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ABSTRACT In this paper. stabilization of an Active
Magnetic Bearing (AMB) system with varying rotor
speed using Sliding Mode Control (SMC) techniques are
considered. The gyroscopic effcct and imbalance
inherited in the system is proportional to rotor speed in
which this nonlinearity effect causes high system
instability as the vrotor speed increases. Also,
transformation of the AMB dynamic model into a new
class of uncertain system shows that both the gyroscopic
effect and the imbalance lie in the mismatched part of the
system matrix. SMC design methods based on Linear
Matrix Incquality (LMI) and /> techniques are proposcd
in which the sufficient condition that guarantecs the
stability of the reduced-order system is achieved. Then, a
chattering-frce control law is also established and
discussed such that the system stales are not only driven
to reach the switching surface and to maintain the sliding
mode, but also the control effort is reduced. The
performance of the controllers applicd to the AMB model
is demonstrated through simulation works under various
system conditions.

1.INTRODUCTION

An active magnctic bearing (AMB) system is a
collection of clectromagnets used to suspend an object
and stabilization of the system is performed by feedback
control. The system is composed of a floating mechanical
rotor and electromagnetic coils that provide the
controlled dynamic force. Due to this non-contact
operation, AMB system has many promising advantages
for high-speed and clean-environment applications.
Moreover,  adjustable  stiffness and  damping
characteristics also make the system suitable for
elimination of system vibration. Although the system is
complex and considered an advance topic in term of its
structural and control design, the advantages it offers
outweigh the design complexity. A few of the AMB
applications that receive huge attentions from many
research groups around the globe are the flywheel energy
and storage device (Mukhopadhyay et al., 2000),

compressor (Komari et al. 1998). turbo molecular pump
(Losch et al. 1999), Left Ventrical Assist Device
(LVAD) and artificial heart (Lee ct al.. 2003).

The control issues for AMB system rcceive high
interest from many research groups. AMB inherits many
nonlinearity effects that cause the system to be very
unstable and proper control is thus mandatory to stabilize
the system, The main objective of this work is to present
SMC techniques to overcome the most crucial
nonlinearities in AMB which are the gyroscopic effect
and the imbalance. The design of SMC controller
involves two crucial steps which are commonly referred
to as the reaching phase and the sliding phase (Spurgeon
and Edwards, 1998). As apart of the design process, the
AMB model is transformed into a so-called regular form
to map the uncertaintics present in the system which
results both the gyroscopic and imbalance are
mismatched. i.e. not in phase with the control input. This
condition imposes design difficulties for the system o
achieve asymptotic system stability. Two SMC
techniques are proposed to overcome this challenge.

The outlinc of this paper is as follows: In Scction 2.
the model of the AMB system based on (Sivrioglu and
Nonami, 1998) is illustrated and represented in its
deterministic form which serves as a tool for the
controller design. Section 3 covers the design of two
types SMC control algorithm based on LMI and H-
theory to ovcrcome the AMB nonlinearity, The stability
of the system under the designed controller is also shown.
Then. in Section 4, the performances on the AMB system
under the designed controller are illustrated through
simulation works under various system conditions.
Finally, the conclusion in Section 5 summarizes the
contribution of the work.

2. MODELING OF ACTIVE MAGNETIC BEARING
(AMB) SYSTEM

In order to synthesize the proposed sliding surface
with the controller. a vertical shaft AMB system model
for the application of turbo molecular pump system is
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derived based on the work done in (Sivrioglu and
Nonami, [998).
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Fig. 1. Vertical Active Magnetic Bearing (AMB) System

The gyroscopic effect that causes the coupling
between two axes of motions (pitch and yaw) will be also
considered. Fig. | illustrates the five degree-of-freedom
(DOF) vertical magnetic bearing in which the vertical
axis (z-axis) 1s assumed to be decoupled from the system
and hence controlled separately.
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Fig. 2 The total forces acting on the AMB rotor.

The top part of the rotor of the system in Fig. | is
controlled actively by the magnetic bearing, labeled as
AMB, in which the coil currents are the inputs. The
bottom part of the rotor however is levitated to the center

of the system by using two sets of permanent magnets
labeled as PMB. The rotation of rotor around the z-axis
is supplied by external driving mechanism and
considered a time-varying parameter. Fig. 2 illustrates
the free-body diagram of the rotor which shows the total
forces produced by the AMB and PMB of the system.
Based on the principle of flight dynamics, the equations
of motion of the rotor-magnetic bearing system is as
follows:

mx, = £, + £, +m,lo" cos(w1)
Lp=~J o g+l f — LT
my, = £,_+ £, +m,lw” sin(1)

jré = jJ wmg = Lu f_:;, *: L.‘r f;,

(N

The terms m, Jw* cos(w) and i jo’ sin(wr) are the
imbalances due the difference between rotor geometric
center and mass center. These imbalances cause the
whirling motion and the magnitude is proportional to the
speed of rotation, . The gyroscopic effect is represented
by the term -/ wg and J @, f . where it can be
noticed that this will cause the coupling between the axes
of motions proportional to the speed.

The control forces produced by the AMB are given
by the following equations:

f.:u = 2Kdu “‘\u + err K{fﬂﬁ = 2Km ,r"_"
£,,=2K,y, —2L,K,a+2K,i

Ju weoyn

(2)

where fm: f.:m'_ f;uf and fn: = fmr - fm.’ are the net

forces produced by the AMB on each x- and y-axis
respectively (the same net force for bottom PMB as well).
This is possible by having the AMB coil wound to
produce differential current mode. For the PMB, the net
forces produced are given by the following equations:

£ =-2C,%,+2C,L,-2K,x,+2K,L,B )
fp=-2Cy, -2C,La-2K,y, -2K,L,a

The above equations (1), (2) and (3) can be integrated
to produce the AMB model in the following form:

X(t) = Aw,0) X(t)+ BUt)+ Flw,f) (4)

where X'=[x,,5, v,.a, ,'rk_,ﬁ_ y,.¢a]" are the states of

(1

the system, A" is the system matrix, Be*“ is the
input matrix, U(f)=[s,,4,]" the input currents and
Flw,t) is the disturbance vector due to the imbalances.
[n order to synthesize the controller, the AMB model is
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treated as an uncertain system in which deterministic
approach to classify the system is used based on (Osman
and Roberts, 1995). By using this approach, the AMB
model can be decomposed into its nominal and uncertain
part as shown below

XD =(A+ A&, ) X(1)+ BU) + Flw, 0 (5)

where AA(@,f represents the uncertainty of the system
matrix and A7) 1s the disturbance matrix associated
with speed dependent of imbalance. A4 and B are the
nominal constant matrices of the system. The
decomposition into this deterministic form 1s possible
due to the fact that the bounds are known. The elements
of the AA(w.7) and A w.f) can be calculated based on
these available bounds. The rotational speed is given as
follows:

0 rad /sec < w < 3142 rad /sec . (6)

Then, by using these bounds and the values of the system
parameters as shown in Table I, each element of the
system and disturbance matrices can be calculated and
specified in the following form:

;% a;(@,0) = ;,_, (7a)
d, = d (w1 < 5_, (7b)
Table |  Parameters for AMB Model.
Symbol Parameter Value Unit
m Mass of Rotor 1.595 kg
i Moment of Inertia 1.61 % 107 kg.m”
about rotational axis )
i Moment of Inertia 3.83x 107 kgm”
about radial axis
L Distance of upper 0.0128 m
AMB to G
L Distance of lower 0.0843 m
PMB to G
K Linearized 200 N/A
force/current factor
K,  Linearized 2.8 % 10° N/m

force/displ. factor

X Stiffness coefficient 1.0 % 10° N/m

of PMB
G Damping coefficient 48 kg/s
of PMB
m,,  Static imbalance 0.6x10° m
/ Distance of unbalance  0.02 m
mass from G
@ Rotor rotational speed 00— 1047 rad/sec

(0—10000) (rpm)
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for/=1,....8 and j= 1. ..., 8 where a,(w.f) and d(w,))
are the element of AA(w.f) and Rl matrices
respectively. The upper and lower bars indicate the
maximum and minimum values of the elements. The
element of matrix A and AA(w./) can be calculated based
on these bounds by using the following procedure:

ady+4a

4 ‘?,\.l{”.' .";-) = Eg’r’ —a,( 2 J’:) {8)

a,np)=

for ~th row,/-th column elements of 4 and AA(@./). For
the disturbance matrix, A ., only the maximum values
of the elements are needed since these values represent
the highest disturbance values caused by the imbalance
which should be eliminated from the system.

3. SLIDING MODE CONTROL DESIGN
3.1 Surface design without imbalance

Consider a class of uncertain system given by:
M) =(A+AAw,0) M)+ BU O+ Ewlw,t)  (9)

where afny=9" is the system states, ynHem” is the

control input, £ is the disturbance matrix and @ is any
time-varying scalar function. A and 3 1s the system and
input matrices, respectively, and A is of full rank.
AA(w,f) represenl the system uncertainty. It can be
noticed that the system is the new representation of
system (5).To complete the description of the uncertain
dynamical system, the following assumptions are
introduced and assumed to be valid.

A/ For existence purposes, AA () and w () are
continuous on their arguments.

AZ) There exist known positive scalars y,and y>and a
function M x,p.1) such that

AA@,0)| < y,-
|@.0]< .-

AJ3) The pair (A.B) is controllable.
Define a linear switching surface as
o=Sx=0 (10)

where Sen™" is of full row rank m. By referring to

(Spurgeon and Edwards, 1998), the switching surface

parameter matrix S'should be selected such that

E1)  The matrix SBis nonsingular

E2)  Given that £= 0, the reduced (s7-/77) order system
of the system (9) restricted on the switching



surface Sx=0 is globally exponentially stable for
all allowable uncertainties satisfying assumption

A

To continue with the design, let ®=R™"™ be
any full column rank matrix such that
B'®=0and®’®=/,__ . Then it can be established
that

e ] f. D
o B=|"""
FE P o B

or equivalently
*' 0+ BB B'B =1, (11b)

From this, 1t 1s obvious that the nonsingular
transformation matrix can be defined as follows:

. !
i a2

Substituting (12) into system (9) gives

MO =(A+ DD AA X p.0) A1)+ DD Enw, t)
+ BN+ (B BB x
AA X p O X+ Ewo, 1) (13)

This new system representation has shown that the
system uncertainty and disturbance are mismatched as
denoted by the last term in (13). As stated by £2). when
£ =0, then the mismatched disturbance is not present
which physically means that the imbalance effect is not
present in the AMB system. This implies that the
gyroscopic is the only nonlinearity presents and with this
condition remains true, based on (Husain et al., 2008b).
the following theorem is introduced such that the sliding
surface can be designed to achieve asymptotic system
stability.

Theorem |.(Husain et al., 2008b) Consider the
system (9) and suppose assumption (A])-(A3) hold. Then
there exist a matrix S satisfying (EJ) and (E2), if there Is
a matrix P> 0 and positive scalar € such that

O AOP+ PO A+ P
—(07,)" POTARB B B A0oP+(6y7)1__<0(14)

where y , i1s given in assumption (A2). Moreover, the
matrix § can be proposed to be as follows:

S=(B'B'B (I, +(6y])y Ao, (15)

Proof See (Husain et al., 2008b).

Theorem | provides a very important result in which it
indicates that the system is able to achieve asymptotic
stability with the present of mismaiched system
uncertainty. The surface Scan be designed by solving the
Riccati-like equation or it can be formulated as LMI and
solved efficiently by using LMI solver. The detail of both
techniques are outlined in (Husain et al, 2008b) and
intentionally not covered in this work.

3.2 Surface design with imbalance presents

When the assumption E2) is relaxed which implies
that the imbalance is present, Theorem | fails and in
order to achieve system stability, the surface needs to be
redesigned. To continue with the design, the following
assumptions are introduced.

A4) The linear model mismatch is supposed to belong to
a convex polytope in parameter space such that:

AA= ia,/_\fi. ia, =l,a,20¥icl;—- k

Maintaining the sliding surfaceas (10), the define an
output variable as

AD= Ly (16)

Due to the mismatched condition, the transfer function
from the exogenous input vector w(/) to this output A /) is
given by

A5) = H(s) M s) (17)

where Z(s) and W(s) are the Laplace transform of A4
and w(/) respectively and H(s) is valid for #> 7 When the
system in the sliding motion, the A norm of the transfer
function (17) for the closed-loop system is defined as
follows:

| Eer i H jw)* H(jw,)]dw,  (I8)

From this, as highlighted in (Takahashi and Perez, 1999),
the main objective is to find the optimal sliding surface
Cy such that the upper bound of the 4. norm (18) over
ali rismatched A A such that:

C.pe =arg min max Q(C,AA), NC.AA > [H(s),

(19)
The minimization of the upper bound of Q(C,AA)is the
solution to the sliding surface. The design of the sliding
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surface is carried by transforming the system dynamic
into a regular form and this is in-line with the step
outlined in (Spurgeon and Edwards, 1998). A new
transformation matrix 7'is chosen such that

0]
7B= 5| T =1 (20)

where matrix E e W™ is nonsingular. Then applying

this transformation to system (9), a new system
representation is obtained as:

Y=

X=T(A+ AT 'X+ TBu+ TEw @i
CTr'z=0

$=LT'%

T l “" -| N f-m _— "
re=| e B e (22)
% |

Then, the matrices of the system can be partitioned to
form the following new matrices:

E:mr':{’_“" fzJ,
A Ay

AA=TAT' = 44, KE!J.

AA, AA,

Bl zeer-lg @]

2
and L=L7" =[[, L] (23)

B=1E=

Then. the surface equation becomes

Cx +C% =0 (24)
By knowing that det( a) = 0, this will lead to
%=-C;'C% (25)

To simplify the derivation, the following terms are
introduced which are:

FAA, +AA,. (26)

From (23). (24) and these new terms, the new
representation of the reduced-order closed-loop system is
obtained as follows:

X =OF +T% + Ew
X, =—F%,

z=LX + L% (27)

Thus, viewing this closed-loop system, it is obvious that
the design of the sliding surface is equivalent to
designing feedback gain, £, for the reduced-order system
with uncertainties. Looking at the assumption A2), the
matrices {Dé‘;&, +AA, and Féﬁz +AA, also belongs

to a polytope-type set with known vertices. The sel can
be defined as follows:

f i &
P A {(tﬁ.l’) = Za,(w,,r,),za,. =l a2 0} (28)
=1 =l

The vertices of this polytope (28) corresponds to he
vertices of the uncertain defined in A4) in obtained by
using the transformation matrix 7.

By following the design step outline in (Takahashi
and Perez, 1998: Husain et. al. 2008b), an assumption on
the matrix L in (16) is introduced in which the
assumption will guarantee that the #, cost function
optimization for the sliding surface design is nonsingular,
The assumption is as follows:

LI 50 (29)

Then, with the constraint of (29) a new variable is
introduced as follows:

) =(LL)" L L% +% (30)

The reduced-order system (27) may be written in term of
% and eas

X =(@-T(L L)' LL)% +Te+ Ew
z=(L~L(LL)" L)% + Le 31

Furthermore, the system can be simplified by defining
the following terms:

)]
=L-L(LL)"' L (32)

Then, the transformed uncertainty polytope (28) can be
recast as;
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(DT eRo (D.New

®, =0, - L(LLY'LIL, Yi=l-k  (33)
From (27) and (30), the transformed gain matrix is

(N =(-F+(L)' L)%
= Kx, (34)

Consider now the set = of the symmetric positive-
definite matrices X such that:

Z: {XeRra | x= X750,
(©-TKYX+ X@®-TK) + EFE <0, Y(®,MNeN |
(35)

For an arbitrary but fixed pair of (®,I') e X, the A norm
of system (31) is bounded by:

|H(s));, < a(A-LKXA-LK)), ¥XeZ. (36)

Let a new matrix We Z , then a new variable can be
defined as

Z=KW, .. K=zZw" (37)

Thus, the problem of minimization of the upper bound of
the H:>norm (36) can be represented as

min t(AVWA" + LZW' Z"L])
5 Bt
OW-TZ+ WO -Z'TT+ EE" <0, Y(®,NekN
(38)
Obviously, this problem can be expressed as LMI

problem. Defining the objective function in (38) as a new
variable as follows:

Q2AWAN + LZzW'Z'L! (39)

Taking the Schur complement of (39), then, the problem
can be represented as and LMI optimization problem:

Q= min Q)
W.2.0

( [ w I .
| L,z Q-AWAT|~
L3 o - w=>0 — (40)
QW+ WD, -IZ-Z' T+ EE <0,

Vi=lyk

[f the solution of (40) is feasible, then the sliding surface
parameter that guarantees the existence of the optimal
upper bound /> norm can be obtained. With the values of
Wand Z determined, as stated in the theorem, the gain K
in (37) can be obtained and lead to the optimal surface
values as follows:

C=[CT LY TT-0 &lr @y

Notice that the matrix C, does not have any influence in
the reduced order system and can be chosen freely
provided it is full rank and )= /is a convenient as

stated in (Spurgeon and Edwards, 1998; Takahashi and
Peres, 1998).

3.3 Control Law design

The control law development is not shown in detail in
this work, instead, the controller for sliding surface with
and without imbalance from (Husain et al., 2008a;
Husain et. al., 2008b) are used as shown below.

Control law for system without imbalance
(Husain et al., 2008a)

u(r) = —SAx- {[7,) S]] o] + ﬂ}sar(%) (42)

where S is obtained from (135) and I1 is the thickness of
the boundary layer.

Control law for system with imbalance
(Husain et al., 2008b)

u(f)= —(CB) " CAXL) - p sign(Cx(£)) (43)

where C is obtained from (41).

4. SIMULATION RESULT AND DISCUSSION

The following settings and calculated result are used
to obtain the shown result.

AMB without imbalance

1. Sliding surface, S

32358|70—3"

g=10
=l =7 =1 10 0 0 15 1]

2. Rotor speed, @ = 10krpm

The result for the X and Y trajectories for the system
without imbalance 1s as shown in Fig. 3. Obviously the
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asymptotic stability is achieved and the states approach
zero in finite time which implies the rotor does not
experience and whirling effect. The chattering-free input
is shown in Fig. 4 for two selection of boundary layer
thickness.

0 001 O@ 003 O 005 006 OO7F Q08 009 o
time [sec]

Fig. 3. Xand Yirajectories with @= 10krpm

bx with boundany layer = 1000

0 001 002 003 004 005 005 007 008 008 01
tirme [sec)|
L with bourciary laver =100000

Ix (&)

0 00 02 o0 O00d (005 006 OO7 008 QO3 Q1
e [sec)

Fig. 4. Current /, with [1= 1000 (top) and
= 100000 (bottom)

AMB with imbalance

1. Chosen output matrix, L.

fr 1001000
o011 00 1 0

2. Caleulated Sliding surface. C

[-5.6019 -54063 27145 -0.0031 -54236 0
06659 -0.1302 -94.1392 -53830 0 0

0 0
-54224  0.000;
3. Rotor speed, @ = 6krpm and |0krpm

To compare the performance of the controller, the
result obtained by (Sivrioglu and Nonami, 1998) as
shown by Fig. 5 is used as the benchmark. For rotor
speed, @ = 6krpm, the critical speed of AMB system, the
rotor orbit is about 30 um. Then, under the controller
(43) with the settings outlined above, at rotor speed @ =
6krpm and 10krpm, the trajectories of X and Y reach
almost zero in which 1l exhibits that the rotor whirling
effect 1s unnoticeable as shown by Fig. 6 and Fig. 7.

5
x 10
5

Y axis [M]

PR S - S

Fig. 5. Rotor orbit at = 6krpm for controller by
(Stvrioglu and Nonami)

% 10‘5 Traectones of Xand Y (w=G000mm)

Hates [mi
o

0 005 01 015 02 02 03 035 04 045 05
t {sec]
%107 Retor Crbit

¥ [m
(=]

5
] =4 -3 -2 -1 [#] N 2 3 4 -]

Xt “1?

Fig. 6. X'and Ytrajectories (top) and rotor
orbit (bottom) using L, at @ = 6krpm.
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%10~ Tregertones of Xand Y (w=10000prm)
5 S
X
¥
- e
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e, S T
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3
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4] 06 01 035 02 0 03 03 04 Q45 0OS
1 [sex)
x10° Fotor Ol
5
e ]
4 Cordilion
Eo
>
5
45 -4 -3 -2 3 | o 1 2 3 a 5
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Fig. 7. XN'and Y'trajectories (top) and rotor
orbit (bottom) using L, at @ = 10krpm.

5. CONCLUSION

The control of AMB system by using SMC
techniques is demonstrated based on LMI and H2 theory.
Both the mismatched gyroscopic and imbalance effects
are overcome effectively to meet the system required
stability.
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