms are post-routing buffer insertion techniques. Lillis, Cheng, and Lin have enhanced the van
Ginneken algorithm to obtain even better delay optimality by solving the routing problem with
simultaneous buffer insertion and wire sizing [5].

More recently, much improved algorithms for simultaneous routing and buffer insertion have been
proposed, that are more suitable for today’s VLSI technology. Zhou et al. proposed such an algorithm, in
which the routing path is obtained with simultaneous buffer insertion, and in addition, took into account
wire and buffer obstacles [6]. Since the search technique applied is based on van Ginneken dynamic
programming approach, we shall refer to Zhao’s algorithm as the DP algorithm in this paper. This
algorithm was further enhanced to include wire sizing by Lai and Wong [3]. They call their algorithm SP,
for Shortest Path algorithm. SP is a graph-based algorithm, first converts the input maze graph into a
bigger graph, which is called buffer planning (BP) graph. Dijkstra’s algorithm is then applied on the BP
graph to find the optimal delay path, which is determined to be the shortest path between the source and
sink vertices in the BP graph. These algorithms mentioned above utilized Elmore delay models. In [7],
Huang et al. extended the work by Lai and Wong [3] to include wire inductance using transmission line
model for the delay computation. However, only fixed wire sizes are considered, and the solution is
restricted to small problems. It should be noted here, that the DP and SP algorithms mentioned above are
used in benchmarking the performance of S-RABILA algorithm proposed in this paper.

A serious limitation of these existing algorithms is that their execution times are not adequately fast for
application in today’s deep-submicron VLSI layout design, particularly when applied to large problems.
They do not use look-ahead schemes, or the like, which can speed up the algorithm runtimes, and
furthermore, they cannot provide exact solutions. In this aspect, Van Mieghem and Kuipers have
proposed an algorithm called SAMCRA that uses a novel look-ahead concept in finding an exact solution
in multi-weighted graph problems applied in Quality-of-Service (QoS) routing [8]. A similar idea is
applied in A* graph search algorithm for single weight graphs [11]. This look-ahead concept is adapted
in this work for application in VLSI routing problems.

An Optimization Algorithm Based On Grid-Graphs for Minimizing Interconnect Delay In VLSI Layout Design pp 19-33

21
Malaysian Journal of Computer Science, Vol. 22(1), 2009

3.0 BUFFERED PATH SEARCH PROBLEM

The maze routing with simultaneous buffer insertion and wire sizing problem in VLSI layout design is
essentially a buffered routing path search problem. In this work, it is formulated as a shortest-path
problem in a weighted graph, and is specified as follows. Given a routing grid graph G = (V, E)
corresponding to a VLSI layout, a buffer library B, a buffer function p with p(v) = 1 indicating buffer
insertion is allowed at vertex v, a wire library W, two vertices s, sink ∈ V, find a buffered path P = (v1, v2,
…, vn), with v1 = s, vn = sink, b(vi) ∈ B ∪ {-1} where b(vi) = -1 indicates that no buffer is inserted at vi,
and w(vj, vj + 1) ∈ W, such that the interconnect delay for path P is minimized. V = {s} ∪ {sink} ∪ Vn and
E is the set of edges. Vertex s is the source vertex, sink is the sink vertex, and Vn is the set of internal
vertices. A vertex v ∈ Vn may belong to the set of buffer obstacle vertices (vertices in areas where buffers
are not allowed), denoted VOB, or to the set of wire obstacle vertices (vertices in areas where wires are not
allowed), denoted as VOW. A buffer library B contains different types of buffer and a wire library W
contains wires with different widths. A buffer in library B is denoted Bi and a wire in wire library W is
denoted Wi. For each edge e = u → v, signal travels from u to v, where u is the upstream vertex while v is
the downstream vertex and u, v ∉ VOW.

Consider a sample problem shown in Fig. 1, where the grid graph, buffer obstacles (grey areas) and wire
obstacles (dark areas) are given. The model parameters used are as follows: source resistance is 140 Ω,
load capacitance at the sink is 0.002 pF, and resistance and capacitance of a wire segment are 58 Ω and
0.042 pF respectively. We assume there is only one type of buffer with input capacitance, output
resistance and intrinsic delay of 0.002 pF, 140 Ω and 40 ps respectively. One approach of the path search
is simply to find the shortest distance between the source and sink points without going into obstacle
areas. Once the path is determined, buffers are placed along this path so that the delay is minimized. The
result on our sample problem is depicted in Fig. 1(a), where the total path delay is found to be 680.6 ps.
Another method is to ignore only wire obstacles (i.e. buffer obstacles are taken into account) and find the
shortest path between the end points. Once this path is found, buffers are placed at the allowable
positions. The resulting path is shown in Fig. 1(b), and the total path delay is found to be 621.8 ps, which
is an improvement over the previous case. Both these cases apply post-routing buffer insertion
techniques.

The best result is obtained by applying both path search and buffer insertion simultaneously. The
optimum solution where buffer restrictions are considered when searching for the best path is shown in
Fig. 1(c). The total path delay in this case is found to be 521.7 ps, which is a significant improvement.
This clearly indicates that simultaneous routing and buffer insertion is the approach to take in order to
find the optimal delay routing. The problem however becomes more challenging if we have several
buffer types to choose from. Each buffer differs in terms of input capacitance, output resistance and
intrinsic delay. The problem complexity further increases when we consider several wire sizes (i.e.
different resistance and capacitance characteristics) to connect any buffer-to-buffer section. In these latter
cases, where buffer types and wire sizes are considered, the runtime of existing algorithms are
unacceptable, especially in large problems.

An Optimization Algorithm Based On Grid-Graphs for Minimizing Interconnect Delay In VLSI Layout Design pp 19-33

22
Malaysian Journal of Computer Science, Vol. 22(1), 2009

 (a) (b) (c)

Fig. 1. A sample maze routing problem (the dark areas are wire obstacles while the grey areas are buffer obstacles.)

(a) Routing path avoids all obstacles. (b) Routing path with buffer obstacles considered. (c) Optimal routing.

An Optimization Algorithm Based On Grid-Graphs for Minimizing Interconnect Delay In VLSI Layout Design pp 19-33

23
Malaysian Journal of Computer Science, Vol. 22(1), 2009

3.1 Interconnect Delay Model Formulations

Recalling the problem at hand, we wish to find a buffered path from a source to a sink node such that the
interconnect delay is minimized. For the target technology (i.e. deep sub-micron VLSI), where wire
resistance can no longer be ignored, an interconnect is typically modeled as an RC distributed network. A
wire segment in the network is represented by a π-model RC circuit as shown in Fig. 2(a), and a buffer is
modeled by the circuit shown in Fig. 2(b). The labels rw and cw are resistance and capacitance of the wire
segment , and cb, rb, and db are input capacitance, output resistance, and intrinsic delay of the buffer.

In this work, Elmore delay is used to model the interconnects. Elmore delay has excellent correlation to
the actual delay, and in fact, it is the upper bound for the actual delay [9]. This work applies an important
property of Elmore delay that allows its computation to be performed incrementally and iteratively. The
technique is based on the equations formulated by van Ginneken [1], which we now summarized. At the
outset, note that we will have different Elmore delay equations for the case when the path expansion
begins from the source node and progresses to the sink, and for the case when the path expansion begins
from the sink and ending at the source.

In path expansion scheme beginning at the source node, each node in the wire is labeled with a
resistance-delay pair (r, t), where r and t are the resistance and delay accumulated up to that segment,
respectively [3], [6]. Given a resistance-delay pair value (r, t) at the output of a wire segment, the
resistance-delay pair value at the output of the subsequent downstream segment (r’, t’) can be computed
as follows. If the downstream segment is a wire, then (r’, t’) is

r' = rw + r, and t' = (r + rw/2)cw + t. (1)

If the downstream segment is of a wire terminated with a buffer, then (r’, t’) is

r' = rb, and t' = r(cw + cb) + rw(cw/2 + cb) + db + t. (2)

In contrast, in the path expansion scheme beginning at the sink node, instead of a resistance-delay pair,
each node v is labeled with a capacitance-delay pair, (c, t), where c represents the total ground
capacitance CT(v) rooted at node v. With an initial (c, t) given, a new capacitance-delay pair (c’, t’) for
the preceding segment can be determined, as follows. If the preceding upstream segment is a wire only,
then (c’, t’) is given by

c' = cw + c, and t' = rw(cw/2 + c) + t. (3)

If the preceding segment is a wire terminated with a buffer, then new capacitance-delay pair becomes

c' = cw + cb, and t' = rw(cw/2 + cb) + db + rbc + t. (4)

This suggests that we can perform the computations for both path traversals concurrently. We maintain
the (r, t) pairs at the nodes for the path traversal originating from the source, while (c, t) pairs are
maintained at the nodes for the path traversal originating from the sink. The end-to-end delay (denoted by

(a) (b)

Fig. 2. (a) Wire segment model. (b) Buffer model.

An Optimization Algorithm Based On Grid-Graphs for Minimizing Interconnect Delay In VLSI Layout Design pp 19-33

24
Malaysian Journal of Computer Science, Vol. 22(1), 2009

EndDelay) is obtained, when both (r, t) and (c, t) pairs are available at a particular node. Hence, at node
M, where both (r, t) and (c, t) pairs are already determined,

EndDelay = tM + tm + rMcM (5)

where (rM, tM) is the resistance-delay pair, and (cM, tm) is the capacitance-delay pair values at node M.

3.2 k-Shortest Path Search

The routing problem at hand now becomes a multi-weighted single constraint graph problem. Each
routing path is weighted with either resistance-delay pair or capacitance-delay pair, depending on the
direction of path expansion. Dijkstra’s algorithm cannot be applied to graphs with multi-weight edges, as
the algorithm requires the property that the shortest path must consist of shortest sub-paths [10]. In multi-
weight graphs the shortest path to any vertex is not unique anymore. Consider the example given in Fig.
3, which shows a two-weighted graph. There are two shortest paths to reach vertex d from a. The cost for
path a → b → d is (5, 6) while the cost for path a → c → d is (3, 7). The first path has a lower second
weight while the other path has a lower first weight. We should not discard either path in our search for
the final solution.

Therefore, when dealing with a multi-weight graph, it is necessary to store multiple sub-paths for any
vertex. There are multiple valid shortest paths in reaching a vertex; each path has at least one lower
weight component compared to other paths stored for that vertex. This gives rise to so-called “k-shortest
path” approach. In the problem here, since each intermediate node is characterized by two weights for
our Elmore delay calculation, we have to store the shortest delay, second shortest delay, third shortest
delay, etc., up to k-shortest delay path for each intermediate node. If k is not restricted, a k-shortest path
algorithm returns all possible paths from source to the destination. An algorithm may restrict the limit for
k, for example in order to reduce memory requirements and runtime. However, this algorithm cannot
guarantee end-to-end shortest delay path anymore [8]. This dilemma is compounded by the fact that the
parameter k is different for each intermediate node. Fixing k to a large value may result in unnecessary
large memory allocation for most nodes that do not require a large k. To guarantee optimal end-to-end
delay and efficient memory allocation, S-RABILA determines the parameter k adaptively for each
intermediate node. The fact that S-RABILA does not restrict the parameter k, alluding to computation of
all feasible paths between source and destination, gives an impression that the algorithm may exhibit NP-
complete traits. However, the number of feasible paths can be reduced significantly by applying the
“path-dominance” property.

As mentioned above, in the construction of the routing path, a vertex u may have several path candidates
(or sub-paths), which correspond to different combinations of wire and buffer sizes for the paths that
reach vertex u. Each candidate is weighted with a resistance-delay pair (r, t), where r is the accumulated
resistance at vertex u (from the source to u) and t is the delay up to vertex u. A new candidate is added to
the list of existing candidates if it is not dominated. Between any two candidates α1 = (r1, t1) and α2 = (r2,
t2), α1 is said to “dominate” α2 if t1 ≤ t2 and r1 ≤ r2. The “dominated” candidate α2 is not added or, if
already in the list, it is removed. This check for path-dominance property between the candidates stored
at a vertex is essentially a state space reduction technique. It contributes significantly to an efficient path
search, and is applied in S-RABILA.

Fig. 3. A multi-weight graph.

An Optimization Algorithm Based On Grid-Graphs for Minimizing Interconnect Delay In VLSI Layout Design pp 19-33

25
Malaysian Journal of Computer Science, Vol. 22(1), 2009

4.0 S-RABILA ALGORITHM

The proposed algorithm, S-RABILA solves the simultaneous maze routing and buffer insertion problem
in a VLSI layout design. The goal is to find a buffered path (with wiresizing) between the source and a
sink such that the interconnect delay of the routed path is minimized. As in other maze routing, the entire
routing area is represented as a 2-dimensional (2D) grid graph, where areas of buffer and wire obstacles
are known, and the source and destination vertices are specified. The top-level behavior of S-RABILA
algorithm is shown in Fig. 4, and its MAIN() procedure in pseudo-code is provided in Fig. 5.

Fig. 4. Top-level description of S-RABILA algorithm.

Function: MAIN()
Function called: READGRAPHINFO(), GRAPHPARAM(), READOBSTACLES(),

GRIDTOPOL(ColumnSize, RowSize, VOW), DIJKSTRA(G, terminal),
 LA-WEIGHT(L, WireTotal, BufTotal),

PATH-TRAVERSAL(G, WireTotal, BufTotal, LACount[], WeightLA[])
Output: EndDelay, Path[], WireType[], BufType[]

// CONSTRUCT GRID GRAPH
1 ColumnSize, RowSize, s, sink ← READGRAPHINFO()
2 WireTotal, BufTotal, wire and buffer parameters ← GRAPHPARAM()
3 N = ColumnSize x RowSize
4 VOW, VOB ← READOBSTACLES()
5 G(V, E) ← GRIDTOPOL(ColumnSize, RowSize, VOW)
 // FIND SHORTEST PATHS
6 L_ToEND[] ← DIJKSTRA(G, sink) // wrt to sink
7 L_ToSTART[] ← DIJKSTRA(G, s) // wrt to source
 for i = 1, …, N
8 if i in VOB
9 for each j in Adj[i] e(i, j) is broken end for // convert VOB to VOW
10 end if
11 end for
 // FIND SHORTEST PATH AVOIDING BUFFER OBSTACLES
12 L_StartEnd ← DIJKSTRA(G, s)
 // PRUNE GRAPH
13 for i = 1, …, N
14 if L_ToEND[i] + L_ToSTART[i] > L_StartEnd
15 i in VOW
16 end if
17 end for

// COMPUTE LOOK-AHEAD WEIGHT VECTORS
18 L = L_ToEND[s] + 1
19 LACount[], WeightLA[] ← LA-WEIGHT(L, WireTotal, BufTotal)
 // FIND & CONSTRUCT OPTIMAL ROUTING PATH
23 EndDelay, Path[], WireType[], BufType[] ← PATH-TRAVERSAL(G, WireTotal, BufTotal, LACount[], WeightLA[])

Fig. 5. MAIN() routine of S-RABILA.

An Optimization Algorithm Based On Grid-Graphs for Minimizing Interconnect Delay In VLSI Layout Design pp 19-33

26
Malaysian Journal of Computer Science, Vol. 22(1), 2009

The algorithm is made up of four core stages. Stage 1 involves the extraction of the graph parameters and
formation of the problem grid graph. Based on these parameters, the grid graph G(N, E) modeling the
problem, with N vertices and E edges, is formed through the GRIDTOPOL() subroutine. The second
stage performs graph pruning. Stage three involves the computation of the look-ahead weight vectors.
The look-ahead weight vectors are obtained by executing the function LA-WEIGHT(). Finally, in stage 4
of the algorithm, the required optimal routing path is searched, traced, and constructed, through the
execution of the PATH-TRAVERSAL() meta-function. The path search using the PATH-
TRAVERSAL() function is illustrated via flowchart diagram in Fig. 6.

Fig. 6. Flowchart for PATH-TRAVERSAL meta-function.

An Optimization Algorithm Based On Grid-Graphs for Minimizing Interconnect Delay In VLSI Layout Design pp 19-33

27
Malaysian Journal of Computer Science, Vol. 22(1), 2009

4.1 Graph Pruning

The effort in constructing a routing path depends on the search space of the graph. We can reduce the
effort by pruning the graph, whereby redundant vertices are removed from the graph. In S-RABILA, a
vertex is considered redundant in the search space if L_ToEND[u] + L_ToSTART[u] > L_StartEnd,
where L_ToEND[u] is the shortest path length from vertex u to the sink vertex END while
L_ToSTART[u] is the shortest path length from vertex u to the source vertex START. These paths can pass
through areas where buffer is not allowed (i.e. VOB). Now we define a reference path length, denoted by
L_StartEnd, which is the length of the shortest path from START to END vertices, without passing
through VOB. It is assigned an infinite value if no such path exists. It is obvious that no path can pass
through VOW, the areas where wiring is not allowed. Since the reference path avoids buffer obstacle areas,
buffers may be inserted anywhere along its route, hence ensuring that the end-to-end delay is the smallest
possible. Thus any vertex found in a START to END path with a path length larger than the reference is
redundant, because routing through this vertex produces a delay larger than that through the reference
path. The above path lengths are computed by executing Dijkstra’s algorithm. In the algorithm in Fig. 5,
DIJKSTRA() function is invoked three times to obtain the required data used in graph pruning. The first
call gives the distance (topological) of each vertex in G to the sink vertex END, the second call gives the
distances between the source vertex START to all vertices in G, and the third call gives another type of
distance data, that is, distances from START to all other vertices, but this distances are through paths that
exclude buffer obstacle vertices. From this distance, a reference distance L_StartEnd is obtained.

4.2 Look-ahead Scheme

The runtime of S-RABILA is significantly improved by the application of a novel look-ahead scheme.
The idea is to derive for each vertex, look-ahead weights which are non-dominated capacitance-delay
pairs. These capacitance-delay pairs can be combined with any resistance-delay pair to obtain the end-to-
end delay. During path expansions, which are from source to sink, S-RABILA maintains resistance-delay
pairs for all sub-paths. Availability of corresponding capacitance-delay pairs at each vertex permits the
computation of an estimate of the end-to-end delay, and hence guides the path expansion. The challenge
is how to compute these look-ahead weights (capacitance-delay pairs) for all vertices efficiently. The
look-ahead scheme can be explained as follows. S-RABILA first transforms the original 2D graph into a
1D graph, and then computes the capacitance-delay pairs for all vertices in this 1D graph. A scheme is
devised to assign look-ahead weights for all vertices in the original 2D graph, using the capacitance-delay
pairs of the vertices in the 1D graph.

As an example, consider the sample problem given in Fig. 7, in which the dark area represents the area
where wire is not allowed (VOW), and the grey area represents area where buffers are not allowed (VOB).
Vertex-5 is the source and the sink is at vertex-4. We assume, without loss of generality, that only one
wire size and one buffer type is available. We first determine the topological distance between the source
vertex and the sink vertex, which is the length of the shortest path from source to sink that avoids the
wire obstacle areas, but can pass through buffer obstacles. A corresponding 1D grid graph with length
equal to the source-to-sink topological distance is created. This new graph has no obstacles whatsoever
(neither wire nor buffer obstacles). For the example graph in Fig. 7, the source-to-sink topological
distance is six. Fig. 8 shows the corresponding 1D grid graph with the grid length of six.

In this 1D grid graph, vertex-7 corresponds to the sink vertex in the original 2D graph. Vertex-6
corresponds to all the vertices in the original 2D graph that are one grid distance from the sink, while
vertex-5 corresponds to vertices two grids away from the sink, and so on. The delay of the path from
each vertex to the sink vertex is computed. Since the delay to be computed is with respect to the sink, the
computation scheme using (c, t) pairs is applied. The weight vectors (capacitance-delay pairs) for each
vertex are computed using the conventional dynamic programming method, with only the non-dominated
vectors stored for each vertex. As shown in the graph of Fig. 8, the weight vectors are listed under the
respective vertex. In this example, we use the following parameter values: load capacitance at sink vertex

An Optimization Algorithm Based On Grid-Graphs for Minimizing Interconnect Delay In VLSI Layout Design pp 19-33

28
Malaysian Journal of Computer Science, Vol. 22(1), 2009

is 0.022 pF, wire resistance is 37.5 Ω, wire capacitance is 0.1026 pF, buffer input capacitance is 0.022
pF, buffer output resistance is 104.2 Ω, and intrinsic buffer delay is 20 ps. We also assume that the source
has an output resistance of 104.2 Ω.

Fig. 7. Sample problem to illustrate look-ahead concept.

● ● ● ● ● ● ●
1 2 3 4 5 6 7
(0.6376, 74.2) (0.535, 52.22) (0.4324, 34.08) (0.3298, 19.79) (0.2272, 9.345) (0.1246, 2.749)
(0.1246, 129.9) (0.1246, 101.9) (0.1246, 76.9) (0.1246, 55.77) (0.1246, 38.48)
(0.4324, 87.1) (0.4324, 69.81) (0.3298, 55.52) (0.2272, 45.08)
(0.3298, 93.94) (0.3298, 72.81) (0.2272, 62.36)
(0.2272, 108.5) (0.2272, 83.5)

Fig. 8. 1-dimensional graph with look-ahead weight vectors, (c, t) (unit for c is pF while unit for t is ps.)

Note again that the 1D graph has no obstacles (i.e. neither wire nor buffer obstacles). It is clear then, that
the weight vectors stored at each vertex in the 1D grid graph provide the absolute lower bound of the
delay from a vertex to the sink, since buffer can be inserted anywhere as necessary along the path. For
example, consider vertex-1 in the 1D graph (Fig. 8), which corresponds to all vertices six grids away
from the sink in the 2D graph (Fig. 7). Then, the look-ahead weights at vertex-1 in the 1D graph are non-
dominated, absolute lower bound weight vectors from the sink to a vertex six-grid distance away in the
original 2D grid graph. Hence these vectors can be viewed as look-ahead weights. The look-ahead
weights at vertex u in the 2D graph are denoted by WeightLA[u] in our algorithm, and the number of
these weights associated with a vertex u is denoted by LACount[u].

Note that the look-ahead 1D grid graph is based on the source-to-sink topological distance.
Consequently, vertices further away from the sink will not have any look-ahead vectors. For example, the
distance of vertex-1 to the sink in the original 2D graph is 7. This distance exceeds the topological
source-to-sink distance, which is only six. Look-ahead vectors are not calculated for these “far-away”
vertices. A special value, WeightMax, is assigned as the look-ahead weight for these far-away vertices.
WeightMax is the minimum end-to-end delay for the 1D graph, after taking into account the source
resistance, and is given by: WeightMax = min(RSource*c + t, ∀ (c, t) weights at vertex 1), where RSource is
the source resistance. For the example problem in Fig. 7, where RSource = 104.2 Ω, the minimum delay is
128.3 ps, which is obtained using capacitance-delay pair (0.3298, 93.94). This constant is now used as
the look-ahead delay for all vertices in the original 2D grid graph with topological distance from the sink
greater than six. Now, all vertices in the 2D graph will have its own set of look-ahead vectors. Fig. 9,
which is a redraw of Fig. 7, illustrates the association between vertices in the 1D graph and the original
2D graph.

For example, vertex-11 is three grids away from the sink; therefore it is associated with vertex-4 in the
corresponding 1D grid graph. Hence, the look-ahead weights of vertex-11, WeightLA[11] = { (0.3298,

topological
distance of 1

11

1

12

8

3 4

5 7

10

(source)

(sink)

VOB

VOW

9

An Optimization Algorithm Based On Grid-Graphs for Minimizing Interconnect Delay In VLSI Layout Design pp 19-33

29
Malaysian Journal of Computer Science, Vol. 22(1), 2009

19.79), (0.1246, 55.77), (0.2272, 45.08) }. These three weight vectors represent non-dominated (c, t)
pairs, one of which is due to path expansion with buffer insertion at vertex-5 in 1D grid graph. When the
same look-ahead weight vectors are passed on to vertex-11 in the original 2D graph, similarly, one of the
weight vectors assigned to vertex-11 is associated with buffer insertion at vertex-7. Since vertex-7
actually cannot have buffer insertion, one of the look-ahead weight vectors for vertex-11 is not valid.
Since it is too troublesome to tract which vertex in the 1D graph that may correspond to vertices in the
2D graph that have restrictions on buffer locations, we just assume that buffer can be inserted anywhere
and the non-valid look-ahead weight vectors are also assigned to the corresponding 2D vertices. The
algorithm will handle the non-valid weight vectors such that optimal delay can still be computed.

● ● ● ● ● ● ●
1 2 3 4 5 6 7
(0.6376, 74.2) (0.535, 52.22) (0.4324, 34.08) (0.3298, 19.79) (0.2272, 9.345) (0.1246, 2.749)
(0.1246, 129.9) (0.1246, 101.9) (0.1246, 76.9) (0.1246, 55.77) (0.1246, 38.48)
(0.4324, 87.1) (0.4324, 69.81) (0.3298, 55.52) (0.2272, 45.08)
(0.3298, 93.94) (0.3298, 72.81) (0.2272, 62.36)
(0.2272, 108.5) (0.2272, 83.5)

Fig. 9. Association of look-ahead weight vectors to input grid graph (source is vertex-5 and vertex-4 is the sink).

The above discussion suggests that we can utilize the look-ahead weights as an estimate of actual (c, t)
pairs for the vertices in the 2D graph. Consequently, when we have computed the (r, t) value for a
candidate, and knowing the (c, t) pairs for the candidate’s vertex, we can then calculate the (predicted)
end-to-end delay, EndDelay, by using Equation 5. If EndDelay is greater than the actual known minimum
source-to-sink delay, then this candidate is considered dominated, and therefore is removed. In this way,
the number of candidates at the vertices can be substantially reduced, thus speeding up the process of
constructing the routing path significantly.

5.0 EXPERIMENTAL RESULTS

Here we report three benchmarking experiments conducted to measure the performance of S-RABILA.
The tests are conducted on a PC with a 3 GHz Pentium D processor and 504 MB RAM.
In the first experiment, we benchmark S-RABILA against DP algorithm [6], which has been introduced
in Section 2. The performance metrics used in the comparison of the two algorithms are algorithm
execution runtime (T), and the total number of sub-path candidates that are created (N). The parameters
used here represent typical interconnect wires used in a 65 nm fabrication process. We select six wires
with wire capacitance in the range 16.7 – 36.7 fF, and 1.4 – 44.9 Ω for wire resistance. Similarly, six
buffers are chosen. The buffer parameters are as follows: 20 fF < cb < 32.2 fF, 118.1 Ω < rb < 200 Ω, 10
ps < db < 75.9 ps. Two randomly generated test graphs are used in this performance test: Test graph 1 and
Test graph 2. Test graph 1 is a small-size graph with a 22x17 grid, 44.4% buffer obstacle area and 26.7%
wire obstacle area. Test graph 2 is a medium-size graph with an 80x40 grid, 26% buffer obstacle area and
5.3% wire obstacle area. The algorithm is run for six cases, which are differentiated by the size of

11

1

12

8

3 4

5 7

9 10

WeightMax

An Optimization Algorithm Based On Grid-Graphs for Minimizing Interconnect Delay In VLSI Layout Design pp 19-33

30
Malaysian Journal of Computer Science, Vol. 22(1), 2009

wire/buffer library (we set the wire library size = buffer library size). The results are shown in Fig. 10(a)
and (b) for Test graph 1. Fig. 11(a) and (b) show the results of executing the algorithms on Test graph 2.
The results show that S-RABILA executes significantly faster than DP. The runtime of S-RABILA is
linear to the library size, whereas it is exponential for DP. This clearly indicates that the look-ahead
scheme in S-RABILA contributes significantly to the computational effectiveness of the algorithm, as S-
RABILA is similar in execution as DP when it is without the look-ahead feature.

In the second experiment, we benchmark S-RABILA against the SP (Shortest Path algorithm) by [3],
which has been described in Section 2. In [3], the authors perform a runtime comparison between their
SP algorithm and the DP algorithm. They used eight different graph sizes in that comparison, with three
buffers and five different wires. The value of wire capacitances that were chosen was in the range 22.3 –
102.6 fF, and 6.9 – 37.5 Ω for wire resistance. The buffer parameters are as follows: 22 fF < cb < 158.4
fF, 104.2 Ω < rb < 1064.1 Ω, 20 ps < db < 40 ps. The source resistance and load capacitance was 104.2 Ω
and 158.4 fF respectively. Lai and Wong did provide the delay that they obtained for each graph. Based
on all these information, a graph that should be more or less equal to what they had can be approximated.
We created eight graphs that are similar to the graphs used by Lai and Wong to be used as the test graphs
in this performance test on algorithm runtime T. The wire and buffer parameters that are used in the tests
are provided in Tables 1 and 2.

(a) (b)

Fig. 11 Medium-size Graph 2. (a) Plot of N versus library size. (b) Plot of runtime (T) versus library size.

(a) (b)

Fig. 10. Small-size Graph 1. (a) Plot of N versus library size. (b) Plot of runtime (T) versus library size.

An Optimization Algorithm Based On Grid-Graphs for Minimizing Interconnect Delay In VLSI Layout Design pp 19-33

31
Malaysian Journal of Computer Science, Vol. 22(1), 2009

The results are summarized in Table 3. It can be concluded that S-RABILA is faster than SP algorithm.
For example, in the case of the 22x32 graph, we can deduce that S-RABILA is 21.5 (66.7/3.1 = 21.5)
times faster than SP. The authors exclude the overhead time for determining the weights for the edges in
their BP graph in the SP runtime results. In other words, the SP runtime measure only the time taken for
their Dijkstra’s algorithm to solve the new BP graph after edge costs had been already assigned. The
performance of SP algorithm probably is slightly worse if the overhead time is taken into account.

Table3: Runtime comparison between DP, SP, and S-RABILA algorithms

Graph size Runtime (s) Runtime (s)
Runtime improvement

over DP
 DP SP DP S-RABILA SP S-RABILA

20x24 148.1 5.4 11.17 0.2637 27.4 x 42.4 x
28x22 197.1 93.2 23.01 2.148 2.1 x 10.7 x
20x30 231.2 20.4 29.45 0.7203 11.3 x 40.9 x
22x32 303.5 97 72.55 1.088 3.1 x 66.7 x
28x28 258.2 63.8 28.21 0.8903 4.0 x 31.7 x
28x24 269.5 25.3 51.04 0.6726 10.7 x 75.9 x
24x28 213.6 11.1 18.88 0.522 19.2 x 36.2 x
24x20 124.4 12.6 11.37 0.5777 9.9 x 19.7 x

In the third experiment, S-RABILA is tested on a large graph, Test graph 3, as shown in Fig. 12. Its
characteristics are summarized in Table 4. The same wire and buffer parameters as in the first experiment
are used. The algorithm is run for six cases, which are differentiated by the size of buffer library. In all
six cases, only Wire1 is used. The results of executing S-RABILA on Test graph 3 are shown in Fig.
13(a) and (b). The runtime of S-RABILA in this test is again not exponential to the buffer library size. It
seems to be linear for the first three cases, after which the runtime performance even improves slightly.
Unfortunately, however, this linearity apparently not applicable anymore when wiresizing is to be
performed. When the wire library is increased, the runtime is simply too long. In conclusion, we can
assert that for most practical cases, the runtime for S-RABILA is linear to problem size.

Table 4: Characteristics of Test graph 3 (large graph)

Size Equivalent

layout area

Source

vertex

Sink

vertex

Buffer

obstacle

Wire

obstacle

Effective wire

obstacle

300x200 30x20 mm2 18940 41320 30% 30% 59.2%

Table 1: Wire library from [3]
Name Length

(µm)
rw
(Ω)

cw
(fF)

Wire1 500 37.5 22.2
Wire2 500 30 42
Wire3 500 22 62
Wire4 500 15 83
Wire5 500 6.9 102.6

Table 2: Buffer library from [3]
Name Intrinsic

delay db
(ps)

Output
resistance rb

(Ω)

Input
cap cb

(fF)
Buf1 40 1064.1 22
Buf2 30 584 90
Buf3 20 104.2 158.4

An Optimization Algorithm Based On Grid-Graphs for Minimizing Interconnect Delay In VLSI Layout Design pp 19-33

32
Malaysian Journal of Computer Science, Vol. 22(1), 2009

Fig. 12 Large-size Graph (test graph 3)

CONCLUSION

This paper describes a new algorithm for optimal interconnect delay for two-terminal nets in VLSI layout
routing design. This algorithm, named S-RABILA, inserts buffers while considering wire and buffer
obstacles and simultaneously constructs interconnect routing with wire sizing. The search mechanism in
the algorithm is based on the van Ginneken dynamic programming approach. The key contribution of the
work is a novel look-ahead scheme, which has been shown to improve significantly the computational
speed of the search in S-RABILA. In most of the performance tests, the runtime of S-RABILA is an
order of magnitude faster than DP. Also, when compared to SP routing algorithm, it is at least 1.5 times
faster. This speed improvement clearly indicates the computational effectiveness of the look-ahead
scheme. Other tests performed have also shown that S-RABILA can handle large graphs with acceptable
runtimes. Thus, it has been shown that S-RABILA is accurate, fast, scalable with problem size, and can
handle large routing graphs.

0
20,000
40,000
60,000
80,000

100,000
120,000
140,000
160,000
180,000

1 2 3 4 5 6

of buf fers

0

2

4

6

8

10

12

14

16

18

1 2 3 4 5 6

of buffers

R
un

tim
e,

 T
 (s

)

 (a) (b)
Fig. 13 Large-size Graph 3. (a) Plot of N versus library size. (b) Plot of runtime (T) versus library size.

source

sink

Buf3

Buf6

Buf5

An Optimization Algorithm Based On Grid-Graphs for Minimizing Interconnect Delay In VLSI Layout Design pp 19-33

33
Malaysian Journal of Computer Science, Vol. 22(1), 2009

Acknowledgement

This research is supported in part by the funding from Intel Technology Sdn Bhd, Penang, UTM Vote
No. 73316.

REFERENCES

[1] L. P. P. P. van Ginneken, “Buffer placement in distributed RC-tree networks for minimal Elmore

delay”, in Proc. Int. Symp. Circuits and Systems, 1990, pp. 865-868.
[2] J. Cong et al., “Performance optimization of VLSI interconnect layout”, INTEGRATION, the VLSI

Journal, vol. 21, pp. 1-94, 1996.
[3] M. Lai and D. F. Wong, “Maze routing with buffer insertion and wiresizing”, IEEE Trans.

Computer–Aided Design of Integrated Circuits and Systems, vol. 21, pp. 1205-1209, Oct. 2002.
[4] Z. Li and W. Shi, “An O(bn2) time algorithm for optimal buffer insertion with b buffer types”, IEEE

Trans. Computer–Aided Design of Integrated Circuits and Systems, vol. 25, pp. 484-489, 2006.
[5] J. Lillis, C.-K. Cheng, and T.-T. Y. Lin, “Optimal wire sizing and buffer insertion for low power

and a generalized delay model”, IEEE Journal of Solid-State Circuits, vol. 31, pp. 437-447, 1995.
[6] H. Zhou et al., “Simultaneous routing and buffer insertion with restrictions on buffer locations”,

IEEE Trans. Computer–Aided Design of Integrated Circuits and Systems, vol. 19, pp. 819-824, July
2000.

[7] L-D. Huang et al., “Maze routing with buffer insertion under transition time constraints”, IEEE
Trans. Computer–Aided Design of Integrated Circuits and Systems, vol. 22, pp. 91-95, 2003.

[8] P. Van Mieghem and F. A. Kuipers, “Concepts of exact QoS routing algorithms”, IEEE/ACM
Trans. Networking, vol. 12, no. 5, pp. 851-864, Oct. 2004.

[9] J. M. Rabaey, A. Chandrakasan, and B. Nikolić, Digital Integrated Circuits: A Design Perspective.
2nd ed., Upper Saddle River, NJ, Pearson Education, Inc., 2003.

[10] T. H. Cormen, C. E. Leiserson, and R. L. Rivest, Introduction to Algorithms, Cambridge, MA, MIT
Press, 1990.

[11] P. E. Hart, N. J. Nilsson, and B. Raphael, “A formal basis for the heuristic determination of
minimum cost paths”, IEEE Trans. Systems Science and Cybernetics, vol. 4, no. 2, pp. 100-107,
1968.

