TABLE OF CONTENTS

CHAPTER TITLE

PAGE

1

5

THESIS TITLE	i
DECLARATION	ii
ACKNOWLEDGEMENTS	iv
ABSTRACT	v
ABSTRAK	vi
TABLE OF CONTENTS	vii
LIST OF TABLES	xii
LIST OF FIGURES	xiv
LIST OF ABBREVIATIONS	xviii
LIST OF APPENDICES	xxii

1

1

2

INTRODUCTION1.1Introduction

1.1Introduction11.2Objectives of the study4

LITERATURE REVIEW 2.1 Dye classification

2.1	Dye classification	5
2.2	Azo dye model	6
2.3	Colour measurement in coloured wastewaters	9
2.4	Dyeing Processes and Wastewater Characteristics	10
2.5	Mechanism of colour removal	13

2.6	Factors affecting colour removal		
	2.6.1	Oxygen	21
	2.6.2	Temperature	23
	2.6.3	pH	23
	2.6.4	Dye concentration	24
	2.6.5	Dye structure	25
	2.6.6	Electron donor	27
	2.6.7	Redox potential	28
	2.6.8	Redox mediator	29

GENI	ERAL I	MATERIALS AND METHODS	30
3.1	Mater	ials and Methods	30
	3.1.1	Sampling and storage of Textile Wastewater	30
	3.1.2	In Situ and Laboratory Water Quality Analysis.	31
3.2	Grow	th Medium Preparation	31
	3.2.1	Filter Sterilized Textile Wastewater Agar	
		(FSTWA)	31
	3.2.2	Nutrient Agar (NA)	32
	3.2.3	Nutrient Broth (NB)	32
	3.2.4	Modified wastewater medium	32
	3.2.5	Synthetic wastewater medium:	
		Chemically Defined Media (CDM)	33
	3.2.6	Chemicals and DNA kits	34
3.3	Cultur	re preparation	34
	3.3.1	Single Culture Preparation	34
	3.3.2	Mix Culture Preparation	35
	3.3.3	Preparation of inoculum and	
		maintenance of bacteria	35
3.4	Grow	th curve of Paenibacillus sp. R2	36
3.5	Decol	ourization of Azo Dye	36

3

ISOL	ATION	, SCREENING AND CHARACTERIZATION	37
OF D	YE DE	GRADERS FROM TEXTILE WASTEWATER	
4.1	Introd	uction	37
4.2	Mater	ials and Methods	38
	4.2.1	Isolation of microorganisms	38
	4.2.2	Screening of bacteria for colour removal	39
4.3	Optim	ization of Azo dye decolourization	39
4.4	Chara	cterization of the Bacteria and	
	Phylog	genetic Analysis	40
	4.4.1	Morphological characterization	42
		4.4.1.1 Colony Morphology	40
		4.4.1.2 Cellular morphology: Gram Staining 42	
4.5	16S rF	RNA Analysis	41
	4.5.1	Genomic DNA Isolation	41
	4.5.2	Gel electrophoresis	43
	4.5.3	TAE buffer	44
	4.5.4	Polymerase chain reaction (PCR)	44
	4.5.5	PCR product purification	47
	4.5.6	Sequencing of the 16S rRNA Gene	48
	4.5.7	Obtaining full sequence of bacteria	48
	4.5.8	Homology Search	49
	4.5.9	Construction of phylogenetic tree	49
4.6	Result	s and Discussion	50
	4.6.1	Textile Wastewater Characterization	50
		4.6.1.1 In situ watewater analysis	50
		4.6.1.2 Laboratory wastewater analysis	52
4.7	Isolati	on and screening of microorganism	
	from r	aw textile wastewater.	54
4.8	Chara	cterization and optimization of	
	Sfred	decolourization	58
	4.8.1	Optimization of Carbon source	58

4

	4.8.2	Optimization of carbon source concentration	60
	4.8.3	Optimization of inoculum sizes	61
	4.8.4	Optimization of pH	62
	4.8.5	Optimization of Nitrogen source	63
	4.8.6	Optimization of Nitrogen source Concentration	64
	4.8.7	Optimization of temperatures	65
	4.8.8	Optimization of agitation	66
	4.8.9	Optimization of dye concentration	67
4.9	Identi	fication of selected strains (R2).	68
	4.9.1	Sequencing of the 16S rRNA gene	69
	4.9.2	Sequence analyses of gene encoding for the	
		16S rRNA from bacterium R2	70
4.10	Paeni	bacillus sp.R2	71
4.11	Concl	usion	74

5

LOCALIZATION OF AZOREDUCTASE AND ANALYSIS OF REACTIVE RED 195 (RR195) BIODEGRADATION

BY Pa	aenibac	illus sp. R2	75	
5.1	Introd	Introduction		
5.2	Materi	als and methods 7		
	5.2.1	Localization and Detection of enzymatic activity	77	
		5.2.1.1 Preparation of Bacterial Cell Fractions	77	
		5.2.1.2Azoreductase Assay	77	
		5.2.1.3Effects of pH and temperature on the		
		azoreductase activity and stability	78	
	5.2.2	Preparation of inoculum and biodegradation		
		of Reactive Red 195	79	
	5.2.3	Determination of CDW, ORP, pH and TOC	79	
	5.2.4	Product Detection and Determination using HPLC	80	
		5.2.4.1 Sample Preparation	80	

xi

5.3	Result	s and Discussion	81
	5.3.1	Localization of Azoreductase Enzyme.	81
		5.3.1.1 Effect of pH on Azoreductase activity	83
		5.3.1.2 Effect of Temperature on	
		Azoreductase activity	84
5.4	Azo d	yes Decolourization of SFred by Paenibacillus sp.R2	85
	5.4.1	Kinetic study on Reactive Red 195 decolourization	
		by Paenibacillus sp.	87
	5.4.2	Correlation between specific decolorization	
		rate and cell dry weight	88
	5.4.3	Correlation between colour removal and	
		oxidation-reduction potential (ORP)	89
	5.4.4	Correlation between colour removal and pH	91
	5.4.5	Correlation between colour and total organic	
		carbon removal	93
5.5	Detect	tion and identification of RR195degradation products	94
	5.5.1	Product degradation detection using	
		Reversed-phase-HPLC	94
5.6	Conclu	usion	102

6	CONCLUSIONS AND SUGGESTIONS			103	
	6.1	Conclusions	10	13	
	6.2	Suggestions for Future Work	10)5	

REFERENCES

APPENDICES

LIST OF TABLES

TABLE NO	TITLE	PAGE
2.1	Different classes of dye and their characteristic	7
2.2	Characterization of the cotton wet processing wastewaters	12
2.3	List of organisms intensively decolorizing synthetic dyes	20
3.1	Component of CDM	33
4.1	Component mixes for electrophoresis	43
4.2	50X TAE buffer compositions	44
4.3	2X PCR Master Mix compositions	45
4.4	The universal primers that are used for the amplification of 16S rRNA gene	45
4.5	Components for PCR reaction	46
4.6	Thermal Profile for PCR Reaction	46

4.7	In situ analysis of raw textile wastewater	50
4.8	Laboratory analysis of textile wastewater	52
4.9	Colony Morphology and Gram's reaction for each single colony	55

LIST OF FIGURES

FIGURE NO	TITLE	PAGE
2.1	Chemical structure of C.I. Reactive Red 195 used in biodegradation experiments	9
2.2	Proposed mechanism for reduction of azo dyes by whole bacterial cells	15
2.3	Schematic representation of the different mechanisms of anaerobic azo dye reduction	18
2.4	Electron flow preference as a function of the different electron couples	28
4.1	Percentage of colour removal by bacterial cultures	56
4.2	Percentage of colour removal by mixed bacterial culture	57
4.3	Effect of carbon source on dye decolourization by bacteria	59
4.4	Effect of glucose concentration on dye decolourization	60
4.5	Effect of inoculum sizes (%v/v) on dye decolourization	61

4.6	Effects of pH on dye decolourization			
4.7	Effects of nitrogen source on dye decolourization	63		
4.8	Effect of nitrogen source concentration of NH_4Cl on dye decolourization	64		
4.9	Effects of temperatures of dye decolourization	65		
4.10	Effects of agitation on dye decolourization	66		
4.11	Effects of SFRed dye concentration on dye decolourization	67		
4.12	The PCR product of 16S rRNA fragment obtained using FDI-07 and rDI-07 primer sized of 1.5kb via PCR amplification.	68		
4.13	Phylogram show phylogenetic relationships of bacterium R2 and selected <i>Paenibacillus sp.</i> from 16S rRNA sequences.	71		
5.1	Comparison of azoreductase activity from different fraction assayed under aerobic and anaerobic condition	81		
5.2	Effect of pH on azoreductase activity	83		
5.3	Effect of temperature on azoreductase activity	84		
5.4	Profile of colour removal and cell dry weight during Reactive Red 195 decolourization	85		

- 5.5 Kinetic study on Reactive Red 195 (RR195) dye decolourization by 87
 Paenibacillus sp. R2.
- 5.6 Profile of specific decolourization rate and cell dry weight during 88Reactive Red 195 dye decolourization
- 5.7 Profile of colour removal and redox potential during Reactive Red 90195 decolourization
- 5.8 Correlation between log of colour removal rate and redox potential
 91 during Reactive Red 195 dye decolourization
- 5.9 Profile of colour removal and pH during Reactive Red 195 dye 92 decolourization
- 5.10 Profile of colour removal and Total Organic Carbon during Reactive
 93 Red 195 dye decolourization
- 5.11 Azo dye peaks before incubation (0h) of SFRed decolourization 96 obtained from HPLC-UV analyses.
- 5.12 Azo dye peaks after 18h incubation of SFRed decolourization 96 obtained from HPLC-UV analyses.
- 5.13 Azo dye peaks after 28h incubation of SFRed decolourization 97 obtained from HPLC-UV analyses.
- 5.14 Azo dye peaks after 40h incubation of SFRed decolourization 97 obtained from HPLC-UV analyses.

- 5.15 Azo dye peaks after 52h incubation of SFRed decolourization 98 obtained from HPLC-UV analyses.
- 5.16 Azo dye peaks after 66h incubation of SFRed decolourization 99 obtained from HPLC-UV analyses.
- 5.17 Azo dye peaks after two weeks incubation of SFRed decolourization99 obtained from HPLC-UV analyses.
- 5.18 Azo dye peaks after one month incubation of SFRed decolourization 100 obtained from HPLC-UV analyses.

LIST OF ABREVIATIONS AND SYMBOLS

μ	-	specific growth rate
λ	-	wavelength
$(NH_4)_2SO_4$	-	ammonium sulphate
Abs	-	absorbance
ADMI	-	American Dye Manufacturers Institute
Al	-	aluminum
APHA	-	American Public Health Association
AWW	-	autoclaved wastewater
BOD	-	biological oxygen demand
С	-	carbon
C.I	-	Colour Index
CaCl ₂	-	calcium chloride
Cd	-	cadmium
CDM	-	chemically defined medium
CDW	-	cell dry weight
Cl	-	chloride
Со	-	cobalt
COD	-	chemical oxygen demand
Cr	-	chromium
CrO4 ₂ ⁻	-	chromates
$\operatorname{CrO_7}^{2-}$	-	dichromates
Cu	-	copper

d ⁻¹	-	per day
DAF	-	dissolve air floatation
dATP	-	deoxyadenosine 5'-triphosphate
dCTP	-	deoxycytosine 5' triphosphate
DF	-	dilution factor
dGTP	-	deoxyguanosine 5' triphosphate
DNA	-	deoxyribonucleic acid
dNTP	-	deoxynucleotide triphosphate
DO	-	dissolve oxygen
DOE	-	Department of Environment
dTTP	-	deoxythymidine 5'-triphosphate
EDTA	-	ethylene diamine tetra acetic acid
FAD	-	flavin adenine dinucleotide(oxidized)
FADH ₂	-	flavin adenine dinucleotide(reduced)
FeCl ₃	-	ferric chloride
FMN	-	flavin adenine mononucleotide (oxidezed)
FMNH ₂	-	flavin adenine mononucleotide (reduced)
FSTW	-	filter sterilized textile wastewater
gL^{-1}	-	gram per litre
gt	-	generation time
H^+	-	hydrogen ion
h^{-1}	-	per hour
H_2S	-	hydrogen sulphide
H_2SO_4	-	acid sulphuric
HC1	-	hydrochloric acid
HNO ₃	-	acid nitric
HPLC	-	high performance liquid chromatography
HRT	-	hydraulic retention time
HSO ₃	-	sulphite
IR	-	infrared
Κ	-	potassium

K ₂ CrO ₄	-	potassium dichromate
K ₂ HPO ₄	-	dipotassium hydrogen phosphate
kb	-	kilobase
KH ₂ PO ₄	-	potassium dihydrogen phosphate
М	-	Molarity
mgL ⁻¹	-	milligram per litre
MgCl ₂	-	magnesium chloride
MgSO ₄ .7H ₂ O	-	magnesium sulphate heptahydrate
MIC	-	minimal inhibitory concentration
MWr	-	molecular weight relative
N_2	-	nitrogen gas
Na	-	sodium
NaCl	-	sodium chloride
NAD	-	nicotinamide adenine dinucleotide
NAD^+	-	nicotinamide adenine dinucleotide(oxidized)
NADH	-	nicotinamide adenine dinucleotide(reduced)
NADP	-	nicotinamide adenine dinucleotide phosphate
NADPH	-	nicotinamide adenine dinucleotide phosphate(reduced)
NaOH	-	sodium Hydroxide
NB	-	nutrient broth
NH ₄ Cl	-	ammonium chloride
NH ₄ NO ₃	-	ammonium nitrate
Ni	-	nikel
nm	-	nanometer
NMR	-	nuclear magnetic resonans
NO ₃	-	nitrate
O_2	-	oxygen gas
OD _{600nm}	-	optical density at 600nm
Pb	-	plumbum
PCR	-	polymerase chain reaction
РНВ	-	polyhydroxybutyrate

PO4 ³⁻	-	phosphate
ppm	-	part per million
Pt-Co	-	platinum cobalt
PVC	-	polyvinylchloride
RB15	-	reactive blue 15
RM	-	redox mediator
RNase	-	ribonuclease
rpm	-	rotation per minute
RR195	-	reactive red 195
rRNA	-	ribosomal RNA
S	-	sulphur
SBR	-	sequencing batch reactor
SDS	-	sodium dodecyl sulphate
SEM	-	scanning electron microscope
SFRed	-	sufimix supra red
SO_4^{2-}	-	sulphate
TAE	-	tris-acetate buffer
TCA	-	tricarboxylic acid cycle
td	-	doubling time
T _m	-	melting point
TOC	-	total organic carbon
TON	-	total organic nitrogen
Tris	-	2-hydroxymethyl-2-methyl-1,3-propanediol
TSS	-	total suspended solid
U	-	enzyme unit
UV	-	ultraviolet
UV-vis	-	ultraviolet-visible
v/v	-	volume per volume
w/v	-	weight per volume
Zn	-	zink

LIST OF APPENDICES

APPENDIX	TITLE	PAGE
А	Wastewater treatment system and sampling points (raw wastewater) at a textile company located in Batu Pahat, Johor.	120
В	Process description for textile wastewater treatment at Ramatex	121
С	Spectrum of raw Textile wastewater (C1) and SFRed azo dye (C2) using UV-Vis Shimadzu Spectrophotometer	123
D	DOE parameter limits of effluent of Standard A & B	124
E	Homology search of bacterial R2 using BLASTn from GenBank database of NCBI	125
F	Chromatogram for HPLC standard	126
G	Colony morphology and Gram's reaction for each single colony	128
Н	Correlation between OD _{600nm} and cell dry weight of <i>Paenibacillus sp.</i> R2	129
Ι	Standard curve of SFRed (Reactive Red 195) concentration at λ_{max} =517nm	130

xxiii

J	Highest alignment score full sequence of bacteria R2 using BLASTn from GeneBank database of NCBI	131
K	Full sequence of 16S rRNA of bacteria R2	132
L	Reverse phase-HPLC analytical parameters	134
М	Standard methods for the examination of water and wastewater	135
Ν	Preparation of buffers stock solution	140
Ο	Profile of <i>Paenibacillus sp.</i> R2 cell growth at the exponential/log phase.	143
Р	Experimental design of isolation, screening and characterization of dye degrading bacteria from textile wastewater.	144
Q	Stoichonometry calculation	145
R	Preparation of protein fraction from <i>Paenibacillus sp.</i> for azoreductase activity detection	147
S	Structure formulas of several dyes	148