TABLE OF CONTENTS

CHAPTER

TITLE

PAGE

DECLARATION	ii
DEDICATION	iii
ACKNOWLEDGEMENTS	iv
ABSTRACT	v
ABSTRAK	vi
TABLE OF CONTENTS	vii
LIST OF TABLES	X
LIST OF FIGURES	xi
LIST OF SYMBOLS	xiv
LIST OF APPENDICES	xvi

1 INTRODUCTION

1.1 Preview	1
1.2 Background of Research	4
1.3 Scope of the Research	5
1.4 Objective	5
1.5 Literature Review	6

2 THEORY

2.1 Basic Concepts of Neutron Radiography	8
2.1.1 Neutron Sources	8
2.1.1.1 Nuclear Reactors	9

2	2.1.1.2 Accelerators	10			
2.1.1.3 Isotopes					
2.1.1.4 Californium-252					
2.1.2 N	Neutron Transmission	12			
2	2.1.2.1 Attenuation of Neutrons Compared with				
	that of X-rays	12			
2.1.3 N	Neutron Interactions	14			
2	2.1.3.1 Non-Scattering Interactions	14			
2	2.1.3.2 Neutron Scattering	16			
2.1.4 I	Detection of Neutron	17			
2	2.1.4.1 Neutron Image Conversion Methods for	17			
	Radiographic Film				
2.1.4.2 Direct Exposure Methods 1					
2.1.4.3 The Image Transfer Method					
2	2.1.4.4 Neutron Scintillators	20			
2.1.5	Image Analysis	20			
2.2 Digital	I Image Restoration	22			
2.2.1	Digital Image Representation	22			
2.2.2	Image Restoration	23			
2.2.3	Model of Image Degradation/Restoration				
	Process	24			

METHODOLOGY

3

3.1 Introduction to Sample	26
3.2 Software	27
3.3 Wiener Filter	27
3.4 Constrained Least Squares (Regularized) Filtering	29
3.5 Iterative Nonlinear Restoration Using the	
Lucy-Richardson Algorithm	31
3.6 Blind Deconvolution	32
3.7 Operational Framework	

DATA AND ANALYSIS

	4.1 Introduction	35
	4.2 Reference Image	35
	4.3 Neutron Radiography Image	36
	4.4 Point Spread Function (PSF) Calculation	38
	4.5 Result Obtained from Wiener Filter Method	40
	4.6 Result Obtained from Regularized Filter Method	42
	4.7 Result Obtained from Lucy Richardson Filter Method	1 44
	4.8 Result Obtained from Blind Deconvolution Method	46
	4.9 Mean and Standard Deviation of the Elements	
	of Matrix for Every Restored Neutron	
	Radiography Image	49
	4.10 Restoration of Sensitivity Indicator	50
5	DISSCUSSION	
	5.1 Wiener Filter	52
	5.2 Regularized Filtering	53
	5.3 Lucy Richardson (LR) Algorithm	54
	5.4 Blind Deconvolution	55
	5.5 Restoration of Sensitivity Indicator	55
6	CONCLUSION AND RECOMMENDATION	
	6.1 Conclusion and Recommendation	57
REFERENC	CES	59
Appendices A	A-D	62-65

LIST OF TABLES

TABLE NO.TITLEPAGE

2.1	Classification of neutrons by energy	9
3.1	Operation framework	34
4.1	Mean and standard deviation of the elements of matrix	49
4.2	Mean and standard deviation value for Figure 4.20	50

LIST OF FIGURES

FIGURE NO.

TITLE

PAGE

2.1	Mass attenuation coefficient versus atomic number	13	
2.2	Radiative capture	15	
2.3	Inelastic scattering	16	
2.4	Direct exposure method of making a neutron radiograph	18	
2.5	Image transfer method for making neutron radiographs	19	
2.6	Characteristic curve	21	
2.7	A model of the image degradation/restoration process	24	
3.1	Operation framework	34	
4.1	Reference image	36	
4.2	Original neutron radiography image	36	
4.3	Neutron radiography image that will be analyzed	37	
4.4	Histogram of neutron radiography image (Figure 4.3)	37	
4.5	Graph of index of the column in the image versus column	38	
4.6	Graph of dy/dx versus column		38
4.7	Gaussian spatial filter	39	
4.8	(a) Blurred, noisy image. (b) Result of inverse filtering.		
	(c) Result of Wiener filtering using a constant ratio.		
	(d) Result of Wiener filtering using autocorrelation		
	functions.	40	
4.9	(a) Result of NR inverse filtering using Wiener filter.		
	(b) Result of NR using Wiener filtering with a constant		
	ratio.(c) Result of NR using Wiener filtering with		
	autocorrelation functions.	40	

4.10	(a) Histogram of NR inverse filtering using	
	Wiener filter. (b) Histogram of NR using Wiener	
	filtering with a constant ratio. (c) Histogram of NR	
	using Wiener filtering with autocorrelation functions.	41
4.11	(a) Blurred, noisy image. (b) Result of image (a)	
	Restored using regularized filter with noisepower	
	equal to 4. (c) Result of image (a) restored using	
	regularized filter with noisepower equal to 0.4 and	
	a RANGE of [1e-7 1e7]	42
4.12	(a) Result of restored NR image using regularized filter	
	with noisepower equal to 4. (b) Result of restored NR	
	image using regularized filter with noisepower	
	equal to 0.4 and a RANGE of [1e-7 1e7]	42
4.13	(a) Histogram of restored NR image using regularized	
	filter with noisepower equal to 4. (b) Histogram of	
	restored NR image using regularized filter with	
	noisepower equal to 0.4 and a RANGE of [1e-7 1e7]	43
4.14	(a) Blurred, noisy image. (b) Restored image using	
	L-R algorithm with 10 iteration. (c) Restored image	
	using L-R algorithm with 100 iteration. (d) Restored	
	image using L-R algorithm with 500 iteration.	44
4.15	(a) Restored image using L-R algorithm with	
	10 iteration. (b) Restored image using L-R algorithm	
	with 100 iteration. (c) Restored image using	
	L-R algorithm with 500 iteration.	44
4.16	(a) Histogram of restored image using L-R algorithm	
	with 10 iteration. (b) Histogram of restored image using	
	L-R algorithm with 100 iteration. (c) Histogram of	
	restored image using L-R algorithm with 500 iteration	44.

4.17	(a) Blurred, noisy image. (b) Restored image using	
	blind deconvolution with 5 iterations. (c) Restored	
	image using blind deconvolution with 10 iterations.	
	(d) Restored image using blind deconvolution with 20	
	iterations. (e) Restored image using blind deconvolution	
	with 30 iterations	46
4.18	(a) Restored image using blind deconvolution with 5	
	iterations. (b) Restored image using blind deconvolution	
	with 10 iterations. (c) Restored image using blind	
	deconvolution with 20 iterations. (d) Restored image	
	using blind deconvolution with 30 iterations.	47
4.19	(a) Histogram of restored image using blind	
	deconvolution with 5 iterations. (b) Histogram of	
	restored image using blind deconvolution with	
	10 iterations.(c) Histogram of restored image using blind	
	deconvolution with 20 iterations. (d) Histogram of	
	restored image using blind deconvolution with	
	30 iterations.	48
4.20	(a) Image of sensitivity indicator (SI) before restoration.	
	(b) Image of SI after using Wiener filter with	
	autocorrelation function. (c) Image of SI after using	
	LR algorithm with 500 iterations	50
4.21	(a) Image histogram of sensitivity indicator before	
	restoration. (b) Image histogram of SI after using Wiener	
	filter with autocorrelation function. (c) Image	
	histogram of SI after using LR algorithm with	
	500 iterations	51
5.1	Sensitivity indicator	56

LIST OF SYMBOLS

Α	-	Target mass number
С	-	Minimum of criterion function
D_e	-	Photographic density
Ε	-	Exposure of the film
E_t	-	Inelastic threshold
f(x,y)	-	Input image
$\hat{f}(x,y)$	-	Estimate of the original image
G	-	Slope in the linear portion of the characteristic response
		curve for the film
G_{offset}	-	Dark current
g(x,y)	-	Degraded image
Н	-	Matrix
Н	-	Degradation function
H(u,v)	-	Optical transfer function
$H^*(u,v)$	-	Complex conjugate of $H(u, v)$
h(x,y)	-	Spatial representation of the degradation function
Ι, φ	-	Transmitted intensity
$I_{o,} \phi_0$	-	Incident intensity
Ν	-	Number of atoms per cubic centimeter
P(u,v)	-	Fourier transform of the function
$S_{\eta}(u,v)$	-	Power spectrum of the noise
$S_f(u,v)$	-	Power spectrum of the undegraded image
t	-	Thickness of specimen in the beam path
Σ_a	-	Macroscopic absorption cross section
Σ_i	-	Total macroscopic cross section

ε ₁	-	Energy of the nucleus first excited state
$\eta(x,y)$	-	Noise term
σ	-	Neutron cross section of the particular material or isotope
σ	-	Standard deviation
μ_n	-	Linear attenuation coefficient for neutrons
μ_x	-	Linear attenuation coefficient for photons
*	-	convolution
∇^2	-	Laplacian operator

LIST OF APPENDICES

APPENDIX

TITLE

PAGE

А	Codes for Wiener Filtering	62
В	Codes for Regularized Filtering	63
С	Codes for Lucy-Richardson Algorithm	64
D	Codes for Blind Deconvolution	65