
A new Approach for Selecting Best Resources Nodes by
Using Fuzzy Decision Tree in Grid Resource Broker

Asgarali Bouyer1, Mohammadbager Karimi1, Mansour Jalali1, Mohd Noor MD
SAP2

1Islamic Azad University- Miyandoab Branch
2University Technology of Malaysia-faculty of computer science and information system

basgarali2@siswa.utm.my, Mba_karimi@iaut.ac.ir Mansour_m200@iaum.ac.ir,
Mohdnoor@fsksm.utm.my

Abstract. Nowadays, Grid Computing has been accepted as an infrastructure to
perform parallel computing in distributed computational resources. Grid has
users, resources, and an information service (IS). Resource broker service is one
of the main services in grid to find resources, filter resources, allocate
resources, etc. Resource selection is part of resource broker that is an important
issue in a grid environment where a consumer and a service provider are
distributed geographically. In this paper, we design and implement a new data
mining –based Grid resource broker service for selection resources on grid
environment. The role of this resource broker service is using learning method
to find the best nodes according to the requirements of the job and the
distributed computing resources on the Grid. The provided application can be
executed on top of Globus Toolkit (GT) middleware. The results of experiments
show a strong effect in improving resource finding cycle.

Keywords: Grid Resource broker, Resource Selection, Data mining, Fuzzy
Decision Tree.

1 Introduction

Grid is a decentralized heterogeneous system that made up virtual organizations
(VOs). Each VO is composed of several different nodes. Each node can be server
computers, desktop PCs, clusters, and other kinds of hardware, which are sharing
some resources with other nodes. A main goal of grid computing is enabling
applications to identify resources dynamically to create distributed computing
environments [1].

The Grid allows executing jobs in different nodes. In order to perform job
scheduling and resource management at Grid level, usually it is used a Resource
Broker or a meta-scheduler. A resource broker is fundamental in any large-scale Grid
environment. The task of a Grid resource broker and scheduler is to dynamically
identify and characterize the available resources, and to select and allocate the most
appropriate resources for a given job. In a broker-based management system, brokers
are responsible for selecting best nods, ensuring the trustworthiness of the service
provider. Resource selection is an important issue in a grid environment where a
consumer and a service provider are distributed geographically across multiple

International Journal of Grid and Distributed Computing 49

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Universiti Teknologi Malaysia Institutional Repository

https://core.ac.uk/display/11787205?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

administrative domains. Choosing the suitable resource for a user job to meet
predefined constraints such as deadline, speedup and cost of execution is an important
problem in grids. In our approach, we highly have solved some of these problems [2].

In this paper we will not do a resource discovery method, but in fact we present a
novel way for selecting the best nodes in pool of discovered nodes. Resource
selection involves a set of factors including application execution time, available main
memory, disk (secondary memory), resource access policies, etc. resource selection
must consider information about resource reliability, prediction error probability, and
real time execution. However, these various performance measures can be considered
under the condition that the middleware allows adaptation of its internal scheduling
with desired application’s services. We have considered all of these factors in our
approach. Also to reach for better selection we used the Decision Tree with Fuzzy
Logic theory [3]. Induced decision trees are an extensively-researched solution to
classification tasks. The use of Fuzzy Logic techniques may be relevant in case
representation to allow for imprecise and uncertain values in features.

The rest of this paper is organized as follows. Section 2 refers to previous research
on resource brokering and scheduling. Section 3 describes Fuzzy Decision Tree
Algorithm in our method. section 4 discuss the system design and implementation
details of our OGSI-compliant Grid resource broker service, respectively. Section 5
describes experimental results and section 6 concludes the paper.

2. Related works

Many projects, such as DI-GRUBER [5], eNANOS [6], AppLes [7] and OGSI-
based broker [4] have been performed on grid. In this section we introduce some of
these brokers.

DI-GRUBER [5], an extension to the GRUBER brokering framework, was
developed as a distributed grid USLA based resource broker that allows multiple
decision points to coexist and cooperate in real-time. GRUBER has been
implemented in both Globus Toolkit4 (GT4) and Globus Toolkit3 (GT3). The part of
DI-GRUBER that dosing resource finding and selecting is called The GRUBER
engine. GRUBER engine is the main component of the GRUBER architecture and that
implements various algorithms to detect available resources and maintains a generic
view of resource utilization in the grid [5]. GRUBER does not itself perform job
submission, but it can be used in conjunction with one of various grid job submission
infrastructures.

The eNANOS Resource Broker is an OGSI-Compliant resource broker developed
as a Grid Service and is supported by Globus Toolkit (GT2 and GT3) middleware [6].
eNANOS architecture neither uses data mining methods to select the best nodes from
the pool of discovered nodes, nor implements in Web Services (WS) bases
frameworks.

AppLes (Application Level Scheduling) focuses on developing scheduling agents
for individual Grid applications [7]. AppLes agents have an application oriented
scheduling mechanism, and use static or dynamic application and resource

50 International Journal of Grid and Distributed Computing

information to select a set of resources. However, they perform resource discovering
and scheduling without considering resource owner policies. Also they do not support
system-oriented or extensible scheduling policies.

Another resource broker service has been presented by Young-Seok Kim and et al.
[4]. It is an OGSI- based broker that is supported by GT3. It is a new general purpose
OGSI-compliant Grid resource broker service that performs resource discovering and
scheduling with close interactions with GT3 Core and Base Services. This resource
broker service considers resource owner policies as well as user requirements on the
resources.

The EZ-Grid project [8] applies Globus services to create Grid resource usage
easier and more transparent for the user. This is obtained by developing easy-to-use
interfaces coupled with brokerage systems to assist the resource selection and job
execution process.

Another works have been done in resource selection field (e.g. Condor/G [15],
Nimrod/G, LSF and so forth), but we cannot introduce all of them in this paper.

Finally, we mention that none of those systems or brokers uses machine learning
methods to find (select) the best nodes for purposed jobs.

3. Fuzzy decision tree

Induced decision trees are an extensively-researched solution to classification
tasks. General decision tree always has a deterministic result, and therefore this
feature is not good in some application. Thus, if we can use DC with fuzzy logic, we
can achieve a better decision. Fuzzy decision Tree (FDT) is the generalization of
decision tree in fuzzy environment. The knowledge represented by fuzzy decision tree
is closer to the human classification [10]. In our approach we used a Fuzzy decision
tree (FDT).

3.1. Fuzzy Logic (FL)

Essentially, Fuzzy Logic (FL) is a multi-valued logic that allows middle values to
be defined between conventional evaluations like yes/no, true/false, black/white, etc.
Fuzzy logic is an extension of Boolean logic that replaces binary truth values with
degrees of truth. It was introduced in 1965 by Prof. L.Zadeh at the University of
California, Berkeley [9]. The basic notion of fuzzy systems is a fuzzy set. for
example, to classify the fuzzy set of climate, which may be consisted of members like
“Very cold”, “Cold”, “Warm”, “Hot”, and “Very hot”. The theory of fuzzy sets
enables us to structure and describe activities and observations, which differ from
each other only vaguely, to formulate them in models and to use these models for
various purposes - such as problem-solving and decision-making [9]. We will not
discuss fuzzy set such natural extensions here and more about fuzzy logic can be
found in [13].

International Journal of Grid and Distributed Computing 51

3.2. Fuzzy Decision Tree Algorithm

This algorithm is a developed version of ID3 that operate on fuzzy set and it will
produce a fuzzy decision tree (FDT). Before this, other researchers [3, 12] considered
the FDT in their applications. Thus, their results showed that this algorithm is suitable
for our approach. But there are two important points in making and applying FDT
[11]:
• Select the best attribute in each node to develop the tree: there are many criteria

for this aim, but we will use one of them.
• Inference procedure from FDT. In the classification step for a new sample in

FDT, we may encounter many leaf nodes with deferent confidence that offer
some classes for purposed sample. Thus, the fitness mechanism selection is
important here.

Before we express the algorithm, we will consider some assumptions and notation:
- The training examples will be called E set with N example. Each example has N
properties and every property Aj contain mj linguistic term and so the number of
output class will be as following.

Fuzzy terms for

- The set of exist examples in t nodes show by X .
- : represent the degree membership of example x belongs to the class ck.
- : represent the degree membership of crisp value for attribute j in example x
belongs to the fuzzy term in j attribute. Also consider four following formulas:

)

3.2.1 Creating a Fuzzy Decision Tree
Step1: Start with all the training examples, having the original weights (degree
membership of each sample to desired class is considered 1 value), in the root node.
In other words, all training examples are used with their initial weights (This initial
weight is not necessarily 1).

52 International Journal of Grid and Distributed Computing

Step2: if in one of the node t with fuzzy set X one of the below condition is true,
that node will consider as a leaf node.

Con1: for all examples of set X, the proportion for degree membership in a class to
sum of degree membership of all data to different classes is equal or greater than
θr .

Con2: sum of degree membership of all data in set X, less than Threshold θr .

Con3: there have not been existed another attribute for selection.

Step3: if any conditions of step 2 for desired node is not true, then this node should be
developed. Thus:
Step3.1: find all attributes in a path from root node to desired node, and then remove
it from attribute set. So remaining attribute will be more luck for selection.
Step3.2: for every remaining attribute (Ai), we should select an attribute according to
Entropy measure [10] to develop the tree ().

Step3.3: split X set into subsets so that, all elements in ,
there is a coefficient of fuzzy term for .

Step3.4: for every of these subsets, we will define nodes and
then the edges are labeled by values (i=1,2,…, mAmax). Then, the degree
membership for each example to new node will be computed as following.

Step3.5: exchange each Xi with X and then repeat step 2 and 3.

4. System Architecture

We have shown a general architecture for this approach (figure 1). Our supplied
application is performed on top of GT3. But it can be applied for GT4. For the nonce,
we have provided an isolated application that can be worked based on GT3, for this
purpose. The Result of every node is sent in an XML document and is stored in a
Temporary XML Database (TXD).

International Journal of Grid and Distributed Computing 53

Broker
Layer

GT middleware
Layer Job scheduler

MDS

Request broker (discovery)

Node1
Log file

Miner‐App Miner‐App Miner‐App….

Node2
Log file

Node3
Log file

Resource selector

Fuzzy DC executer

Selecting nodes for job

Submission

Global job
queue

Job
submission

Resource
monitoring TXD

Figure 1. General architecture for our broking

4.1. Miner Application

To do this, we want to install a Miner Application (MA) for every node in a
purposed grid. MA contains an internal small database (in log file role). One of the
primary tasks of MA is writing log file. When desired node is connected to grid, MA
must update its log file (insert a new record to database) or when a new job is
submitted to this node, MA will update the related record, because we want to know
the number of jobs that are executed on this node. At the moment, if the job is
finished successfully or if the job is failed for any reason, thus, MA will update the
log file (there is a Boolean field in table that if it is set to TRUE, this means that the
related job has been finished successfully, otherwise, it means that the job is not
successfully done and has failed). Also, we have considered some new tasks for Grid
Resource Broker (GRB), which we have called Optimal GRB. Before selecting any
nodes (for aimed job) by GRB, one of these tasks will be executed, this is responsible
for sending a packet to each node on grid besides previous tasks. Needless to say, this
task can be executed during recourses discovery operation by GRB. Further, as
already stated, there are many different methods to find resources (nodes), but will not

54 International Journal of Grid and Distributed Computing

concentrate on how we can discovery nodes; and we will not mention them in this
paper. Suppose that, there are many different nodes in our grid that are ready for
executing jobs and we want to select some nodes in the pool of these nodes. At the
beginning, GRB has sent a packet to each connected nodes to our grid. This packet
contains some information about a new job (e.g. IP Sender, Size of the job, Size of
needed RAM and HDD, average time needed for execution, approximate execution
start time, minimum power to CPU, etc.). On the other side, when MA in node gets
this packet, it will open the packet for analysis. If there are sufficient resources to do
the desired job, MA will perform a data processing technique on its own mini-
database (or its log file) to obtain some computation for this job. Some of produced
results are as follows:
• Average Hit Ratio (AHR): This attribute represents an average rate of success in

all previous times.
• Number of all submitted jobs on this node (AAJ).
• Number of all jobs submitted at this time, on the previous days, on this node

(AATPJ).
• Number of all jobs successfully finished at this time, on the previous days (NSTP).
• Hit Ratio for this time-period on previous days (HRTP). For example, how many

jobs in 1.30 AM o’clock to 2.00 o’clock have been executed?
• Average Size of successfully finished jobs (ASF).
• Average Response Time for finished jobs (ART).
• Average Response Time for jobs that have the same size as the purposed job and

have been successfully finished (ARTSS).
• Hit Ratio for the last twenty jobs (HRT).
• Date, Time and Size of the last successfully finished job (LSJ).
• Date, Time and Size of the last failed job (LFJ).
• Size of the largest successfully finished job (LSI).
• Numbers of all previous jobs that almost have the same size as the purposed job

(ASS). Needless to say, the size of the previous jobs is not exactly the same as the
size of the desired jobs. For example, for a job with size=340KB we must find all
of the previous jobs between 1K to 500KB size.

• Number of all previous jobs that have the same size as the purposed job and are
successfully finished (NSS).

• Moreover, processor speed and CPU availability (Idleness) are important for
choosing a node.
In addition to the node information, these results will be sent to GRB from any

node. There, GRB will analyze them to select/deselect the desired nodes. We mention
that always the last collected result will be saved by GRB.

4.2 Broker Layer

In this layer we have added two new sections beside general broker’s sections. The
first section is related to Request Broker section. This section must broadcast packet
to all of the nodes in grid, then it must receive and save the sent results from each
node in temporary XML database (TXD). Next, Recourse selector section will

International Journal of Grid and Distributed Computing 55

execute a Fuzzy decision Tree Algorithms on TXD (gathered result). We are doing
this task in sub-section inside Resource Selector that we call FDT executer. Whenever
this algorithm has finished its task, the next sub-section, SNJ (Selecting node for job),
will use the result of the algorithm to identify suitable nodes.

4.2.1. FDT executer
 This section is considered for executing FDT algorithm on TXD data. As you know,
FDT is a machine learning technique for extracting knowledge that is nearer human
decision. In this research, we have used FDT algorithm (FID3), because it is reliable
and flexible and also has a high accuracy in selecting samples. All used samples for
both training and testing are extracted from the provided database (TXD). After that
FDT algorithm was performed by FDT executer, therefore we can select a desired
class for purposed jobs. Also, Jobs can be divided in several groups: high reliability
jobs, real-time jobs, normal jobs, testing jobs and etc.

4.2.2. SNJ sub-layer
 Based on the gathered results from FDT executer, this section will select

appropriate nodes based on job conditions. There are many parameters in this section,
but the main parameters that must be considered, are as follows:
1. Very High Reliability jobs : if we want to execute the desired job successfully with

high reliability (response time is not very important), the AHR, HRTP, ASF, HRT
measures are very important. There is a priority between these measures. For
example, to achieve high reliability, AHR and then HRTP have a high priority. Of
course, other measures are also important. SNJ will analyze these measures form
gathered results (provided by FDT executer). For example, if there are six nodes
that have almost the same AHR and HRTP, or ASF and so on, then other measures
(e.g. ART or HRT) will select to evaluate the performance of these nodes. It is
possible that there are some states in that SNJ cannot select its own nodes without
limit. For example, suppose that SNJ needs to select seven nodes for doing the
desired tasks, and there exist only five nodes with high reliability (AHR and HRTP
over 95%) and also, if there exist other nodes with low reliability (less than
50%), then GRB can use other parameters to decreasing risk. For example, for two
remaining nodes, SNJ can consider HRT parameter, because this is better than
other Random-based methods. All of this will be done by SNJ. Also it can use
multi- versioning in hierarchical architecture to increase reliability [14]. In other
words, it tries to start the versions through candidate nodes in parallel and
distributed form by dispatching some replicas of an offered job to the best-selected
nodes with a special order. For example, to perform job1, we can use three nodes
in hierarchical form and send replicas of this job to the desired nodes. Thus, when
one of these nodes finishes the related job and sends its results to GRB truly, then
GRB will send a message to stop and abort this task on other nodes. In this way,
fault tolerance will be improved and so, reliability in finishing related task will be
increased.

2. Execution in Real Time: if we want to execute a job in real time status, so the
CPU speed and ART have highest priority and next priority respectively belong to
ARTSS, HRTP, AHR, ASF, and LSI and so on. Also processor’s power and

56 International Journal of Grid and Distributed Computing

communication line bandwidth are important. In this approach we have
concentrated on two kinds of jobs that are mentioned in this section.

For a fuzzy set, the idea of vagueness is introduced by assigning an indicator function
that may take on values in the range 0 to 1. The following observations are
considered:
� Count(Si): returned the number of successfully finished jobs on nodei
� Count(STi): returned the number of successfully finished jobs in the last 20

submitted jobs on nodei
� Count(AAJi): returned the number of all submitted jobs on nodei
� Min(ART): return the minimum ART in between of all nodes
� MAX(ASF): return the maximum ASF in between all nodes
� Min(CPU_SPi)= return the minimum CPU speed in between all nodes

Suppose that 1≤i≤n (n is showing the number of nodes), here we mention how to

compute or convert deterministic values to fuzzy sets. Some attributes are have been
computed below (member functions) and they are very important to decide on
selecting nodes:

•

•
• M(

•

•

•

•

•

•

As you see, The A5 shows the ratio of successful jobs that have similar size with

the desired job to all successful finished jobs. A7 shows the CPU power and A8
shows the measure of system Idle in fuzzy range.

International Journal of Grid and Distributed Computing 57

For the nonce, these nine attributes will be evaluated in fuzzy behavior. We must

mention that based on the type of jobs, they will take a weight. This weight has been
allocated based on empiric and the effect of each attributed in classification by DT.
These weights are representing in Table 1. Now, to find a node with very high
reliability rather than other nodes, we should compute the following computation for
each node and then we will select that node with maximum Value. We will have this
similar method for other type of jobs.

Table1: assign a weight for each attribute

Name of
attributes

Weight for
High

reliability

Weight for
Real-time

Weight for
Normal

jobs

A1 → WH1=1 WR1=0.7 WN1=0.8
A2 → WH2=0.4 WR2=1 WN2=0.8
A3 → WH3=0.7 WR3=0.6 WN3=0.6
A4 → WH4=0.9 WR4=0.4 WN4=0.6
A5 → WH5=0.5 WR5=0.2 WN5=0.4
A6 → WH6=0.3 WR6=0.1 WN6=0.2
A7 → WH7=0.5 WH7=0.9 WH7=0.5
A8 → WH8=0.4 WH8=0.8 WH8=0.5
A9 → WH9=0.1 WH9=0.2 WH9=0.1

5. Experimental Results and Discussion

We have designed two applications for our approach. The first application is executed
on nodes (MA). The second application is designed to implement a new provider for
GRB and will use MA’s result- selects the best nodes for jobs. In our experiments,
eight resource computing nodes and one server are used to evaluate performance of
this approach. The hardware information has been described in Table 2. These nodes
communicate with server via internet. Then, the MA application is installed on nodes
and broker provider application is installed on the server computer. When a node is
connected to grid (server), right away, MA will insert a new record in to node’s log
file. After that, we have started to obtain the samples. We divide 24 hour in to
following parts:

7-9 9-12 12-15 15-17 17-20 20-22 22-24 24-2 2-7

58 International Journal of Grid and Distributed Computing

Table 2: Hardware information
Name Type of hardware
Node1 Pentium4(Cache1MB),CPU2.2(INTEL), RAM 256

Node2 Pentium(Cache2MB),CPU2.4(INTEL), RAM 512

Node3 INTEL Pentium,CPU3.0(GLI),2, RAM 1G

Node4
Intel(R) Core(TM)2 Duo CPU 2.16GHz RAM(3.49
GB)

Node5
Intel(R) Core(TM)2 Duo CPU 2.16GHz RAM(3.49
GB)

Node6
Intel(R) Core(TM)2 Duo CPU 2.16GHz RAM(3.49
GB)

Node7 Intel(R) Core(TM)2 Duo CPU 2.16GHz RAM(2.9 GB)

Node8
HP ProLiant ML370 G4 High Performance – Intel Xeon
3.4 GHz (2 processors)L2 cache(RAM 8G)

server Pentium4(Cache2MB),CPU3.0(INTEL), RAM 1G

In the first six days we have used MA Application but we didn’t use the result of MA
in our broker application. Moreover we always have sent a job for all available nodes.

Table3: The computed result in 7.00 to 9.00 o’clock

Node’s
Name A1 A2 A3 A4 A5 A6 A7 A8 A9

Node1 0.89 0.9 0.9 0.9 1 0.55 0 0.54 0.02
Node2 0.87 0.94 0.9 0.85 0.95 0.8 0.21 0.77 0.04

Node3 0.9 0.92 0.9 0.85 1 0.67 0.39 0.97 0.05

Node4 0.94 0.95 0.95 1 1 0.9 0.48 0.87 0.43

Node5 0.95 0.96 1 0.9 1 0.85 0.48 0.98 0.39
Node6 0.96 0.95 1 1 1 0.7 0.48 0.16 0.38
Node7 0.92 0.93 0.9 0.95 1 0.85 0.48 0.8 0.28

Node8 0.8 1 0.85 1 1 1 0.78 0.65 1

Table4: the computed result in 12.00 to 15.00 in
21August (job size 10.24 MB at 12:45 o’clock)
Node’s
Name A1 A2 A3 A4 A5 A6 A7 A8 A9

Node1 0.902 0.87 0.95 0.94 0.8 0.45 0 0.78 0.02

Node3 0.908 0.93 1 0.86 0.8 0.53 0.39 0.92 0.05
Node5 0.961 0.96 0.95 0.89 1 0.89 0.48 0.96 0.39
Node6 0.964 0.93 0.95 0.94 0.9 0.66 0.48 0.80 0.38

Node7 0.92 0.94 0.95 0.92 0.6 0.91 0.48 0.93 0.28
Node8 0.81 1 0.9 0.89 0.8 1 0.78 0.75 1

International Journal of Grid and Distributed Computing 59

After that, we have activated broker provider to select only suitable nodes. Therefore,
in seventh day, we have taken the below results(Table 3) from available nodes in the
morning in order to execution a high reliability job with size 4.47 MB and execution
time almost 18 minutes. As you see, all eight nodes are accessible in this moment.
The Table shows us, in A2 column, Node8 is the best and Node1 is worst (in fuzzy
range). When these results have been delivered to server, broker provider on server
side has selected Node4 for this purpose. Then job sent to this node for execution and
after a little time, job finished successfully on Node4 (see figure 2).

The priority list nodes for this job were as following (high reliability priority for job):

Figure 2. A part of Broker

Node4> Node5> Node8> Node7> Node6> Node3> Node2> Node1

If this job had a real-time priority, the below order was selected by broker provider
Application:

Node8> Node4> Node5> Node7> Node3> Node2> Node6> Node1

n following days, all measures, was based-on broker provider application. After
doing 120 measures, we took a below results to execute a job with 10.24 MB and 22
minutes for approximate time. The following results sent by each participated nodes
at time 12-15:

As you see, there are only 6 nodes in available. This job is considered as a Real-
time job, thus Node8 was selected as the best node by proposed application. The
selection priority of nodes is as following:

Node8> Node5> Node6> Node7> Node3> Node1

If the job had a very high reliability priority, then the selection priority will be as
below.

 Node5> Node8> Node6> Node7> Node3> Node1

60 International Journal of Grid and Distributed Computing

In this method we are choosing the best conditions for job. Whereas in other
methods (for example, random methods), It’s possible that have a high risk to select a
node. The Ratio of successful jobs in our methods is compared with another random
method [16] in Figure 3. For each node, we have considered one job and the
execution test has been repeated for many times. This shows that our method has a
good performance in stable state.

The result shows that our approach can achieve better performance under this
strategy. After each measure, it is seemed that, the ratio of successfully finished jobs,
have improved. It memorable that, for all jobs smaller than 5MB and approximate
time less than 2 minutes, almost all jobs finished successfully.

6. Conclusion

Selecting some nodes in the pool of discovered nodes is a challenging problem.
Many methods for this purpose have been presented. Our proposed approach is
learning based which can reduced extra overhead communications and faults in cycle
of selection. This broker provider application along with MA offer a dynamic
decision to access any of the available and appropriate nodes by using main important
criteria.

The results of our experiments show that this approach has a better performance
than others and it will operate according to user’s requirements. Stability is a
helpful characteristic for this approach, so the fault happen is nearly predictable.

Acknowledgments

The work in this paper was completely supported by Islamic Azad University-
Miyandoab branch from.

References

1. K. Czajkowski, S. Fitzgerald, I. Foster and C. Kesselman, “Grid information services for
distributed resource sharing,”. In 10th IEEE Symposium on High Performance Distributed
Computing, San Francisco, California,August 7-9, 2001.

2. K. Krauter, R. Buyya, and M. Maheswaran, “A Taxonomy and Survey of Grid resource
Management Systems”, Software Practice and Experience, 32(2): 135.164, 2002.

3. M. Umano, H. Okamoto, H. Tamura, F. Kawachi, S. Umedzu and J. Kinoshita, “ Fuzzy
decision trees by fuzzy id3 algorithm and its application to diagnosis systems”, Department
of Systems Engineering and Precision Engineering, Osaka University, Japan, IEEE, 1994

4. Y. Kim, J. Yu, J. Hahm, J. Kim, et al., “Design and Implementation of an OGSICompliant
Grid Broker Service”, Proc. of CCGrid, 2004.

5. Dumitrescu, C., Foster, I., “GRUBER: A Grid Resource SLA Broker”, in Euro-Par, Portugal,
September 2005.

International Journal of Grid and Distributed Computing 61

6. Ivan Rodero, Julita Corbalán, Rosa M. Badia, Jesús Labarta, eNANOS Grid Resource
Broker, in European Grid Conference (EGC2005), Springer Berlin / Heidelberg, 2005.

7. H. Casanova, G. Obertelli, F. Berman, R. Wolski, "The AppLeS parameter sweep template:
user-level middleware for the grid", In Proceedings of the 2000 ACM/IEEE Conference on
Supercomputing, IEEE Computer Society.

8. B. Chapman, B. Sundaram, and K. Thyagaraja. EZ-Grid: Integrated Resource Brokerage
Services for Computational Grids, 2001. http://www.cs.uh.edu/ ezgrid/.

9. G.J. Klir and B. Yuan, Fuzzy Sets and Fuzzy Logic: Theory and Applications, Prentice Hall,
1995.

10. C. Marsala and B. B-Meunier, “Choice of a method for the construction of fuzzy decision
trees”, University P. e M. Curie, Paris, The IEEE International Conference on Fuzzy
Systems, 2003

11. C. Z. Janikow, “fuzzy decision trees: Issues and methods”, IEEE Transactions on Systems,
Man and Cybernetics, vol. 28, 1998.

12. C. Marsala and B. B-Meunier, “Choice of a method for the construction of fuzzy decision
trees”, University P. e M. Curie, Paris, The IEEE International Conference on Fuzzy
Systems, 2003

13. L.A.Zadeh,"Making computer think like people, IEEE spectrum, 8/1984, pp 26-32 [8]
S.Haack, " Do we need fuzzy logic? " Int .Jr nl .of Man-Mach.stud , vol.11, 1979.

14. A. Bouyer, A. movaghar, B. arasteh. “A Multi Versioning Scheduling Algorithm for Grid
System Based on Hierarchical Architecture” In Proceedings of the 7th IADIS International
Conference on WWW/Internet, Vila Real, Portugal. Oct 2007.

15. J. Frey, T. Tannenbaum, I. Foster, M. Livny, and S. Tuecke. Condor-G: A Computation
Management Agent for Multi-Institutional Grids. In Proceedings of the 10th IEEE
Symposium on High Performance Distributed Computing (HPDC10), San Francisco, CA.
Aug 2001.

16. M. Meybodi, N. Ariabarzan.” A dynamic methods for searching and selecting nodes in
peer to peer fashion“. Presented 10th conference computer science in Tehran, IKT2006.

62 International Journal of Grid and Distributed Computing

