brought to you by CORE provided by Universiti Teknologi Malaysia Institutional Repository

TABLE OF CONTENTS

1

TITLE

PAGE

DEC	LARATION	ii		
DEDICATION				
ACK	NOWLEDGEMENTS	iv		
ABS	TRACT	v		
ABS	TRAK	vi		
ТАВ	LE OF CONTENTS	vii		
LIST	OF TABLES	Х		
LIST	OF FIGURES	xi		
LIST OF ABBREVIATIONS				
LIST OF SYMBOLS				
INT	RODUCTION	1		
1.1	FSO Communications Link	1		
	1.1.1 FSO versus RF Wireless Link	2		
	1.1.2 FSO Challenges	5		
1.2	Research Background	7		
1.3	Significance of Research in FSO Receiver Design 9			
1.4	Problem Statement 10			
1.5	Research Objectives	11		
1.6	Scope of the Study	11		
1.7	Research Methodology	12		
1.8	Thesis Outline	14		

2	ОРТ	ICAL W	VIRELESS RECEIVER DESIGN	16
	2.1	Introd	uction	16
	2.2	al Link Design	17	
	2.3	Qualit	y of Receiver	19
	2.4	Noise	Considerations	20
		2.4.1	Thermal Noise	22
		2.4.2	Shot Noise	22
	2.5	FSO F	Photodetector	23
		2.5.1	Detection Principles	25
		2.5.2	Large Window Photodetectors	26
	2.6	FSO F	Front-End Receiver Design	29
		2.6.1	Low Impedance Amplifier	29
		2.6.2	High Impedance Amplifier	30
		2.6.3	Transimpedance Amplifier (TIA)	31
		2.6.4	Bootstrap Transimpedance Amplifier (BTA)	33
		2.6.5	Previous Works on BTA	35
	2.7	Variat	ble Capacitor Technology	37
		2.7.1	Mechanically Controlled	37
		2.7.2	Electronically Controlled	38
		2.7.3	MOS Varactor	39
		2.7.4	MEMS Variable Capacitor	43
	2.8	Summ	nary	50
3	THE	ORETI	CAL ANALYSIS	52
	3.1	Introd	uction	52
	3.2	Bandv	vidth Limitation for Photodetector	53
	3.3	Effect	s of Photodetector Capacitance	56
		3.3.1	Mathematical Analysis for the TIA	56
		3.3.2	Mathematical Analysis for the BTA	61
	3.4	Summ	ary	67

4 SYSTEM M	IODELING AND ANALYSIS	68		
4.1	Introduction	68		
4.2	Photodetection Modeling	69		
4.3	Operational Amplifier Modeling			
4.4	Optical Front-End Receiver System Modeling	79		
	4.4.1 TIA Modeling	79		
	4.4.2 BTA Modeling	83		
4.5	BTA System employing MEMS Varicap	85		
	4.5.1 Three Parallel Plates MEMS Varicap	85		
	4.5.2 BTA and MEMS Varicap Integration	94		
4.6	Summary	96		
5 RESULTS A	AND ANALYSIS	97		
5.1	Introduction	97		
5.2	5.2 TIA Bandwidth Performances considering Various			
	PIN Photodetector Capacitance			
5.3 BTA Bandwidth Performances considering Various				
	PIN Photodetector Capacitance			
5.4	Simulation Results for the BTA employing MEMS	104		
	Varicap			
5.5	Summary	108		
6 CONCLUS	IONS	110		
6.1	Discussions and Conclusions	110		
6.2	Achievements and Publications	112		
6.3	Recommendations for Future Works	114		
REFERENCES		117		
Appendices A-C3		123-138		

LIST OF TABLES

TABLE NO.	TITLE	PAGE
1.1	Comparison between Radio and Infrared	5
2.1	Important parameters of various types of photodiodes	28
2.2	Receiver front-end comparisons [11]	33
2.3	Several previous papers presented on MOS varactors	42
2.4	Proposed structure from works [48-52]	48
2.5	The demonstration and results obtain in works [48-52]	50
3.1	The TIA circuit parameter [36]	58
3.2	Bandwidth of simulated TIA for each value of C_d	60
3.3	The BTA circuit parameter [36]	62
3.4	Bandwidth of simulated BTA for each value of C_d	64
3.5	Bandwidth of BTA when C_f was varied	66
4.1	Parameters for I_p model	71
4.2	Parameters for diode model	72
4.3	Parameters of the op-amp model	76
4.4	Capacitances produced by the MEMS varicap	90

LIST OF FIGURES

FIGURE NO	. TITLE	PAGE
1.1	Typical applications for free space optics including office-to-office communications as well as technology for intersatellite link, satellite-to-ground station and to	
	terrestrial.	3
1.2	Block diagram of a direct detection channel	9
1.3	The flow chart of the research study	13
2.1	Block diagram of typical optical wireless system	17
2.2	Classification of simple IR links according to the degree of directionality and the existence of a LOS [16]	18
2.3	The sources of noise in a typical front-end optical receiver	21
2.4	Sample of photodetectors	24
2.5	Operation of p-n photodiode: a) p-n photodiode in reverse biased; b) energy band diagram [11]	26
2.6	The construction of photodiode	27
2.7	Low Impedance Front-End	30
2.8	High Impedance Front-End	30
2.9	(a) Transimpedance amplifier front-end (b) Simplified small signal equivalent circuit	32
2.10	Shunt BTA circuit arrangement of (a) floating source, and (b) grounded source [36]	34
2.11	The bootstrap circuit consists of converter and buffer [40]	36
2.12	The MOS structure cross section [44]	40

2.13	Fabrication process of MEMS structure	44
2.14	Cross section of an RF-MEMS varicap	45
2.15	The conceptual model of parallel plate MEMS varicap	46
3.1	(a) A simple photodetector (b) its equivalent circuit [19]	53
3.2	Diagram of a parallel-plate capacitor	54
3.3	Simplified equivalent circuit of TIA	57
3.4	Frequency response of TIA by varying C_f from 0 to 3pF	58
3.5	TIA frequency response showing effects of circuit capacitances	59
3.6	TIA response when C_d was varied from 100 to 1000pF	60
3.7	Simplified equivalent circuit of BTA	62
3.8	Frequency response of BTA by varying C_f from 0 to 2pF	63
3.9	TIA response when C_d was varied from 100 to 1000pF	63
3.10	(a) Bandwidth versus C_d , (b) Peaking gain versus C_d for BTA circuit	65
3.11	Comparison of bandwidth performance between fixed and variable C_f	66
4.1	(a) Photodiode model for simulation and (b) its equivalent circuit	70
4.2	Simulated CV characteristics of the photodiode model	72
4.3	CV characteristics of C30642 from manufacturer's datasheet	73
4.4	Simulated frequency response of the photodiode model	73
4.5	Equivalent circuit of the basic op-amp	74
4.6	Equivalent circuit of op-amp (a) in MWO (b) for simulation	75
4.7	Configuration for simulating the open loop frequency response of op-amp	77

4.8	Simulated (a) input voltage (b) output voltage of op-amp	77
4.9	Simulated bode plot of the op-amp model	78
4.10	The bode plot of LT1222 from manufacturer's datasheet	78
4.11	The TIA circuit model	80
4.12	Bode plot of noise gain intersecting with open loop gain of op-amp	80
4.13	Simulated frequency response of TIA	82
4.14	Block diagram of optical front-end receiver employing BTA technique	83
4.15	The BTA circuit model	84
4.16	Simulated frequency response of BTA	84
4.17	The conceptual model of three parallel plate MEMS varicap	86
4.18	The cross section views of the varicap	87
4.19	The equivalent circuit of MEMS varicap model in ARCHITECT	88
4.20	Pull in voltage by varying V ₁	89
4.21	Pull in voltage by varying V ₂	89
4.22	The MEMS varicap model in MWO	91
4.23	CV characteristics of (a) C_v (b) C_p by varying V ₁ in MWO	92
4.24	CV characteristics of (a) C_v (b) C_p by varying V ₂ in MWO	93
4.25	The schematic of BTA circuit employing MEMS varicap in ARCHITECT	94
4.26	The schematic of BTA circuit employing MEMS varicap in MWO	95
5.1	Frequency response of the TIA for a PIN photodetector with input capacitance, C_d 100pF and 1000pF	98

5.2	Frequency response of the BTA for a PIN photodetector with input capacitance, C_d 100pF and 1000pF	100
5.3	Comparison of bandwidth performance for the TIA and BTA front-end receiver	100
5.4	Peaking gain versus various PIN photodetector capacitance, C_d in the BTA circuit	101
5.5	Frequency response of the BTA coupled with 200pF PIN photodetector in which C_f was varied from 1.2pF to 2pF	102
5.6	Optimum C_f value for various PIN photodetector capacitance	103
5.7	Comparison of bandwidth performs by the BTA circuit employing fixed and variable C_f	104
5.8	Frequency response of the BTA employing MEMS varicap coupled with 100pF PIN photodetector in ARCHITECT	106
5.9	Frequency response of the BTA employing MEMS varicap coupled with 100pF PIN photodetector in MWO	107
5.10	Comparison of the bandwidth performance for the BTA circuit employing MEMS varicap in MWO and ARCHITECT simulation	108
6.1	Varicap tuning characteristics (a) variable gap spacing and (b) variable overlap area	116

LIST OF ABBREVIATIONS

IrDA	-	The Infrared Data Association
IR	-	Infrared
LAN	-	Local Area Networks
FSO	-	Free Space Optics
RF	-	Radio Frequency
LOS	-	Line of sight
OWC	-	Optical Wireless Communications
BER	-	Bit Error Rate
APC	-	Adaptive Power Control
TEC	-	Temperature Controller
TIA	-	Transimpedance Amplifier
BTA	-	Boorstrap Transimpedance Amplifier
MEMS	-	Micro-Electro-Mechanical Systems
Op-amp	-	Operational Amplifier
MWO	-	Microwave Office
Varicap	-	Variable capacitor
MOS	-	Metal oxide semiconductor
APD	-	Avalanche photodiode
FOV	-	Field of View
BJT	-	Bipolar junction transistor
FET	-	Field-effect transistor
VHF	-	Very high frequency
UHF	-	Ultra high frequency
FM	-	Frequency modulation
VCO	-	Voltage controlled oscillator

PLL	-	Phase locked loop	
CMOS	-	Complementary metal oxide semiconductor	
MOSFET	-	Metal-oxide-semiconductor field-effect-transistor	
IC	-	Integrated circuit	
DC	-	Direct current	
BW	-	Bandwidth	
MSM	-	Metal-Semiconductor-Metal	
AC	-	Alternating current	
NG	-	Noise Gain	
MUMPs	-	Multi-User MEMS Process	

LIST OF SYMBOLS

R	-	Resistance
Т	-	Temperature
В	-	Bandwidth
$\overline{e_T}$	-	Thermal noise voltage
k	-	Boltzmann's constant
$\overline{i_d}^2$	-	Dark current noise
q	-	Electronic charge
I_d	-	Dark current
$\overline{i_q}$	-	Quantum noise
I_p	-	Generated photocurrent
hf	-	Energy of photon
Eg	-	Bandgap energy
λ	-	Operating wavelength
\mathbf{R}_l	-	Load resistor
V _{bias}	-	Bias voltage
V _{out}	-	Output voltage
$A_{transimp}$	-	Transimpedance gain
i_s	-	Current source
R_{f}	-	Feedback resistor
A_{OL}	-	Open loop voltage gain
Z_{fb}	-	Feedback impedance
$f_{_{3dB}}$	-	3dB bandwidth
C_{f}	-	Feedback capacitance

C_{in}	-	Input capacitance
C_{μ}	-	Base-collector capacitance
e ₀ /A _{OL}	-	Gain error signal of op-amp
C _{min}	-	Minimum capacitance
C _{max}	-	Maximum capacitance
C_{v}	-	Variable capacitance
${oldsymbol{\mathcal{E}}}_d$	-	Dielectric constant of air
Α	-	Area of the plates
d	-	Spacing between two plates
x	-	Vertical displacement at a certain bias condition
V_{pi}	-	Pull in voltage
$ au_{t}$	-	Transit time
l_d	-	Depletion region length
Vs	-	Average carrier saturation velocity
$\boldsymbol{\omega}_t$	-	Frequency response due to transit time
С	-	Parallel plate capacitor
3	-	Permittivity of the dielectric
C_j	-	Junction capacitance
ε ₀	-	Permittivity in vacuum
ε _r	-	Permittivity of the semiconductor
A_d	-	Area of the depletion region
l_d	-	Depletion region length
$\omega_{_{RC}}$	-	Frequency response due to RC time constant
R_s	-	Junction series resistance
$\boldsymbol{\omega}_p$	-	Pole frequency
A_0	-	DC gain
C_d	-	Photodiode capacitance
$\omega_{_0}$	-	Unity gain frequency
C_a	-	Amplifier input capacitance
I_{pd}	-	Output current of photodiode

R_{bulk}	-	Bulk resistance
I_s	-	Reverse saturation current
e_j	-	Junction voltage
I_l	-	Leakage current
Р	-	Incident optical power
η	-	Detection efficiency
h	-	Plank's constant
v	-	Optical frequency
R	-	Responsivity
C_{jo}	-	Zero bias junction capacitance
V_{j}	-	Built-in voltage
т	-	Grading coefficient
V_B	-	Breakdown voltage
V_{in}	-	Differential input voltage
V^+	-	Positive terminal voltage
V	-	Negative terminal voltage
R _{in}	-	Input resistance
Rout	-	Output resistance
G	-	Gain of op-amp
f_z	-	Zero frequency
C_p	-	Parasitic capacitance
\mathbf{V}_1	-	First bias voltage
V_2	-	Second bias voltage

LIST OF APPENDICES

APPENDIX	TITLE	PAGE
А	Matlab Source Code for TIA circuit	130
В	Matlab Source Code for BTA circuit	131
C1	Datasheet of laser source LQA1550-05E for optical parameter in photodiode modeling	133
C2	Datasheet of large area InGaAs PIN photodiode C36402 for photodiode modeling	137
C3	Datasheet of 500MHz op-amp LT1222 for op-amp modeling	141