brought to you by T CORE

vii

28

TABLE OF CONTENTS

CHAPTER	TITLE	PAGE
	DECLARATION	ii
	DEDICATION	iii
	ACKNOWLEDGEMENTS	iv
	ABSTRACT	v
	ABSTRAK	vi
	TABLE OF CONTENTS	vii
	LIST OF TABLES	X
	LIST OF FIGURES	xii
	LIST OF SYMBOLS	XV
	LIST OF APPENDICES	xvi
1	INTRODUCTION	
	1.1 Background	1
	1.2 Biomass	5
	1.3 Fundamental Combustion of Biomass	8
	1.4 Densification (Briquetting)	10
	1.5 Binding Mechanism	13
	1.6 Briquetting Technology	15
	1.7 Objectives and Scopes	18
2	PREHEATING AND PROPERTIES OF BRIQU	J ETTES
	2.1 Effect of Preheating	19
	2.2 Factors Affecting Strength and Durability	23

Study on Combustion Characteristics

2.3

METHODOLOGY

3.1	Raw Materials		
3.2	Proxir	nate Analysis	35
	3.2.1	Determination of Moisture Content	38
	3.2.2	Determination of Volatile Matter	38
	3.2.3	Determination of Ash Content	39
	3.2.4	Determination of Fixed Carbon	39
3.3	Calori	fic Value	40
3.4	Prepar	ration of Mixture	41
3.5	Brique	etting Process	43
3.6	Physic	cal Characteristics of Briquettes	44
	3.6.1	Relaxed Density	45
	3.6.2	Compressive Strength	45
3.7	Study	on Characterization of Combustion	46
	Proces	58	
	3.7.1	Stove and Other Equipment	46
	3.7.2	Stove Settings for Combustion Study	48
	3.7.3	Determination of Combustion	48
		Characteristics	
		3.7.3.1 Combustion Rate	48
		3.7.3.2 Heat Release	49
		3.7.3.3 Ash Content	49
		3.7.3.4 Emissions	49
3.8	Summ	nary of Experimental Procedures	50
RESU	LT AN	ID DISCUSSION	
4.1	Calori	fic Value and Proximate Analysis for	52
	Raw N	Materials	
4.2	Result	ts for Different Mixing Ratio	54
	4.2.1	Physical Characteristics	55
	4.2.2	Combustion Properties/ Characteristics	57
		4.2.2.1 Gross Calorific Value	58
		4.2.2.2 Proximate Analysis	59
4.3	Result	ts for Different Compaction Pressure	60

3

4

4.3.1	Physical Characteristics	61
4.3.2	Combustion Properties/ Characteristics	62
	4.3.2.1 Gross Calorific Value	63
	4.3.2.2 Proximate Analysis	64
	4.3.2.3 Combustion Rate	66
	4.3.2.4 Heat Release	69
	4.3.2.5 Ash Content	70
	4.3.2.6 Emissions	71

CONCLUSION AND FUTURE WORKS

5

5.1	Conclusion	73
5.2	Future Works	74

REFERENCES		76
Appendices	A-E	80-121

LIST OF TABLES

TABLE NO	TITLE	PAGE
1.1	Primary commercial energy supply by source	5
1.2	Comparison of densification techniques for straw	12
1.3	Advantages and disadvantages of piston press	15
	technology	
1.4	Advantages and disadvantages of screw press	16
	technology	
2.1	Briquetting without preheating	21
2.2	Briquetting with preheating	21
2.3	Effect of moisture contents on compressive	27
	strengths	
2.4	Technical characteristics of rice husk briquettes	30
2.5	Palm biomass generated in year 2005	32
3.1	Palm biomass generated in year 2005	33
3.2	Ultimate analysis of solid oil palm residues	34
3.3	Standard used for proximate analysis	36
4.1	Calorific values for raw materials	53
4.2	Emissions from combustion of briquette contains	71
	mixture of mesocarp fibre and shell (60:40)	
4.3	Emissions from combustion of briquette contains	72
	Mixture of EFB fibre and mesocarp fibre (60:40)	
A1-A3	Results of calorific values for raw materials	81
A4-A6	Summary of calorific values for raw materials	84
A7-A10	Summary of calorific values for briquettes with	85
	different mixing ratio (compaction pressure 7 MPa)	

A11-A15	Summary of calorific values for briquettes contains	86
	mesocarp fibre and shell (60:40)	
A16-A20	Summary of calorific values for briquettes contains	87
	EFB fibre and mesocarp fibre (60:40)	
B1	Proximate analysis for raw materials	89
B2	Proximate analysis for different mixing ratio of	91
	EFB fibre and mesocarp fibre	
B3	Proximate analysis for briquette contains mesocarp fibre	93
	and shell (60:40)	
B4	Proximate analysis for briquette contains EFB fibre	95
	and mesocarp fibre (60:40)	
C1-C4	Summary of compressive strength for different	100
	mixing ratio	
C5-C9	Summary of compressive strength for briquette contains	104
	Mesocarp fibre and shell (60:40)	
C10-C14	Summary of compressive strength for briquette contains	108
	EFB fibre and mesocarp fibre (60:40)	
D1-D5	Summary of combustion rate and heat release for	112
	briquette contains mesocarp fibre and shell (60:40)	
D6-D10	Summary of combustion rate and heat release for	116
	briquette contains EFB fibre and mesocarp fibre (60:40)	
E1-E5	Summary of ash content for briquette contains mesocarp	119
	fibre and shell (60:40)	
E6-E10	Summary of ash content for briquette contains EFB	120
	fibre and mesocarp fibre (60:40)	

LIST OF FIGURES

FIGURE NO	TITLE	PAGE
1.1	Energy prices for 1980-2030	1
1.2	Energy consumption by fuel, 1980-2030	2
1.3	Products from thermo chemical biomass processing	8
1.4	Biomass combustion cycle	9
1.5	Baled straw	11
1.6	Wood pellet	11
1.7	Sawdust briquettes	11
1.8	Binding mechanisms	13
1.9	Pressure versus relaxed density for briquettes	17
2.1	Screw press type	20
2.2	Effect of temperature on density of briquette	22
2.3	Shatter index versus ratio of biomass	25
2.4	Compressive strength versus ratio of biomass	25
2.5	Images of briquetting failure under compression	26
2.6	Effect of polyethylene content on ignition point	30
2.7	Ignition times of coal briquettes with different moisture	31
	content and ignition temperature	
2.8	Burning profile of palm biomass briquettes	32
3.1	Production process for fibre industry	34
3.2-3.4	Image of raw materials	35
3.5-3.7	Equipment for proximate analysis	37
3.8	Calorimeter system at UTM, Skudai	40
3.9-3.11	Grinded raw materials	41
3.12	Mould of mixture	42
3.13	YASUI hydraulic hand press	43

3.14-3.15	Die sets for making briquette	44
3.16	Instron machine	45
3.17	Stove and mechanical balance	46
3.18-3.19	Equipment for combustion study	47
3.20	Experimental Procedures	51
4.1	Proximate analysis for raw materials	54
4.2	Image for Briquette with mixing ratio 80:20	55
4.3	Graph of relaxed density for different mixing ratio	56
4.4	Image of compression test	56
4.5	Crack on briquette after compression test	56
4.6	Graph of compressive strength versus weight percentage	57
	Of EFB fibre	
4.7	Gross calorific value versus weight percentage of EFB	58
4.8	Result of proximate analysis for case of different ratio	59
4.9-4.10	Images of briquette produced	60
4.11	Relaxed density versus compaction pressure	61
4.12	Compressive strength versus compaction pressure	62
4.13	Gross calorific values for briquettes with different	64
	compaction pressure	
4.14	Proximate analysis for briquette contains mixture of	65
	mesocarp fibre and shell	
4.15	Proximate analysis for briquette contains mixture of	66
	EFB fibre and mesocarp fibre	
4.16	Images of briquette combustion	67
4.17	Effect of compaction pressure on combustion rate	68
4.18	Effect of compaction pressure on heat release	69
4.19	Ash content for briquette contains mesocarp fibre and shell	70
4.20	Ash content for briquette contains EFB fibre and mesocarp	70
	fibre	
A1-A3	Results of calorific values for raw materials	81
C1-C4	Compressive strength for case of different mixing ratio	98
C5-C9	Compressive strength for briquette contains mesocarp	101
	fibre and shell	

C10-C14	Compressive strength for briquette contains EFB	105
	fibre and mesocarp fibre	
D1-D5	Combustion rate for briquette contains mesocarp fibre	110
	and shell	
D6-D10	Combustion rate for briquette contains EFB fibre	114
	and mesocarp fibre	

LIST OF SYMBOLS

Т	-	Temperature
'n	-	Mass burning rate or combustion rate
wt%	-	Weight percentage
р	-	Compaction pressure
η	-	Efficiency
т	-	Mass

LIST OF APPENDICES

APPENDIX

TITLE

PAGE

A	Calorific Values	80
В	Result of Proximate Analysis	88
С	Compressive Strength	97
D	Combustion Rate and Heat Release	109
E	Ash Content	118