brought to you by **CORE** provided by Universiti Teknologi Malaysia Institutional Repository

vii

TABLE OF CONTENTS

CHAPTER	TITLE		PAGE	
	DECL	ARATIO	N	ii
	DEDI	CATION		iii
	ACKN	OWLED	GEMENT	iv
	ABST	RACT		v
	ABST	RAK		vi
	TABL	E OF CO	NTENTS	vii
	LIST	OF TABL	ES	Х
	LIST	OF FIGU	RES	xi
	LIST	OF ABBR	EVIATIONS	xiv
	LIST	OF SYME	BOLS	XV
	LIST	OF APPE	NDICES	xvii
1	INTR	1		
	1.1 Introduction to Modeling			1
	1.2	Open S	ource	2
	1.3	Researc	ch Profile	3
		1.3.1	Background of Research	3
		1.3.2	Statement of Problem	3
		1.3.3	Purpose of Research	4
		1.3.4	Objectives of Research	4
		1.3.5	Significance of Research	4
		1.3.6	Scope of Research	5
		1.3.7	Methodology of Research	5
	1.4	Summa	ury	6
2	LITE	RATURE	REVIEW	7
	2.1	Theory	of Nuclear Magnetic Resonance	7
	2.2	Nuclear	r Magnetic Resonance Hardware	9

	2.2.1	Main Ma	agnet	10
	2.2.2	Gradient	Coils	10
		2.2.2.1	Longitudinal Gradient Coil	11
		2.2.2.2	Transverse Gradient Coil	12
	2.2.3	Radio Fr	requency System	13
2.3	Biot-Sa	avart's Law		13
2.4	Biot-Sa	avart's Law	for Finite Length Current Segment	14
2.5	Related	l Research		16
2.6	Summa	ary		19
RESEA	ARCH M	ETHODO	LOGY	20
3.1	Simula	tion Model		20
3.2	Probler	n Formulat	ions	21
3.3	Python	Coding		26
3.4	Data Co	ollection an	d Analysis Procedures	28
3.5	Summa	ary		30
RESU	LTS AND	DISCUSS	ION	31
4.1	Three-I	Dimensiona	l Visualization	31
4.2	Results	on Golay	Coil	34
	4.2.1	General	Results	35
	4.2.2	Variation	h of θ	38
	4.2.3	Variation	n of r	42
	4.2.4	Variation	n of a	42
	4.2.5	Variation	n of d	48
	4.2.6	Variation	n of <i>l</i>	53
4.3	Results	on Maxwe	ll Coil	57
	4.3.1	General	Results	57
	4.3.2	Variation	n of r	59
	4.3.3	Variation	n of d	59
4.4	Discuss	sion		63
4.5	Summa	ary		67
CONC	LUSION	S		68
5.1	Conclu	sions		68

3

4

5

5.2Suggestions for Further Works69

REFERENCES	71
Appendices A – F	75 – 103

LIST OF TABLES

TABLE NO.	TITLE	PAGE
3.1	Calculation Time Comparison	27
4.1	Correlation and Gradient value for various θ	38
4.2	Usable Volume for various θ	42
4.3	Correlation, Gradient value and Usable volume for various a	44
4.4	Correlation, Gradient value and Usable volume for various d	48
4.5	Correlation, Gradient value and Usable volume for various l	54
4.6	Correlation, Gradient value and Usable volume for various d	60

LIST OF FIGURES

FIGURE	NO.
--------	-----

TITLE

PAGE

2.1	Precession of (a) Nucleus with External Field, B_0 and (b)	
	Spinning Top with Gravity	8
2.2	Block Diagram of a Simple MRI/NMR Hardware	9
2.3	z axis Maxwell Coil	11
2.4	x axis Golay Coil	12
2.5	y axis Golay Coil	13
2.6	Biot-Savart's Law	14
2.7	(a) A Finite Wire Carrying a Current I with the Magnetic Field	
	at M is Out of the Paper and (b) The Limiting Angles θ_1 and θ_2	15
3.1	x axis Golay Coil Simulation Model	20
3.2	x axis Golay Coil Simulation Model on xy Plane	21
3.3	z axis Maxwell Coil Simulation Model	21
3.4	z axis Maxwell Coil Simulation Model on xy Plane	22
3.5	Flow Chart of Research Methodology	22
3.6	Parameters for Parametric Equation of Circle	23
3.7	Parameters Related to Finite Length Segment \overrightarrow{AB} and	
	Measurement Point, M	24
3.8	Execution Flow of the Simulation	26
3.9	Example Plot to Determine the Linearity Range	28
3.10	Example Plot to Determine the Usable Region on xy Plane	29
3.11	Example Plot to Determine the Usable Region on xz Plane	29
4.1	x axis Golay Coil with a Three-dimensional Calculation Grid	32
4.2	Three-dimensional Contour Surface Plot	32
4.3	Three-dimensional Contour Plot	32
4.4	Projected Two-dimensional Contour Plot on xy Plane	33
4.5	Projected Two-dimensional Contour Plot on xz Plane	33
4.6	Projected Two-dimensional Contour Plot on yz Plane	33

4.7	(a) x axis and (b) y axis Golay Coil	34
4.8	x axis Golay Coil with (a) xz Calculation Plane and (b) xy	
	Calculation Plane	34
4.9	B_z versus x at $(y, z) = (0, 0)$	36
4.10	B_z versus x at $z = 0$ for various y	36
4.11	B_z versus x at $y = 0$ for various z	36
4.12	$ riangle_{\%}$ Contour Plot on <i>xy</i> Plane at 5% interval at $z = 0$	37
4.13	$ riangle_{\%}$ Contour Plot on xz Plane at 5% interval at $y = 0$	37
4.14	B_z versus x for various θ at $(y, z) = 0$	39
4.15	$ riangle_{\%}$ Contour Plot on xy Plane at 5% interval at $z = 0$ for $\theta = 80^0$	39
4.16	$ ilde{}_{\%}$ Contour Plot on xy Plane at 5% interval at $z = 0$ for $\theta = 100^0$	39
4.17	$ imes_{\%}$ Contour Plot on xy Plane at 5% interval at $z = 0$ for $\theta = 140^{\circ}$	40
4.18	$ ilde{}_{\%}$ Contour Plot on xy Plane at 5% interval at $z = 0$ for $\theta = 160^0$	40
4.19	$ riangle_{\%}$ Contour Plot on xz Plane at 5% interval at $y = 0$ for $\theta = 80^0$	40
4.20	$ ilde{}_{\%}$ Contour Plot on xz Plane at 5% interval at $y = 0$ for $\theta = 100^0$	41
4.21	$ ilde{}_{\%}$ Contour Plot on xz Plane at 5% interval at $y = 0$ for $\theta = 140^0$	41
4.22	$ ilde{}_{\%}$ Contour Plot on xz Plane at 5% interval at $y = 0$ for $\theta = 160^0$	41
4.23	Different Focal Point of Two Arcs of Golay Coil	43
4.24	B_z versus x for various a at $(y, z) = 0$	43
4.25	$ riangle_{\%}$ Contour Plot on xy Plane at 5% interval at $z = 0$ for $a = 2.5r$	44
4.26	$ ilde{}_{\%}$ Contour Plot on xy Plane at 5% interval at $z = 0$ for $a = 3.0r$	45
4.27	$ ilde{}_{\%}$ Contour Plot on xy Plane at 5% interval at $z = 0$ for $a = 3.5r$	45
4.28	$ imes_{\%}$ Contour Plot on xy Plane at 5% interval at $z = 0$ for $a = 4.0r$	45
4.29	$ imes_{\%}$ Contour Plot on xy Plane at 5% interval at $z = 0$ for $a = 4.5r$	46
4.30	$ ilde{}_{\%}$ Contour Plot on xz Plane at 5% interval at $y = 0$ for $a = 2.5r$	46
4.31	$ ilde{}_{\%}$ Contour Plot on xz Plane at 5% interval at $y = 0$ for $a = 3.0r$	46
4.32	$ ilde{}_{\%}$ Contour Plot on xz Plane at 5% interval at $y = 0$ for $a = 3.5r$	47
4.33	$ riangle_{\%}$ Contour Plot on xz Plane at 5% interval at $y = 0$ for $a = 4.0r$	47
4.34	$ ilde{}_{\%}$ Contour Plot on xz Plane at 5% interval at $y = 0$ for $a = 4.5r$	47
4.35	B_z versus x for various d at $(y, z) = 0$	48
4.36	$ riangle_{\%}$ Contour Plot on xy Plane at 5% interval at $z = 0$ for $d = 0.2r$	49
4.37	$ riangle_{\%}$ Contour Plot on xy Plane at 5% interval at $z = 0$ for $d = 0.4r$	49
4.38	$ riangle_{\%}$ Contour Plot on xy Plane at 5% interval at $z = 0$ for $d = 0.6r$	50
4.39	$ riangle_{\%}$ Contour Plot on xy Plane at 5% interval at $z = 0$ for $d = 0.8r$	50
4.40	$ riangle_{\%}$ Contour Plot on xy Plane at 5% interval at $z = 0$ for $d = 1.2r$	50
4.41	$ riangle_{\%}$ Contour Plot on xy Plane at 5% interval at $z = 0$ for $d = 1.4r$	51
4.42	$ riangle_{\%}$ Contour Plot on xz Plane at 5% interval at $y = 0$ for $d = 0.2r$	51
4.43	$ ilde{}_{\%}$ Contour Plot on xz Plane at 5% interval at $y = 0$ for $d = 0.4r$	51

4.44	$ riangle_{\%}$ Contour Plot on xz Plane at 5% interval at $y = 0$ for $d = 0.6r$	52
4.45	$ riangle_{\%}$ Contour Plot on xz Plane at 5% interval at $y = 0$ for $d = 0.8r$	52
4.46	$ riangle_{\%}$ Contour Plot on xz Plane at 5% interval at $y = 0$ for $d = 1.2r$	52
4.47	$ riangle_{\%}$ Contour Plot on xz Plane at 5% interval at $y = 0$ for $d = 1.4r$	53
4.48	B_z versus x for various l at $(y, z) = 0$	53
4.49	$ riangle_{\%}$ Contour Plot on <i>xy</i> Plane at 5% interval at $z = 0$ for $l = r$	54
4.50	$ riangle_{\%}$ Contour Plot on xy Plane at 5% interval at $z = 0$ for $l = 2r$	54
4.51	$ riangle_{\%}$ Contour Plot on xy Plane at 5% interval at $z = 0$ for $l = 4r$	55
4.52	$ riangle_{\%}$ Contour Plot on xy Plane at 5% interval at $z = 0$ for $l = 5r$	55
4.53	$ riangle_{\%}$ Contour Plot on xz Plane at 5% interval at $y = 0$ for $l = r$	55
4.54	$ riangle_{\%}$ Contour Plot on xz Plane at 5% interval at $y = 0$ for $l = 2r$	56
4.55	$ riangle_{\%}$ Contour Plot on xz Plane at 5% interval at $y = 0$ for $l = 4r$	56
4.56	$ riangle_{\%}$ Contour Plot on xz Plane at 5% interval at $y = 0$ for $l = 5r$	56
4.57	z axis Maxwell Coil with (a) xz Calculation Plane and (b) yz	
	Calculation Plane	57
4.58	B_z versus z at $(x, y) = (0, 0)$	58
4.59	$ riangle_{\%}$ Contour Plot on xz Plane at 5% interval at $y = 0$	58
4.60	$ riangle_{\%}$ Contour Plot on yz Plane at 5% interval at $x = 0$	59
4.61	B_z versus z at $(x, y) = (0, 0)$ for various d	60
4.62	$ riangle_{\%}$ Contour Plot on xz Plane at 5% interval at $y = 0$ for $d = 0.8r$	60
4.63	$ riangle_{\%}$ Contour Plot on xz Plane at 5% interval at $y = 0$ for $d = 1.2r$	61
4.64	$ riangle_{\%}$ Contour Plot on xz Plane at 5% interval at $y = 0$ for $d = 1.4r$	61
4.65	$ riangle_{\%}$ Contour Plot on xz Plane at 5% interval at $y = 0$ for $d = 1.6r$	61
4.66	$ riangle_{\%}$ Contour Plot on xz Plane at 5% interval at $y = 0$ for $d = 1.8r$	62
4.67	$ riangle_{\%}$ Contour Plot on xz Plane at 5% interval at $y = 0$ for $d = 2.0r$	62
4.68	$ riangle_{\%}$ Contour Plot on xz Plane at 5% interval at $y = 0$ for $d = 2.2r$	62
4.69	Magnetic Field Generated by a Straight Segment	64
4.70	Schematic of Gradient Value and Slice Thickness	66
4.71	Schematic of Gradient Value and Resolution	66

LIST OF ABBREVIATIONS

NMR	-	Nuclear Magnetic Resonance
MRI	-	Magnetic Resonance Imaging
RF	-	Radio Frequency
ROI	-	Region of Interest
VOI	-	Volume of Interest
DSV	-	Diameter Spherical Volume
VTK	-	Visualization Toolkit

LIST OF SYMBOLS

А	-	Ampere
Т	-	Tesla
m	-	meter
mT/m	-	mili-Tesla per meter
mT/m/A	-	mili-Tesla per meter per Ampere
GB	-	Gigabytes
ω	-	Larmor precession frequency
γ	-	Gyromagnetic ratio
μ_0	-	Permeability of free space
Ι	-	Current
r _c	-	Correlation coefficient
$\overrightarrow{\mathbf{AB}}$	-	Vector from A to B
\hat{u}_{AB}	-	Unit vector of \overrightarrow{AB}
$\overrightarrow{AB} \bullet \overrightarrow{CD}$	-	Dot product between vector \overrightarrow{AB} and \overrightarrow{CD}
$\overrightarrow{\mathbf{AB}}\times\overrightarrow{\mathbf{CD}}$	-	Cross product between vector \overrightarrow{AB} and \overrightarrow{CD}
$\vec{\mathbf{B}}$	-	Magnetic field (vector)
В	-	Magnetic field (scalar)
B_x	-	î component of magnetic field
B_y	-	$\hat{\mathbf{j}}$ component of magnetic field
B_z	-	$\hat{\mathbf{k}}$ component of magnetic field
B_0	-	Main magnetic field
B_1	-	Oscillating magnetic field/RF pulses
G_x	-	Magnetic field gradient in x direction
G_y	-	Magnetic field gradient in y direction

G_z	-	Magnetic field gradient in z direction
η	-	Magnetic field gradient efficiency
$\Delta_{\%}$	-	Magnetic field gradient uniformity

LIST OF APPENDICES

APPENDIX	TITLE	PAGE
А	MODULE	75
В	CODE FOR GOLAY COIL	79
С	CODE FOR MAXWELL COIL	86
D	VTK FILE FORMAT	92
Е	PUBLICATION A	94
F	PUBLICATION B	103