brought to you by TCORE

vii

TABLE OF CONTENTS

CHAPTER

TITLE	PAGE
DECLARATION	ii
DEDICATION	iii
ACKNOWLEDGEMENT	iv
ABSTRACT	v
TABLE OF CONTENTS	vii
LIST OF TABLES	Х
LIST OF FIGURES	xii
LIST OF ABBREVIATIONS	xvii
LIST OF SYMBOLS	xviii

1 INTRODUCTION

1.1	General	1
1.2	Location	1
1.3	Historical Background	2
1.4	Air Traffic Control Tower	3
1.5	Problem Statement	4
1.6	Objective	5
1.7	Scope	5
1.8	Organization of Report	5

2 LITERATURE REVIEW

2.1	General	7
2.2	Main Control Tower	8
2.3	Development OF Current Seismic Design Practice	10
2.4	Structural Damper System	12
	2.4.1 Passive Control Devices	13
	2.4.1.1 Metal Yielding Dampers	14

	2.4.1.2 Viscoelastic Dampers	17
	2.4.1.3 Fluid Viscous Dampers	21
	2.4.1.4 Newly-Developed Control	
	Devices	23
2.5	Retrofitting System by Friction Damper	
	Under-Study	28
2.6	Structural Design And Control	33
2.7	Seismic Retrofitting Design	34
2.8	Summary Of Literature Review	35
THE	ORETICAL BACKGROUND	
3.1	General	37
3.2	Basic Principles	39
3.3	Frictional Dampers	44
3.4	Friction Damping Devices	45
3.5	Slip Load of Friction Damper	48
3.6	Design Criteria	49
3.7	Non-Linear Time-History Dynamic	
	Analysis	50
3.8	Numerical Model of a Friction Damper	
	System	50
3.9	Mathematical Formulation	53
	3.9.1 Formulation	53
	3.9.2 Material Property Matrices	59
	3.9.3 Participating Mass Ratio	60
3.10	Summary of Theoretical Background	61
MET	THODOLOGY	
4.1	General	62
4.2	Modelling by SAP2000 Version 11	64
	4.2.1 Rigidity	64
	4.2.2 Material Properties	66
	4.2.3 Energy Dissipation By Damper	67
4.3	Verification of Finite Element Technique	67

3

4

	4.3.1 Control Tower Application	69
4.4	Data Collection	69
4.5	Linear Response Due to Earthquake	70
4.6	Free Vibration Analysis	71
4.7	Response Spectrum Analysis	73
4.8	Finite Element Analysis	74
4.9	Summary of Methodology	75
RESU	ULTS AND ANALYSIS	
5.1	Introduction	77
5.2	Finite Element Analysis of Section Properties	77
5.3	RAPID-KL Time History Analysis	78
5.4	RAPID-KL Response Spectrum Analysis	80
5.5	Models' Signage	81
5.6	Frame And Shell Modelling	82
5.7	Free Vibration Analysis	84
5.8	Beam Model	87
	5.8.1 Bending Moment, M ₃	90
	5.8.2 Shear Force, V ₂	93
5.9	Shell Model	95
5.10	Summary Of Friction Damper Energy	
	Dissipation Rheology	102
5.11	Drift By U1 Displacement (m)	106
5.12	Drift By Earthquake Intensity In Summary	111
REC	OMMENDATION AND CONCLUSION	
6.1	Overview	112
6.2	Conclusions	112
6.3	Suggestions For Future	114
REFI	ERENCES	116
APPI	ENDICES	
	APPENDIX A APPENDIX B	120 121
	APPENDIX B APPENDIX C	121

LIST OF TABLES

TABLE NO.

TITLE

PAGE

2.1	Purposes of Control Tower in order	
	of precedence to height.	8
3.1	Structural protective systems	37
5.1	Geometrical Properties for Concrete	
	Components	78
5.2	Geometrical Properties for Steel Components	78
5.3	Loading Combination Components	78
5.4	Mode Shape based on Period (second) Criteria	84
5.5	Mode Shape based on Frequency (Hertz)	
	Criteria	85
5.6	Mode shape to Periods in second	
	on Non-friction damper model	85
5.7	Mode shape to Periods in second	
	on friction damper model	85
5.8	Beam Model capacity validation of axial	
	force (KN) - shearwall0.63thk (Without	
	Damper)	87
5.9	Beam Model capacity validation of axial	
	force (KN) - shearwall0.63thk (With Damper)	88
5.10	Bending Moment to percentage passing capacity	
	in undamped and damped Beam Model at	
	0.19g, 0.29g and 0.39g for elevated height	91
5.11	Shear Force to percentage passing capacity	
	in undamped and damped Beam Model at	
	0.19g, 0.29g and 0.39g for elevated height	94

5.12	Shell Model capacity validation of S11	
	(KN/m^2) - LIFTCORE0.63Dx1.7W	
	(Without Damper)	96
5.13	Shell Model capacity validation of S11	
	(KN/m^2) - LIFTCORE0.63Dx1.7W	
	(With Damper)	97
5.14	Shell Model capacity validation of S22	
	(KN/m^2) - LIFTCORE0.63Dx1.7W	
	(Without Damper)	99
5.15	Shell Model capacity validation of S22	
	(KN/m^2) -LIFTCORE0.63Dx1.7W	
	(With Damper)	100
5.16	Beam Model Capacity Validation of P (KN)	
	- <i>braceibeam203dx102w</i> (With Damper)	103
5.17	Shell Model Capacity Validation of P (KN)	
	-braceibeam203dx102w (With Damper)	103
5.18	Joints at U1 displacement in 0.19g Intensity	107
5.19	Joints at U1 displacement in 0.29g Intensity	108
5.20	Joints at U1 displacement in 0.39g Intensity	109

LIST OF FIGURES

FIGURE NO.

TITLE

PAGE

KLIA Air Traffic Control Tower	
(picture by Kara H., 2007)	2
View from North West Up-close	9
View from North East Up-close	9
West view of Kuala Lumpur International	
Airport (Kara, 2006)	10
Site view from satellite application	
of Google Earth as secondary support	
to literature review purposes	10
NEHRP Intended Performance	
of Seismic Use Groups (NEHRP, 2000)	11
ADAS Device	15
ADAS Device in Frame	16
Unbonded Brace Damper	16
Comparison of computed results	
for Wells Fargo Bank Building envelope	
of response values in the X-direction	
(Perry, 1993)	17
Viscoelastic Damper	19
Viscoelastic Damper in Frame	19
Fluid Viscous Damper (Taylor, 1999)	22
Experimental friction damping device	
in frame	26
	 (picture by Kara H., 2007) View from North West Up-close View from North East Up-close West view of Kuala Lumpur International Airport (Kara, 2006) Site view from satellite application of Google Earth as secondary support to literature review purposes NEHRP Intended Performance of Seismic Use Groups (NEHRP, 2000) ADAS Device ADAS Device in Frame Unbonded Brace Damper Comparison of computed results for Wells Fargo Bank Building envelope of response values in the <i>X</i>-direction (Perry, 1993) Viscoelastic Damper in Frame Fluid Viscous Damper (Taylor,1999) Experimental friction damping device

2.14a	Experimental friction damping device;	
	Unloaded	27
2.14b	Experimental friction damping device;	
	Rotating Under Load	27
2.15a	Proposed wall-type frictional damper	
	and its application to the RC frame;	
	wall-type frictional damper device	29
2.15b	Proposed wall-type frictional damper	
	and its application to the RC frame;	
	retrofit of R/C frame	29
2.16a	Proposed upgrading technique; Upgrade	
	soft-story building	29
2.16b	Proposed upgrading technique; Connection	
	between friction devices and existing	
	structure (Martinez-Rueda and Elnashai,1995)	29
2.17	Precast frame with proposed dampers	
	(Morgen and Kurama, 2004)	30
2.18	Subassembly experiment verification	
	analytical model (Morgen and Kurama, 2004)	31
2.19	Detail of isolated damper test setup	
	(Morgen and Kurama, 2004)	31
3.2	Implementation of PED in North America	
	for seismic applications	
	(Soong and Spencer, 2002)	38
3.3a	Conventional Structure	42
3.3b	Structure with Passive Energy	
	Dissipation (PED)	43
3.3c	Structure with Active Control	43
3.3d	Structure with Hybrid Control	43
3.3e	Structure with Semi Active Control	44
3.4	Slotted-Bolted Friction Damper	45
3.5	Pall Cross-Type Friction Damper	46
3.6	Self-Centering Friction Damper	47

3.7	Response versus Slip Load (Pall et al, 2000)	48
3.8	Bracing-friction damper system	
	(Lee, et al., 2007)	50
3.9	Hysteretic loop of a braced damper system	
	with a Coulomb friction element	
	(Lee, et al., 2007)	51
3.10	The hysteretic loop of a bracing-friction	
	damper system including a Coulomb friction	
	element is expressed (Garcia and Soong,	
	2002)	52
3.11	The friction process	54
3.12a	Illustration of the friction device	57
3.12b	Free-body diagram	57
4.1	Methodology Route for vulnerability	
	analysis	63
4.2a	Structural Friction Damper Replica	
	Modelling of two Control Towers;	
	by 3D finite element model	65
4.2b	Structural Friction Damper Replica	
	Modelling of two Control Towers by	
	Platform level of floor height	65
4.3a	Beam element two dimensional	68
4.3b	Beam element three dimensional	68
4.4a	Shell element two dimensional	68
4.4b	Shell element three dimensional	68
4.5	Basics principle for forces	70
5.1	Time History of Rapid KL	79
5.2	Response Spectrum of Rapid KL	80
5.3a	Elements indications to refer Table 4.1	
	and Table 4.2 as in Shear Wall and Lobby	
	of lift-core	81
5.3b	Elements indications to refer Table 4.1	
	and Table 4.2 as in Roof Top and	

	Lift-core to Operation Room	81
5.3c	Elements indications to refer Table 4.1	
	and Table 4.2 as in Base Shear Restraints	82
5.3d	Elements indications to refer Table 4.1	
	and Table 4.2 as in Control Tower	
	Neck Level	82
5.4a	Control Models with Friction Damper for	
	Verification Purposes; Beam Model	
	(Frame Element)	83
5.4b	Control Models with Friction Damper for	
	Verification Purposes; Beam + Brace Model	
	(Frame Element)	83
5.4c	Control Models with Friction Damper for	
	Verification Purposes; Shell Model	
	(Frame and Shell Element)	83
5.4d	Control Models with Friction Damper for	
	Verification Purposes; Shell + Brace Model	
	(Frame and Shell Element)	83
5.5	Axial forces percentage to capacity limit	
	of element shearwall0.63thk.	89
5.6	Percentage of passing bending moment	
	to elevated height in undamped and damped	
	Beam Model at 0.19g, 0.29g and 0.39g	93
5.7	Percentage of passing Shear Force to elevated	
	height in undamped and damped Beam Model	
	at 0.19g, 0.29g and 0.39g	95
5.8	Stress S11 (KN/m ²) of element	
	LIFTCORE0.63Dx1.7W	98
5.9	Stress S22 (KN/m ²) of element	
	LIFTCORE0.63Dx1.7W	101
5.10	Axial Force P (KN) of element	
	braceibeam203dx102w	104
5.11	Floor heights to U1, joint displacements	

	at 0.19g intensity	107
5.12	Floor heights to U1, joint displacements	
	at 0.29g intensity	108
5.13	Floor heights to U1, joint displacements	
	at 0.39g intensity	109
5.14	Summary of drift in earthquake intensity	
	Comparison	111

LIST OF ABBREVIATIONS

TITLE

KLIA	-	Kuala Lumpur International Airport
DYMM SPB	-	Duli Yang Maha Mulia Seri Paduka Baginda
ICC	-	International Code Council
IBC	-	International Building Code
SBC	-	Standard Building Code
UBC	-	Uniform Building Code
BOCA	-	Building Officials and Code Administrators, Inc
NEHRP	-	National Earthquake Hazards Reduction Program
ТМ	-	Trademark
ADAS	-	Added Damping and Stiffness
CA	-	United State of California
SMRF	-	Special Moment Resisting Frame
FEMA	-	Federal Emergency Management Agency
RCDF	-	Rural Communications and Development Fund
SMA	-	Shape Memory Alloys
RC	-	Reinforced Concrete
SBC	-	Slotted Bolted Connection
PED	-	Passive Energy Dissipation
VE	-	Viscoelastic
SDOF	-	Single-Degree-of Freedom
U.S.	-	United State of America
DBE	-	Design Basis Earthquake
MCE	-	Maximum Considered Earthquake
SEER	-	Engineering Seismology and Earthquake Engineering
		Research

LIST OF SYMBOLS

TITLE

km ²	-	Kilometre square
m	-	Meter
mm	-	Milimetre
KN	-	Kilo Newton
N/mm ²	-	Newton per millimetre square
KN/mm ²	-	Kilo Newton per millimetre square
g	-	Gravitational ground acceleration
U1	-	Global x-direction
FE	-	Finite Element
2D	-	2 Dimensions
3D	-	3 Dimensions
in	-	Inch
kips	-	Kilo pounds
%	-	Percentage
°C	-	Celsius degree
°F	-	Fahrenheit Degree
°F ẍ	-	-
	- - -	Fahrenheit Degree
ÿ	- - -	Fahrenheit Degree Ground Acceleration
х̈́ х̀	- - -	Fahrenheit Degree Ground Acceleration Ground Veloctiy
х̈́ х́ х	- - - -	Fahrenheit Degree Ground Acceleration Ground Veloctiy Ground Displacement
χ̈́ x x t	- - - - -	Fahrenheit Degree Ground Acceleration Ground Veloctiy Ground Displacement Time/Period

т	-	Mass
С	-	Damping coefficient
Γ	-	Integro-differential operator
и	-	Displacement
±	-	Approximation
δ	-	Inter story drift
b	-	Brace
d	-	Damper
f	-	Shear Force/Friction coefficient
λ_i	-	Structural Dynamics Motion
Ü	-	Velocity
N	-	Applied Normal Force
Δt	-	Time Step
fy	-	Strength of Reinforcement
fc'	-	Strength of Concrete
Е	-	Modulus Elastic
G	-	Shear Modulus
V	-	Poisson Ratio
α	-	Coefficient of Linear Thermal Expansion
y _e	-	Yield Strength
Ue	-	Tensile Strength
Р	-	Axial Force
М	-	Bending Moment
V	-	Shear Force
Т	-	Torsion
i.e.	-	Initialism; "in other words"
sgn	-	Signum Function