brought to you by CORE

vii

TABLE OF CONTENTS

CHAPTER

1

TITLE

PAGE

DECLARATION	ii
DEDICATION	iii
ACKNOWLEDGEMENTS	iv
ABSTRACT	v
ABSTRAK	vi
TABLE OF CONTENTS	vii
LIST OF TABLES	xii
LIST OF FIGURES	xiii
LIST OF ABBREVIATIONS	xviii
LIST OF APPENDICES	XX

INTRODUCTION

1.1	Background of the Problem	1
1.2	Objective of Study	3
1.3	Scope of Study	3
1.4	Scope of Thesis	3
1.5	Significant of Study	4

2 LITERATURE REVIEW

2.1	Cellul	ose	6
2.2	Micro	bial Cellulose	7
	2.2.1	Microbial Cellulose Content	8
	2.2.2	Features of Bacterial Cellulose	9
	2.2.3	Application of Microbial Cellulose	10
2.3	Produ	ction of Microbial Cellulose	14
	2.3.1	Acetobacter aceti sp	14
		2.3.1.1 Acetobacter xylinum	15
		2.3.1.2 Taxonomy	17
	2.3.2	Factors Affected Production of Microbial	
		Cellulose by A. xylinum.	18
		2.3.2.1 pH	18
		2.3.2.2 Temperature	19
		2.3.2.3 Oxygen Concentration	19
		2.3.2.4 Surface Area	20
		2.3.2.5 Biochemical Factor	21
	2.3.3	Cellulose Biosynthesis by Acetobacter	
		Xylinum	23
	2.3.4	Production of Microbial Cellulose	
		Under Different Condition	26
		2.3.4.1 Static Production	27
		2.3.4.2 Agitated Production	29
		2.3.4.3 Rotary Discs Reactor.	30
2.4	Summ	nary	34

3 MATERIAL AND METHODOLOGY

3.1	Introduction	35
3.2	Design of Experiment	37

	3.2.1	Physical Design	37
	3.2.2	Pre – Fermentation	37
		3.2.2.1 Medium Preparation	37
		3.2.2.2 Agar Plate Preparation	38
		3.2.2.3 Inoculums Preparation	38
	3.2.3	Fermentation Process	39
		3.2.3.1 Precautions Steps and	
		Limitation during Fermentation	39
		3.2.3.2 Fermentation Condition	39
3.3	Physic	cal Design of Rotary Discs	
		Reactor (RDR)	40
	3.3.1	Trough 41	
	3.3.2	Discs	42
	3.3.3	Motor and Shaft	43
3.4	Pre –	Fermentation	43
	3.4.1	Colony Forming Unit (CFU) Test	43
	3.4.2	Preliminary Study for Discs Selection	44
3.5 Pl	hase 3: I	Fermentation Process	46
	3.5.1	Fermentation Process using Static Culture	
		and Rotary Disc Reactor (RDR)	46
		3.5.1.1 Preparation of Starter Medium for	
		Acetobacter Xylinum	46
		3.5.1.2 Preparation of Medium	47
		3.5.1.3 Fermentation using Static Culture	47
		3.5.1.4 Fermentation using RDR	47
	3.5.2	Data Analysis	48
		3.5.2.1 Measurement of Wet Weight	
		and Dry Weight of Microbial	
		Cellulose	48
		3.5.2.2 Statistical Analysis	49
		3.5.2.3 Dissolve Oxygen Measurement	49

	3.5.2.4 Glucose Analysis	50
3.6	Summary	51

4 **RESULTS AND DISCUSSIONS**

4.1	Introd	uction	52
4.2	Designing The Rotary Discs Reactor (RDR)		52
	4.2.1	Trough	53
	4.2.2	Discs	54
	4.2.3	Driven Motor and Shaft	56
	4.2.4	Overall Basic Design of Developed	
		Rotary Discs Reactor.	57
4.3	Prelin	ninary Study of Fermentation in RDR	58
	4.3.1	Colony Forming Units Test	58
	4.3.2	Preliminary Study for Discs Selection	60
4.4	Ferme	entation Process	63
	4.4.1	Fermentation with Static Culture	63
	4.4.2	Fermentation using Rotary Discs	
		Reactor (RDR)	64
		4.4.2.1 Effect of Rotation Speed to	
		Microbial Cellulose Production	
		in RDR	65
		4.4.2.2 Effect of Initial pH of medium	
		to Microbial Cellulose Production	
		in RDR	67
	4.4.3	Comparison between Static and RDR	
		Fermentation	69
		4.4.3.1 Comparison of yield between RDR	
		(at speed 7 rpm) and Static	
		Culture for 5-days Fermentation	70
		4.4.3.2 Dissolved Oxygen Measurement	73
		4.4.3.3 Glucose Analysis	75
		4.4.3.4 pH Drop in Static and RDR	

	Fermentation.	77
	4.4.3.5 Summary of Comparison between	een
	Static and RDR Fermentation.	79
4.5	Summary	81

5 CONCLUSIONS AND RECOMMENDATIONS

5.1	Introduction	82
5.2	Summary and Conclusions	82
5.3	Recommendations for future works	85
REF	ERENCES	86
APPENDICES PUBLICATION		91
		96
ABC	OUT THE AUTHOR	97

LIST OF TABLES

TABLE NO.	TITLE	PAGE
2.1	Products which can be Manufacture from Microbial	12
2.2		15
2.2	Microbial Cellulose Producers. (Jonas and Faran, 1997)	17
2.3	Major Elements and Their Functions in Bacterial Cellulose Production	22
2.4	Production of Microbial Cellulose using Different Method	. 26
2.5	Summary of Previous Work on RDR	31
3.1	Shigeru Yamanaka Medium	38
3.2	Types of discs for Rotary Discs Reactor	46
4.1	Specifications for RDR	57

LIST OF FIGURES

FIGURE NO. TITLE PA	GE
---------------------	----

2.1	Cellulose as polymer of β -D-glucose	6
2.2	SEM micrograph of the wet structure of microbial cellulose at 2µm	7
2.3	Microbial cellulose compositions	8
2.4	Products from microbial cellulose	12
2.5	Acetobacter xylinum under electron microscope	15
2.6	Secretion of glucan into micro fibrils by <i>Acetobacter</i> cells (Brown, 1986).	16
2.7	Effect of surface area to production of microbial cellulose using different carbon sources (Holmes, 2004)	21
2.8	Differential between Bacterial and Plant Cellulose	23
2.9	Biochemical pathway from glucose to synthesize cellulose (Jonas and Farah, 1997)	25

2.10	Cellulose growing in static culture.	28
2.11	Microbial cellulose formed at the interface of air-liquid medium	29
2.12	Cellulose formed in agitated culture fermentation	30
2.13	Example of Rotating Biological Contactor (RBC) used in waste water treatment	31
2.14	Biosynthesis of microbial cellulose in the RDR (Krystynowicz et al., 2002)	34
3.1	Schematic Diagram of Operational Framework.	36
3.2	Two dimensions drawing for RDR	41
3.3	Active surface area and submerged area for disc	43
3.4(a)	Polypropylene disc use for preliminary study	45
3.4(b)	Stainless Steel disc use for preliminary study	45
3.4(c)	Polyethylene (0.6cm mesh) disc use for preliminary study	45
3.4(d)	Polyethylene (0.3cm mesh) disc use for preliminary study	45
3.5	Rotary Discs Reactor for microbial cellulose production.	48
3.6	Hanna Oxy-Check for DO measurement.	50
3.7	YSI Glucose Analyzer for checking glucose content	51

4,1	Three dimension-view of RDR	53
4.2	Trough as a medium container in Rotary Discs Reactor	54
4.3	Discs for Rotary Discs Reactor	55
4.4	Shaft was attached to driven motor that provide rotation for discs.	56
4.5	Rotary Discs Reactor	57
4.6	Standard Curve for bacterial growth	58
4.7	Graph of log cfu/ml vs days for <i>Acetobacter xylinum</i> growth	59
4.8	Yield of microbial cellulose by using different disc types for RDR in preliminary study of fermentation	61
4.9 (a)	Microbial cellulose attached to different Polypropylene disc.	62
4.9(b)	Microbial cellulose attached to different Stainless Steel disc.	62
4.9 (c)	Microbial cellulose attached to different Polyethylene (0.6cm mesh) disc.	62
4.9(d)	Microbial cellulose attached to different Polyethylene (0.3cm mesh) disc.	62

4.10	Microbial cellulose weight versus pH for	
	microbial cellulose production after 5 days	
	fermentation in static culture.	64
4.11	Microbial cellulose production in RDR after 5 days Fermentation	65
4.12	Microbial cellulose weight <i>versus</i> rpm (after 5 days fermentation in RDR)	66
4.13	Microbial cellulose weight <i>versus</i> pH after 5 days fermentation in RDR	68
4.14(a)	Wet microbial cellulose from RDR fermentation	69
4.14(b)	Wet microbial cellulose from static culture fermentation	69
4.15(a)	Dried microbial cellulose from RDR fermentation	70
4.15(b)	Dried microbial cellulose from static culture fermentation	70
4.16	Comparison of cellulose produced between static and RDR fermentation after 5 days.	71
4.17	Summary of ANOVA	72
4.18	Dissolve Oxygen (DO) <i>versus</i> rpm for Static (data at 0 rpm) and RDR fermentation (data at 7, 9 and 11 rpm).	73
4.19	Dissolve Oxygen (DO) and Microbial Cellulose weight <i>versus</i> speed of rotation (rpm) for RDR fermentation after 5 days fermentation.	74

4.20(a)	O(a) Glucose content <i>versus</i> fermentation day for RDR	
	fermentation	76
4.20 (b)	Glucose content versus fermentation day for static	
	fermentation	76
4.21	Initial and final pH for fermentation in Static and RDR.	78
4.22	Value of pH drop in RDR and static fermentation	
	after 5 days.	78
4.23	Comparison of cellulose wet weight using static	
	and RDR fermentation at different initial pH.	79
4.24	Comparison of air and food diffussion in static	
	and RDR fermentation.	80

xvii

LIST OF ABBREVIATIONS

Ammonium Sulphate
Acetobacter xylinum
Acetobacter xylinus
Analysis of Variance
Sucrose
Cellulose Non-producer
Colony Forming Unit
Carboxymethyl Cellulose
Carbon dioxide
Continuous Stirred Tank Reactor
Dissolved Oxygen
Glucose Dehydrogenase
Hydrogen Ion
Hydrogen Sulfide
Pottasium Dehydrogen Phosphate
Malaysian Agricultural Research and Development Institute
Magnesium Sulphate
Nitrogen
Natrium Hydroxide
Ammonia
Nitrate
Hydroxyl Ion
Poly-(methyl matacrylate)
Phosphate

RBC	Rotating Biological Contactor
RDR	Rotary Discs Reactor
SEM	Scanning Electron Microscopy
SO_4	Sulphate
S	Sulfur

LIST OF APPENDICES

APPENDIX	TITLE	PAGE
А	Calculation: Surface Area for Discs	91
В	Proceeding: International Conference &	
_	Exhibition on Waste to Wealth (W2W) 2007 at	
	Putra World Trade Centre (PWTC), Kuala Lumpur,	
	Malaysia, 26 – 28 November 2007	94
С	Poster presented at Innovation, Art &	
	Technology Exhibition (INATEX) 2007, UTM	
	Skudai, 15-21 Aug 2007	95