vii

TABLE OF CONTENTS

CHAPTER	TITLE	PAGE
	DECLARATION	ii
	DEDICATION	iii
	ACKNOWLEDGEMENT	iv
	ABSTRACT	V
	ABSTRAK	vi
	TABLE OF CONTENTS	vii
	LIST OF FIGURES	xi
	LIST OF ABBREVIATIONS	xiv
1	INTRODUCTION	1
	1.1 Overview	1
	1.2 Problem Statement	2
	1.2.1 Complex Background Design	2
	1.2.2 Environmental Illumination	3
	1.2.3 Light Reflection	3
	1.2.4 Position Adjustment	4
	1.2.5 Round and Shiny Surfaces	4
	1.3 Objective	5
	1.4 Scope of Work	5
	1.5 Proposal Outline	6

	1.6	Summary	6
2	LITE	RATURE REVIEW	7
	2.1	Introduction	7
	2.2	Illumination Systems	8
		2.2.1 Single Point LED	9
		2.2.2 Linear Multiple LED	9
		2.2.3 Laser	10
		2.2.4 LED Imager	10
	2.3	Microcontroller	11
		2.3.1 Barcode Scanner with Adjustable Light Source	12
		2.3.2 Light Sensitive Automatic Flash control Circuit	13
		2.3.3 Smart Camera with Light Controller	14
		2.3.4 Synthetic Barcode System	15
		2.3.5 Integral Ambient Light and Occupancy Sensor	16
		2.3.6 Optical Scanner Head for Processing Barcode Data	17
		2.3.7 Portable Barcode Simulator Device and Method	18
	2.4	Understanding Lighting Systems Used in Barcode Readers	19
		2.4.1 Finding Suitable Automatic Illumination Control Circuit	19
		for the Barcode Readers Light Source 2.4.2 Techniques to Reduce Glare and Uneven Illumination	22
	2.5	Summary	23
3		HODOLOGY	24
3			
	3.1	Introduction	24
	3.2	Function of the Lighting System	24
	3.3	Flowchart of the Entire System	25

3.3.1 Computing the K Output Value	29
3.3.1.1 Computing the Output Value K Under	30
Different Light Conditions	
3.4 Software Part	31
3.4.1 Desktop Computer	32
3.4.2 Flowchart for Programming the Microcontroller	32
3.5 Hardware Part	33
3.5.1 Light Source Design	33
3.5.2 Control Circuit	34
3.5.2.1 Microcontroller	35
3.5.2.1.1 Higher Current Load Interface	37
3.5.2.2 Programming the Microcontroller	37
35.2.2 The Digital to Analogue Convertor Section	38
3.5.2.2.1 General Biasing Requirements	39
3.5.2.2.2 Output Considerations	40
3.5.2.3 The Power Section	41
4 RESULTS AND DISCUSSIONS	42
4.1 Introduction	42
4.2.1 Laboratory Experiment	43
4.2.1 Experiment No. 1	43
4.2.2 Experiment No. 2	45

4.2.3 Experiment No. 3	47
4.2.4 Experiment No. 4	49
4.2.5 Experiment No. 5	51
4.3 Discussions	53
5 CONCLUSIONS AND RECOMENDATIONS	55
5.1 Conclusions	55
5.2 Recommendations for Future Work	56
REFERENCES	57
APPENDICES (A-C)	

LIST OF FIGURES

FIGURE NO.	TITLE	PAGE
1.1(a)	Barcode printed on shiny book cover	2
1.1(b)	Barcode printed on plastic wrap	2
1.2	A barcode in low light.	3
1.3	Specula effect caused by the light reflected from the camera light source	3
1.4	Uneven illuminations on barcode from unusual angle	4
1.5	Barcode printed on a shiny round object	4
2.1	Block diagram of an operable light intensity control	12
2.2	A camera flash circuit	13
2.3	Smart Camera	14
2.4	Block diagram of components of an exemplary synthetic barcode module circuit	15
2.5	Block diagram of electrical circuitry that controls the operation of the sensor	17
2.6(a)	Optical barcode scanner	18
2.6(b)	System to transfer barcode data to host	18

2.7	Block diagram of an electronic bar code simulator (EBCS) device	19
2.8	Barcode scanner with adjustable light source	20
2.9	Automatic light detection circuits	21
2.10	LED light detection circuit	21
2.11	Motor controlled movable light source	22
2.12	Bare bulbs covered by shaded glass	23
2.13	Color coated anti-reflection objects	23
3.1	The block diagram of entire system	25
3.2	Flow chart of entire system	26
3.3	Frame with a pixel	28
3.4(a)	Position of histogram to the left	29
3.4(b)	Position of histogram to the right	29
3.5	Microcontroller programming flowchart	33
3.6	Reflector design details	34
3.7	Schematic diagram of control circuit	35
3.8	Pin layout diagram of PIC16F877A Microcontroller	36
3.9	Microcontroller programmer	38
3.10	Schematic diagram of the interface between DAC0800 and operational amplifier	40
3.11	Schematic diagram of the power circuit	41
4.1	Captured barcode printed on perfume bottle using conventional camera	44
4.2	Captured barcode printed on perfume bottle using developed system	45
4.3	Captured barcode printed on dove therapy plastic tube using conventional camera	46

4.4	Captured barcode printed on dove therapy plastic tube using	47
	developed system	
4.5	Captured barcode printed on Akkord webcam carton using	48
	conventional camera	
4.6	Captured barcode printed on Akkord webcam carton using	49
	developed system	
4.7	Captured barcode printed on Sun Quick juice bottle using	50
	conventional camera	
4.8	Captured barcode printed on Sun Quick juice bottle using	51
	developed system	
4.9	Captured barcode printed on a text book using conventional	52
	camera	
4.10	Captured barcode printed on a text book using developed	53
	system	

LIST OF ABBREVIATIONS

A/D - Analogue to Digital Convertor

CCD - Charged Coupled Device.

CD - Compact Disk

CDS - Cadmium Sulfide

CLK - Clock

CMOS - Complementary Metal Oxide

COM - Communication

CPU - Central Processing Unit

3-D - Three Dimensional

D/A - Digital to Analogue Convertor

EBCS - Electronic Barcode Stimulator

FET - Field Effect Transistor

FPS - Frame Per Second

I/O - Input- Output

IR - Infrared Red

K - Kilo-pixel

LDR - Light Dependent Resistor

LED - Light Emitting Diode

LVDS - Low Voltage Differential Signal

mA - Mill ampere

MCU - Microcontroller Unit

OP-AMP - Operational Amplifier

PC - Personal Computer

PDA - Personal Digital Assistant

RAM - Read Access Memory

ROM - Read Only Memory

SI - Start Integration

USB - Universal Serial Bus

VGA - Video Graphics Array

LIST OF APPENDICES

APPENDIX.	TITLE	PAGE
A	Schematic Diagram for the Control Circuit	60
В	Data Sheet	61
C	Source Code (C++)	65