TABLE OF CONTENTS

CHAPTER TITLE				PAGE
1	INT	RODU	CTION	1
	1.1	Backg	ground of the Project	1
	1.2	Proble	em statements	2
	1.3	Objec	tives	2
	1.4	Scope	of project	2
	1.5	Thesis	s outline	3
2	LIT	ERAT	URE REVIEW	4
	2.1	Overv	riew	4
	2.2	Prope	rties of Nickel Electroplating	5
	2.3	Soluti	on are used for nickel electroplating	7
	2.4	Watts	bath operation	9
		2.4.1	pH	9
		2.4.2	Agitation and Temperature	10
		2.4.3	Filtration	11
		2.4.4	Additives	11
	2.5	Proble	ems with Watts bathe	12
		2.5.1	Roughness	12
		2.5.2	Adhesion	13
		2.5.3	Ductility and stress	14
		2.5.4	Dull deposits	15
		2.5.5	Purification of Nickel Solution	15
	2.6	Proble	ems with Ni striking	17

	2.7	Proces	ss of nickel electroplating over stainless steel	17
		2.7.1	Background of process	18
		2.7.2	Summery of process	19
	2.8	Facto	rs for good electroplating	21
		2.8.1	Surface preparation	21
		2.8.2	Anode	21
		2.8.3	Current efficiency	21
		2.8.4	Anti-pitting additive	22
		2.8.5	Filtration	22
		2.8.6	Air agitation	22
		2.8.7	Temperature	23
	2.9	Probl	ems and corrective action	23
		2.9.1	Roughness	23
		2.9.2	Pitting	24
		2.9.3	Poor adhesion	24
		2.9.4	High stress and low ductile	24
		2.9.5	Brighteners	25
		2.9.6	Current density	25
		2.9.7	Nickel striking	26
		2.9.8	Pre-treatment process	26
	2.10	High	speed electroplating	27
3	ME'	ГНОD	OLOGY	30
	3.1	Intro	duction	30
	3.2	Expe	rimental Setup	30
	3.3	Stain	less steel sample preparation	32
	3.4	Solut	tions preparation	32
	3.5	Expe	erimental Setup	33
	3.6.	Samp	ple preparation	35
	3.7.	Prepa	ration of samples (for SEM)	36
	3.8.	Samp	le preparation for TEM	37

	3.9.	Adhesion testing	38
		3.9.1 Scratch test	39
		3.9.2. Nano scratch test	40
		3.9.3 Tape test	40
	3.1	0 Expected findings	
4	RESU	ULTS AND DISSCUSION	42
	4.1	Introduction	42
	4.2	Effect of temperature on rate of deposition	42
	4.3	Effect of solution on rate of deposition	44
	4.4	Effect of current density on rate of deposition	45
	4.5	Nano scratch test Analysis	48
	4.6	Tape test analysis	50
	4.7	Type of failure	51
	4.8	Ni Electro crystallization	55
5	CO	NCLUSION	59
	5.1	Conclusion	59
REFERENCES			60

LIST OF TABLES

TABLE NO	TITLE	PAGE
2.1	Typical ranges for the components in Watts bath	8
2.2	Typical Operating Parameters for Watts Nickel	9
3.1	shows various current densities applied at three different p	re-set
	temperatures	36
3.2	Rate of deposition is increased by increasing temperature	r and
	current density	4 1

LIST OF FIGURES

AGE
5
31
2
34
ıt
ed
35
37
37 39
3 3

3.8	scratch test on samples	39
3.9	Tape test	41
4.1	SEM image shows the thickness of nickel layer at T=60°C	Ξ,
	$C.D=1.3A/cm^2$	42
4.2	SEM image shows the thickness of nickel layer	
	at T=55°C,C.D=1.3A/cm ²	43
4.3	SEM image shows the thickness of nickel layer at T=60°C	Ξ,
	C.D=0.13 A/cm ² Watts solution	44
4.4	SEM image shows the thickness of nickel layer	
	at T=60°C, C.D=0.13 A/cm ² Sulphate based solution	44
4.5	SEM image shows the thickness of nickel layer	
	at T=55°C,C.D=0.25A/cm ²	45
4.6	SEM image shows the thickness of nickel layer	
	at T=55° C, C.D=1.14 A/cm ²	46
4.7	Optical micrograph showing dendritic growth of the nick	el
	deposits at higher current density	47
4.8	SEM image showing the dendritic growth	47
4.9	Nano scratch tests across interface	48
4.10	Friction against distance	49
4.11	Oblique scratch across interface	50
4.12	nickel layer is peeled off (T=60°C, C.D=2.6A/cm²)	51

4.13	SEM image of exterior layer of stainless steel	
	at C.D <1.3 A/cm ² by peel test	51
4.14	SEM image of interior layer of nickel	
	at C.D <1.3 A/cm ² by peel test	52
4.15	EDAX of exterior layer of stainless steel	
	at C.D $< 1.3 \text{ A/Cm}^2$	52
4.16	EDAX of interior layer of nickel at C.D < 1.3 A/Cm ²	53
4.17	SEM image of exterior layer of stainless steel	
	at C.D>1.3 A/cm ²	53
4.18	SEM image of interior layer of nickel	
	at C.D>1.3 A/cm ²	54
4.19	EDAX of exterior layer of stainless steel	
	at C.D> 1.3 A/cm ²	54
4.20	EDAX of interior layer of nickel	
	at C.D> 1.3 A/cm ²	55
4.21	Schematic diagram of electrochemical growth	56
4.22	SEM image of nickel layer was peeled off	
	At C.D=2.6A/cm ² ,T=60°C	57
4.23	Optical micrograph showing dendritic growth of	
	the nickel deposits at higher current density	57
4.24	a)TEM image of nano-crystalline nickel over stainless s	steel
	b) particle size of nickel deposites	58