brought to you by CORE

ix

TABLE OF CONTENTS

CHAPTER

TITLE

PAGE

DECLARATION	ii
DEDICATION	iii
ACKNOWLEDGEMENT	vi
ABSTRACT	viii
ABSTRAK	viii
TABLE OF CONTENTS	vii
LIST OF TABLES	xiii
LIST OF FIGURES	xii
LIST OF SYMBOLS	xiv
LIST OF ABBREVIATIONS	XV

1 INTRODUCTION

1.1	Introduction	1
1.2	Literature Review	2
1.3	Problem Statement	4
1.4	Objectives	5
1.5	Scope	6
1.6	Project Report Organization	6

2

FAULT LOCATION TECHNIQUES

2.1	Introduction			8
2.2	Impeda	ance		8
2.3	Neural	Network S	System method	9
2.4	Travell	Travelling Waves		
	2.4.1	Transmis	ssion Line Equations	10
	2.4.2	Interpret	ation	14
	2.4.3	Propagat	ion Constant	16
	2.4.4	Reflectio	n and Refraction of Travelling Waves	16
	2.4.5	Line Ter	mination	19
		2.4.5.1	Line Terminated in a Short Circuit	19
		2.4.5.2	Line Open Circuited at Receiving End	20
2.5	Summa	ary		21

3 FAULT LOCATION VIA SIGNAL PROCESSING

FAULT LOCATION VIA SIGNAL PROCES

3.1 Introducation 22 3.2 Time Domain Approach 22 3.2.1 Statistical Analysis 23 Signal Derivative 3.2.2 26 3.3 Frequency Domain Approach 28 3.3.1 Fourier Transform 28 3.4 Time-Frequency-Domain Approach 30 Short Time Fourier Transform 3.4.1 30 Wavelet Transform 3.4.2 31 34 3.4.3 Filter Bank 3.5 Summary 35

8

4

TRAVELLING WAVE FAULT LOCATION

4.1	Introduction	36
4.2	Travelling Wave Extraction	36
4.3	Fault Location Techniques	37
	4.3.1 Single-Ended Technique	38
	4.3.2 Double-Ended Technique	40
4.4	The Algorithm for Single-Ended Technique	41
4.5	The Algorithm for Double-Ended Technique	43
4.6	Summary	45

5 **RESULTS AND DISCUSSION**

5.1 Introduction 46 5.2 Test Power System 46 5.3 Simulation Cases 47 5.3.1 Fault Distance 47 5.3.2 Fault Types 47 5.3.3 Fault Inception Angle 47 5.4 Effect of Transformer on Travelling Waves 48 48 5.4.1 Single-Ended Technique Cases 5.4.1.1 Phase 'a' to Ground Fault at 10 km on Transmission Line T1 48 Phase 'a' to Ground Fault at 20 km on 5.4.1.2 Transmission Line T2 49 5.4.1.3 Phase 'a' to Ground Fault at 35 km on Transmission Line T3 50 5.4.1.4 Phase 'a' to Ground Fault at 80 km on Transmission Line T4 50 Phase 'a' to Ground Fault at 60 km on 5.4.1.5 Transmission Line T5

36

46

		5.4.1.6	Phase 'a' to Ground Fault at 100 km on	l
			Transmission Line T6	51
		5.4.1.7	Phase 'a' to Ground Fault at 110 km on	L
			Transmission Line T7	52
		5.4.1.8	Phase 'a' to Ground Fault at 90 km on	
			Transmission Line T8	53
	5.4.2	Double-l	Ended Technique Cases	54
		5.4.2.1	Phase 'a' to Ground Fault at 10 km on	
			Transmission Line T1	54
		5.4.2.2	Phase 'a' to Ground Fault at 20 km on	
			Transmission Line T2	54
		5.4.2.3	Phase 'a' to Ground Fault at 35 km on	
			Transmission Line T3	55
		5.4.2.4	Phase 'a' to Ground Fault at 80 km on	
			Transmission Line T4	55
		5.4.2.5	Phase 'a' to Ground Fault at 60 km on	
			Transmission Line T5	56
		5.4.2.6	Phase 'a' to Ground Fault at 100 km on	l
			Transmission Line T6	56
		5.4.2.7	Phase 'a' to Ground Fault at 110 km on	l
			Transmission Line T7	57
		5.4.2.8	Phase 'a' to Ground Fault at 90 km on	
			Transmission Line T8	57
CON	CLUSION	N AND FU	TURE WORK	70
6.1	Conclu	sion		70
U. 1	Conclu	51011		, 0

6.2	Suggestions of Future Works	71
REFERENCES		72
Appendices A - B		75 - 80

LIST OF TABLES

TABLE NO.	TITLE	PAGE
5.1	Result Of Fault Location Single end	53
5.2	Result Of Fault Location Multi end	58

LIST OF FIGURES

FIGURE NO.

TITLE

PAGE

2.1	Transmission line equivalent circuit	10
2.2	Transmission line equivalent circuit	11
2.3	A positive travelling wave	16
2.4	Bewley's Lattice diagram	17
3.1	Aerial mode current signal for a fault at 63 km as a function of	
	distance in km	25
3.2	Auto-correlation function for a fault current signal at 63 km as a	
	function of distance in km	26
3.3	Current travelling wave I and first difference filter output I θ [A]	27
3.4	Current travelling wave (blue) and its second difference output	
	(black) as a function of time in samples	28
3.5	Wavelet transform filter bank	35
4.1	Step changes in voltage due to travelling waves	37
4.2	Travelling waves on a single circuit transmission line in sample	
	power system	38
4.3	Sequence filter output at relay Ra	39
4.4	Travelling waves on a single circuit transmission line protected	
	with double ended technique	40
4.5	Flowchart for the single-ended technique	42
4.6	Flowchart for the double-ended technique	44
5.1	Voltage and current sequence filters at bus B1 for phase 'a' to	
	ground fault at 10 km	59
5.2	Voltage and current sequence filters at bus B2 for phase 'a' to	
	ground fault at 20 km	59
5.3	Voltage and current sequence filters at bus B4for phase 'a' to	

	ground fault at 35 km	59
5.4	Voltage and current sequence filters at bus B2 for phase 'a' to	
	ground fault at 80 km	60
5.5	Voltage and current sequence filters at bus B4for phase 'a' to	
	ground fault at 60 km	60
5.6	Voltage and current sequence filters at bus B8for phase 'a' to	
	ground fault at 100 km	60
5.7	Voltage and current sequence filters at bus B7 for phase 'a' to	
	ground fault at 110 km	61
5.8	Voltage and current sequence filters at bus B12 for phase 'a' to	
	ground fault at 90 km	61
5.9	voltage and current sequence filters at bus B13 when applied the	
	fault at b12	61
5.10	Voltage and current sequence filters at bus B2 and B3 for phase 'a'	
	to ground fault at10 and 25 km	62
5.11	Voltage and current sequence filters at bus B3 and B4 for phase 'a'	
	to ground fault at20 and 20 km	63
5.12	voltage and current sequence filters at bus B4 and B6 for phase 'a'	
	to ground fault at35 and 45 km	64
5.13	Voltage and current sequence filters at bus B2 and B6 for phase 'a'	
	to ground fault at80 and 20 km	65
5.14	Voltage and current sequence filters at bus B4 and B9 for phase 'a'	
	to ground fault at60 and 50 km	66
5.15	Voltage and current sequence filters at bus B8 and B9 for phase 'a'	
	to ground fault at100 and 30 km	67
5.16	voltage and current sequence filters at bus B7 and B8 for phase 'a'	
	to ground fault at110 and 60 km	68
5.17	voltage and current sequence filters at bus B12 and B15 for phase	
	'a' to ground fault at90 and 70 km	69

LIST OF SYMBOLS

α	-	Attenuation constant [Nepers/m]
Y	-	Admittance [⁷]
С	-	Capacitance [F]
Z_0	-	Characteristic impedance $[\Omega]$
G	-	Conductance [⁷⁵]
L	-	Inductance [H]
Ψ	-	Mother Wavelet
v	-	Propagation speed [km/s]
γ	-	Propagation constant
R	-	Resistance $[\Omega]$
t	-	Time [s]
i ₀	-	
D	-	Distance [km]

LIST OF ABBREVIATIONS

EHV	-	Extra High Voltage
EMTDC	-	Electromagnetic Transient Direct Current Analysis
PSCAD	-	Power Systems Computer Aided Design
GPS	-	Global Positioning System
ATP	-	Alternative Transients Program
ATPDraw	-	A preprocessor for ATP
CCA	-	Cross Correlation Analysis
CWT	-	Continuous Wavelet Transform
DFT	-	Discrete Fourier Transform
DWT	-	Discrete Wavelet Transform
EMTP	-	Electromagnetic Transient Program
FFT	-	Fast Fourier Transform
STFT	-	Short Time Fourier Transform
TW	-	Travelling Wave
TWR	-	Travelling Wave Recorder
TDR	-	Time Domain Reflectometery
t_s		Sampling Time [sec]
t_i	-	Current transformation matrix
WTC	-	Wavelet Transform Coefficients
WCF	-	Wavelet Correlation Function

LIST OF APPENDICES

APPENDIX	TITLE	PAGE
A	Modal Analysis	76
В	System Parameters	78