TABLE OF CONTENTS

CHAPTER

1

PAGE

DECLARATION	ii
DEDICATION	iii
ACKNOLEDGEMENT	iv
ABSTRACT	vi
ABSTRAK	vii
TABLE OF CONTENTS	viii
LIST OF TABELS	xii
LIST OF FIGURES	xiii
LIST OF SYMBOLS	xviii
LIST OF ABBREVIATION	XX
LIST OF APPENDICES	xxi

INT	RODUCTION	1
1.1	Background of Carbon nanotubes (CNTs)	1
1.2	Objectives of the Project	4
1.3	Scopes of the Project	5
1.4	Problem Statement	5

viii

LIT	ERAT	URE REVIEW	7
2.1	Intro	duction	7
2.2	Struc	ture of Carbon Nanotubes	10
	2.2.1	Semiconducting and Metallic Carbon Nanotubes	13
2.3	Mech	anical Properties of Carbon Nanotubes	14
	2.3.1	Elastic Behavior of CNTs	15
2.4	Short	Fiber	21
2.5	Curve	ed Fiber	25
2.6	Elasti	ic Moduli	28
	2.6.1	Definition of Stress	29
	2.6.2	Definition of Strain	30
	2.6.3	Axial Stresses	32
	2.6.4	Hooke's Law	34
ME	THOD	OLOGY	36
3 1	Intro	luction	26

2

3

3.1	Intro	duction	36
3.2	Finite	e Element Methods	37
3.3	Intro	duction of SolidWorks Software	38
3.4	Intro	duction of FEMAP Software	39
3.5	Intro	duction of MARC Mentat Software	40
3.6	Proce	ess of Research	41
3.7	Proce	edure of research	42
	3.7.1	Pre-Processing	42
	3.7.2	Processing	45
	3.7.3	Post-Processing	46
3.1	Opera	ational Framework	47

DA	TA and ANALYSIS	49
4.1	Introduction	49
4.2	Definition of Model	50
	4.2.1 Uniform Fiber Waviness Model	50
4.3	Finite Element Modeling	51
	4.3.1 Solid Works Software	52
	4.3.1.1 Straight Fiber	52
	4.3.1.2 The Fiber Waviness of 0.08	54
	4.3.2 Femap Software	58
	4.3.2.1 The Model with 630 Nodes	58
	4.3.2.2 The Model with 1287 Nodes	60
	4.3.2.3 The Model with 2288 Nodes	61
	4.3.3 MSC Marc Software	65
	4.3.3.1 Material Properties	65
	4.3.3.2 Boundary Condition	66
	4.3.3.3 Link	68
	4.3.3.4 Results	69
4.4	Analyzing	71
	4.4.1 Young's Modulus (<i>E</i>)	74
	4.4.1.1 Parallel (E_{II})	75
	4.4.1.2 Perpendicular (E22)	77
	4.4.2 Poisson's Ratio (v)	78
	4.4.2.1 Parallel	82
	4.4.2.2 Perpendicular	84
4.5	Validation	85
	4.5.1 Finite Element Analysis	86

4

х

5	RESULTS and DISCUSSION	91
	5.1 Introduction	91
	5.2 Results and Discussion	93
	5.2.1 Waviness Ratio ($w = a/L$)	93
	5.2.1.1 Young's Modulus (E)	93
	5.2.1.2 Poisson's Ratio (ν)	95
	5.2.2 Number of Nodes	99
	5.2.3 Volume Fraction (V_f)	102
	5.2.3.1 Young's Modulus (E)	103
	5.2.3.2 Poisson's Ratio (ν)	106
6	Conclusion and Recommendation	109
	6.1 Introduction	109
	6.2 Conclusion	110

6.3 Future Work	110
-----------------	-----

112

REFERENCE

APPENDIX 119

LIST OF TABLES

TABLE NO.	TITLE	PAGE
1.1	Comparison of mechanical properties of same popular	3
	composites and metals.	
2.1	Types of nanotubes based on chiral indices.	11
2.2	Commonly referenced mechanical properties of CNTs	19
	$(\mathcal{O}_{int} \text{ and } \mathcal{O}_{ext} \text{ correspond to inner and outer diameter})$	
	respectively).	
2.3	Comparison of mechanical properties of CNTs, Carbon,	20
	and Kevlar fibers and high-tensile steel. The values for	
	the CNT were taken for a SWCNT of diameter 10 nm,	
	using the entire area enclosed by the tube to normalize	
	stiffness/strength.	
2.4	Experimental stress-strain data for a variety of	22
	glass/epoxy systems.	
4.1	Fiber and matrix of model separately.	56
4.2	Assembly of model.	57
4.3	The other models which are used in the project.	63
4.4	The model with 2288 nodes in 4 different volume	64
	fractions.	

LIST OF FIGURES

FIGURE NO.	TITLE	PAGE
1 1	Specific strength and stiffness of some nonvior	4
1.1	composites and metals.	4
2.1	Roll-up vectors defining the structure of Carbon	11
	nanotubes. (a) Graphene lattice and (b) Carbon	
	nanotube.	
2.2	Zig-zag, chiral and armchair nanotubes and their	12
	corresponding caps.	
2.3	Conductivity roadmap for SWCNTs indicating the	14
	conductivity of the nanotube produced with a chiral	
	vector of given (n,m) integers.	
2.4	Images of nanotube-reinforced polymers (a) TEM	15
	image of MWNTs (1wt.%) in polystyrene. (b) SEM	
	image of MWNTs (50 wt. %) in poly (vinyl alcohol).	
2.5	Specific strength vs. specific modulus for the most	21
	common materials compared to CNTs. Chart modified	
	from Ashby's plots.	
2.6	Schematic of laminate analogy for predicting	24
	mechanical properties of 2-dimensional short fiber	
	composite.	

xiii

2.7	Effects of fiber aspect ratio, fiber volume fraction, and	25
	fiber-to-matrix stiffness ratio on the longitudinal	
	stiffness of unidirection-ally oriented, short glass	
	fiber/epoxy composites.	
2.8	Definitions of tensile stress σ .	29
2.9	Definitions of tensile strain.	31
2.10	A plate loaded in tensile.	34
3.1	(a) carbon nanotube, (b) equivalent continuum model,	41
	(c) effective fibre, and (d) 3D element fibre.	
3.2	Schematics of models to evaluate effective mechanical	43
	properties of Nanotube composite: (a) nanocomposite;	
	(b) coordinate systems.	
3.3	Operational framework.	48
4.1	Representative volume element (RVE) and coordinates	51
	for a unidirectional composite with graded waviness.	
4.2	Fundamental model of composite reinforced with	53
	carbon nanotube: (a) Fiber; (b) matrix; (c) assembly	
	model.	
4.3	Fundamental model of composite reinforced with	54
	carbon nanotube: (a) Fiber; (b) matrix; (c) assembly	
	model.	
4.4	Model with straight fiber: (a) meshed fiber; (b) meshed	59
	matrix.	
4.5	Model with 0.08 waviness ratio of fiber: (a) meshed	59
	fiber; (b) meshed matrix.	
4.6	Model with straight fiber: (a) meshed fiber; (b) meshed	60
	matrix.	
4.7	Model with 0.08 waviness ratio of fiber: (a) meshed	61
	fiber; (b) meshed matrix.	
4.8	Model with straight fiber: (a) meshed fiber; (b) meshed	62
	matrix.	

4.9	Model with 0.08 waviness ratio of fiber: (a) meshed	62
	fiber; (b) meshed matrix.	
4.10	Materials of the model mentioned above.	66
4.11	Boundary condition of the model where the parallel	67
	force is exerted to the fiber.	
4.12	Boundary condition of the model where force is	67
	exerted perpendicular to the fiber.	
4.13	(a) A model linked parallel to the fiber (b) A model	69
	linked perpendicular to the fiber.	
4.14	Model resizing under parallel force.	70
4.15	Model resizing under the perpendicular force.	70
4.16	Dimension of the selected model.	72
4.17	The force in the fiber direction (a) full view of the selected	79
	model (b) <i>x-y</i> plane (c) <i>x-z</i> plane (d) <i>y-z</i> plane.	
4.18	The force in prependicular direction to the fiber (a) full	80
	view of the selected model (b) x - y plane (c) x - z plane (d)	
	<i>y-z</i> plane.	
4.19	Schematic of the finite element cell model of an	86
	embedded wavy nanotube. For the particular model	
	shown $w = a/L = 0.01$ and $(L/d) = 100$.	
5.1	Illustrative example of evaluating nanotube waviness.	92
5.2	Young's modulus (<i>E</i>) as a function of nanotube	94
	waviness ratio ($w = a/L$) for different meshes where	
	the displacement is applied in the longitudinal	
	direction (for a volume fraction $V_f = 0.014$).	
5.3	Young's Modulus (E) as a function of nanotube	95
	waviness ratio ($w = a/L$) for different meshes where	
	the displacement is applied in the transverse direction	
	(for a volume fraction $V_f = 0.014$).	
5.4	Poisson's ratio v_{yx} as a function of waviness	96
	parameter $w = a/L$ for three cases of meshing where	
	the displacement is applied in the longitudinal	
	direction (for volume fraction $V_f = 0.014$).	
	×) /	

5.5	Poisson's ratio v_{yz} as a function of waviness parameter	97
	w = a/L for three cases of meshing where the	
	displacement is applied in the longitudinal direction	
	(for volume fraction $V_f = 0.014$).	
5.6	Poisson's ratio v_{yx} as a function of waviness	98
	parameter $w = a/L$ for three cases of meshing when	
	the displacement is applied in the transverse direction	
	(for volume fraction $V_f = 0.014$).	
5.7	Poisson's ratio v_{yz} as a function of waviness parameter	99
	w = a/L for three cases of meshing where the	
	displacement is applied in the transverse direction (for	
	volume fraction $V_f = 0.014$).	
5.8	Effect of meshing on the Young's modulus (E) values	101
	calculated by FEM simulation for different nanotubes	
	waviness ratios ($w = a/L$) where the displacement is	
	applied in the longitudinal direction (for volume	
	fraction $V_f = 0.014$).	
5.9	Effect of meshing on the Young's modulus (E)	102
	values calculated by FEM simulation for different	
	nanotubes waviness ratios ($w = a/L$) where the	
	displacement is applied in the transverse direction (for	
	volume fraction $V_f = 0.014$).	
5.10	Young's modulus (E) as a function of nanotube	103
	waviness ratio ($w = a/L$) for different volume	
	fractions (V_f) where the displacement is applied in the	
	longitudinal direction (With 2288 Nodes).	
5.11	Young's modulus (E) as a function of nanotube	105
	waviness ratio ($w = a/L$) for different volume	
	fraction (V_f) where the displacement is applied in the	
	longitudinal direction (With 2288 Nodes).	

5.12	Poisson's ratio ϑ_{yx} as function of volume fraction (V_f)	106
	for different nanotube waviness ratios ($w = a/L$)	
	where the displacement applied in the longitudinal	
	direction (With 2288 Nodes).	
5.13	Poisson's ratio ϑ_{yz} as function of volume fraction (V_f)	107
	for different nanotube waviness ratios ($w = a/L$)	
	where the displacement is applied in the longitudinal	
	direction (With 2288 Nodes).	

LIST OF SYMBOLS

SYMBOL

DISCRIPTION

°C	Degree celcius
C _h	Chiral vector
θ	Chiral angle
a_1 , a_2	Vectors of the hexagonal graphite lattice
R_{NT}	Radius of any nanotube
Ε	Young's modulus
σ_{f}	Fracture stress
σ_y	Yield stress
E^b	Bending elastic modulus of a CNT
E^{a}	Axial elastic modulus of a CNT
E^w	Wall elastic modulus of a CNT
$O \!\!\!\! {\cal O}_{int}$	Diameter of the inner wall of a MWCNT
\mathcal{O}_{ext}	Diameter of the outer wall of a MWCNT
F	Force
σ	Tensile stress
σ_{nom}	Nominal stress
A	Cross section
ΔL	Displacement
L	Initial length
ν	Poisson's ratio

Tensile strain
Lateral Strain
Diameter on nanotube (NT)
Wavelength of the NT waviness
Amplitude of the NT waviness
Fiber waviness ratio
Volume fraction of fiber
Volume fraction of matrix
Young's modulus of matrix
Young's modulus of fiber (CNT)
Poisson's ratio of matrix
Poisson's ratio of fiber (CNT)
Sectional area of the fiber (CNT)
Area of matrix
Area of composite
Sum of reaction forces
Longitudinal Young's modulus
Transverse Young's modulus
Poisson's ratio in y-x plane
Poisson's ratio in y-z plane
Strain in x direction
Strain in y direction
Strain in z direction
Displacement of x direction
Displacement of y direction
Displacement of z direction
Effective modulus of the cell
Effective reinforcing modulus
Ratio of CNT modulus and matrix modulus
Percentage of error

LIST OF ABBREVIATIONS

CNT	Carbon Nanotube
ESD	Dissipation of electrostatic charge
SWCNT	Single Wall Carbon Nanotube
MWCNT	Multi Wall Carbon Nanotube
AFM	Atomic Force Microscopy
TEM	Transmission Electronic microscopy
FE	Finite Element
FEM	Finite Element Method
NT	Nanotube
FEA	Finite Element Analysis
RVE	Representative Volume Element

LIST OF APPENDICES

APPENDIX	TITLE	PAGE
1	Project Schedule in Pre-Project	119
2	Project Schedule in Final Project	120