brought to you by CORE provided by Universiti Teknologi Malaysia Institutional Repository

TABLE OF CONTENTS

TITLE	i
CONFESSION	ii
DEDICATION	iii
ACKNOWLEDGEMENT	iv
ABSTRACT	V
ABSTRAK	vi
TABLE OF CONTENTS	viii
LIST OF TABLES	XV
LIST OF FIGURES	xvi
LIST OF ABBREVIATIONS	XX
LIST OF SYMBOLS	xxii
LIST OF APPENDIX	xxiv

CHAPTER TITLE

PAGE

I	INTE	INTRODUCTION		
	1.1	Introduction	1	
	1.2	Statement of Problem	4	
	1.3	Objectives of Study	6	

1.4	Scope	of Study	7			
	1.4.1	Study Area	7			
	1.4.2	Data Collection and Analysis	8			
	1.4.3	Determination of Closure Depth	9			
1.5	Termi	Terminology Used in This Study				
	1.5.1	Beach Nourishment	9			
	1.5.2	Closure Depth	10			
	1.5.3	Equilibrium Profile	10			
	1.5.4	Pressure Equalization Modules System	11			
1.6	Impor	tance of Study	11			

II	LITERATURE REVIEW			
	2.1	Introduction	13	

PART A: BEACH NOURISHMENT/ DEPTH OF CLOSURE/ BEACH EQUILIBRIUM PROFILE

2.2	Beach	Beach Nourishment			
	2.2.1	Definition(s) of Beach Nourishment from			
		Different Perspectives	15		
	2.2.2	Advantages and Disadvantages of Beach			
		Nourishment Activities	16		
2.3	Identi	fication of the Depth of Closure	18		
	2.3.1	Estimation of the Depth of Closure	23		
	2.3.2	Depth of Closure and Vertical Datum	24		
2.4	Previo	ous Case Study- Determination of Depth of Closure	24		

	2.4.1 Oc	ean City, Maryland	25
	2.4.2 Pria	a de Fero, Algarve, South Portugal	25
	2.4.3 Ke	lantan Coast, Malaysia	26
2.5	Equilibriu	n Beach Profile	27

PART B: PRESSURE EQUALIZATION MODULE (PEM) SYSTEM

2.6	5 Pressure Equalization Module (PEM) System				
	Application Concept	30			
	2.6.1 The Advantage of PEM System	32			
2.7	Design Criteria of Pressure Equalization Module (PEM)				
	System at Teluk Cempedak Beach, Kuantan	33			
	2.7.1 System Installation	35			

III	RESI	RESEARCH METHODOLOGY		
	3.1	Introd	uction	39
	3.2	Study	Area	40
	3.3	Data S	Set	43
		3.3.1	Beach Profile Survey	43
		3.3.2	Winds and Waves Data	44
		3.3.3	Tidal Data	44
		3.3.4	Bed Sediment Data	45
	3.4	Measu	rement Techniques	47
		3.4.1	Beach Profile Measurement	47
		3.4.2	Historical Shoreline Changes	48

		3.4.3	Tidal Data Measurement	49
		3.4.4	Aerial Photograph	49
3	.5	Data A	Analysis	50
		3.5.1	Determination of Depth of Closure from	
			Beach Data Profile	50
		3.5.2	Determination of Depth of Closure from	
			Empirical Formula	53
3	.6	PEM]	Effectiveness Evaluation	53

IV	DAT	A ANA	LYSIS AND RESULTS	56
	4.1	Introd	uction	56
	4.2	Descr	iption of Study Area	57
	4.3	Data S	Set	58
		4.3.1	Beach Profile Survey	59
		4.3.2	Wave Data Analysis	62
		4.3.3	Tidal Height Information	64
		4.3.4	Sediment Properties	65
	4.4	Deter	mination of Depth of Closure from Beach Profile	
		Surve	у	69
	4.5	Depth	of Closure for Pre-Project Condition (2003)	69
		4.5.1	Closure Depth at CH 700 and CH 1400	69
		4.5.2	Closure Depth at CH 100	70
		4.5.3	Closure Depth at CH 200	71
		4.5.4	Closure Depth at CH 300	72
		4.5.5	Closure Depth at CH 400	73
		4.5.6	Closure Depth at CH 500	74

	4.5.7	Closure Depth at CH 600	75
	4.5.8	Closure Depth at CH 800	76
	4.5.9	Closure Depth at CH 900	77
	4.5.10	Closure Depth at CH 1000	78
	4.5.11	Closure Depth at CH 1100	79
	4.5.12	Closure Depth at CH 1200	80
	4.5.13	Closure Depth at CH 1300	81
4.6	Summ	ary of Depth of Closure for Pre-Project Condition	82
4.7	Depth	of Closure for Post-Project Condition	83
4.8	2005 E	Beach Profile	83
	4.8.1	Closure Depth at CH 100	84
	4.8.2	Closure Depth at CH 200	85
	4.8.3	Closure Depth at CH 300	86
	4.8.4	Closure Depth at CH 400	87
	4.8.5	Closure Depth at CH 500	88
	4.8.6	Closure Depth at CH 600	89
	4.8.7	Closure Depth at CH 700	90
	4.8.8	Closure Depth at CH 800	91
	4.8.9	Closure Depth at CH 900	92
	4.8.10	Closure Depth at CH 1000	93
	4.8.11	Closure Depth at CH 1100	94
	4.8.12	Closure Depth at CH 1200	95
	4.8.13	Closure Depth at CH 1300	96
	4.8.14	Closure Depth at CH 1400	97
4.9	Summ	ary of Depth of Closure for	
	2005 F	Post-Project Condition	98
4.10	2006 F	Beach Profile	99

	4.10.1 Closure Depth at CH 100	99
	4.10.2 Closure Depth at CH 200	100
	4.10.3 Closure Depth at CH 300	101
	4.10.4 Closure Depth at CH 400	102
	4.10.5 Closure Depth at CH 500 until CH 800	103
	4.10.6 Closure Depth at CH 900	105
	4.10.7 Closure Depth at CH 1000	106
	4.10.8 Closure Depth at CH 1100 and CH 1200	107
	4.10.9 Closure Depth at CH 1300	109
	4.10.10Closure Depth at CH 1400	110
4.11	Summary of Depth of Closure for	
	2006 Post-Project Condition	111
4.12	2007 Beach Profile	112
	4.12.1 Closure Depth at CH 100	112
	4.12.2 Closure Depth at CH 200	113
	4.12.3 Closure Depth at CH 300	114
	4.12.4 Closure Depth at CH 500	115
	4.12.5 Closure Depth at CH 600	116
	4.12.6 Closure Depth at CH 700	117
	4.12.7 Closure Depth at CH 800	118
	4.12.8 Closure Depth at CH 900	119
	4.12.9 Closure Depth at CH 1000	120
	4.12.10Closure Depth at CH 1100	121
	4.12.11Closure Depth at CH 1200	122
	4.12.12Closure Depth at CH 1300	123
	4.12.13Closure Depth at CH 1400	124
4.10		

4.13 Summary of Depth of Closure for

	2007 Post-Project Condition	125
4.14	Comparison of h_c between Pre-Project Condition and	
	Post-Project Condition	126
4.15	Estimation of Predictive Closure Depth by	
	Hallemeier's Equation	128
4.16	PEM Effectiveness Evaluation	130
	4.16.1 Total Sand Volume Changes	130
	4.16.2 Beach Level Changes	136
	4.16.3 Distribution Pattern of Beach Level Changes	137
	4.16.4 PEM Efficiency	139

V	CON	CLUSI	ONS AND RECOMMENDATIONS	143
	5.1	Introd	uction	143
	5.2	Recon	nmendation	147
		5.2.1	Criteria of Limit Line	147
		5.2.2	Standard Deviation Depth Change (SDDC)	
			Method	148
		5.2.3	Profile Survey	148
		5.2.4	Predictive Formula for Each Chainage	149
REFERENC	ES			150

APPENDICES	
------------	--

xiv

154

LIST OF TABLES

NO.	TITLE	PAGE
1.1	List of Coastal Erosion Areas in Malaysia	5
4.1	Data Available for This Study	58
4.2(a)	Centerline Coordinates of Selected Survey Data Set and	
	Its Correspondence Depth (Before Installation of	
	PEM System)	61
4.2(b)	Centerline Coordinates of Selected Survey Data Set and	
	Its Correspondence Depth (After Installation of	
	PEM System)	61
4.3	Tidal Level Along Study Shoreline (meter, LSD)	65
4.4	Summary of Design Size Ranges for Borrow Sand	67
4.5(a)	Sand Size Analysis (upper beach face for pre-project condition)	68
4.5(b)	Sand Size Analysis (lower beach face for pre-project condition)	68
4.6	Closure Depth for 2003 Pre-Project Profile	82
4.7	Closure Depth for 2005 Post-Project Profile	98
4.8	Closure Depth for 2006 Post-Project Profile	111
4.9	Closure Depth for 2007 Post-Project Profile	125
4.10	h_c Simplified Equation Compared with Effective $h_{c \ 2007}$	128
4.11	Total Sand Volume and Sand Gain or Loss at the Study Area	132
4.12	PEM Efficiency	140

LIST OF FIGURES

NO.	TITLE	PAGE
1.1	The Location of Study Area at Teluk Cempedak Beach, Kuanta	in 7
2.1	Schematic Diagram of the Depth of Beach Profile Closure	19
2.2	Definition Sketch of the Closure Depth	20
2.3	Pressure Equalization Module – schematization	30
2.4	PEM Function Dewatering the Beach	32
2.5	Design of Pressure Equalization Module Pipes	34
2.6	Preparation for PEM Installation on 9 th July 2004	37
2.7	Preparation of borehole for PEM Installation on 9 th July 2004	37
2.8	Placement of PEM Pipe	38
2.9	Exposed PEM Pipe at Chainage 800	38
3.1	Site Study Area	40
3.2	The Beach Slope is Steeper Due to Erosion Problem	41
3.3	The Beach is Narrower and Recreational Activities are Limited	
	for Beach Visitor	41
3.4(a)	Beach Condition Before the Installation of PEM System	42
3.4(b)	Beach Condition After the Installation of PEM System	42
3.5	Location of Sediment Samples and Sand Source	46
3.6	The Algorithm of Closure Depth Determination	52

3.7	Research Methodology Chart	55
4.1	Profile Line at Study Area	60
4.2	Histogram of Design Wave Height	62
4.3	H _{0.137} Wave from SSMO Wave Data (1949-1983)	63
4.4	Relationship between Wave Height and Wave Period	64
4.5	Plan View for Distribution of Design Sand Size	67
4.6	Closure Depth (h _c) at CH 100 for 2003 Pre- Project Profile	70
4.7	Closure Depth (h _c) at CH 200 for 2003 Pre- Project Profile	71
4.8	Closure Depth (h _c) at CH 300 for 2003 Pre- Project Profile	72
4.9	Closure Depth (h _c) at CH 400 for 2003 Pre- Project Profile	73
4.10	Closure Depth (h _c) at CH 500 for 2003 Pre- Project Profile	74
4.11	Closure Depth (h _c) at CH 600 for 2003 Pre- Project Profile	75
4.12	Closure Depth (h _c) at CH 800 for 2003 Pre- Project Profile	76
4.13	Closure Depth (h _c) at CH 900 for 2003 Pre- Project Profile	77
4.14	Closure Depth (h _c) at CH 1000 for 2003 Pre- Project Profile	78
4.15	Closure Depth (h _c) at CH 1100 for 2003 Pre- Project Profile	79
4.16	Closure Depth (h _c) at CH 1200 for 2003 Pre- Project Profile	80
4.17	Closure Depth (h _c) at CH 1300 for 2003 Pre- Project Profile	81
4.18	Closure Depth (h _c) at CH 100 for 2005 Post- Project Profile	82
4.19	Closure Depth (h _c) at CH 200 for 2005 Post - Project Profile	83
4.20	Closure Depth (h_c) at CH 300 for 2005 Post - Project Profile	86
4.21	Closure Depth (h _c) at CH 400 for 2005 Post - Project Profile	87
4.22	Closure Depth (h_c) at CH 500 for 2005 Post - Project Profile	88
4.23	Closure Depth (h_c) at CH 600 for 2005 Post - Project Profile	89
4.24	Closure Depth (h _c) at CH 700 for 2005 Post - Project Profile	90
4.25	Closure Depth (h _c) at CH 800 for 2005 Post - Project Profile	91
4.26	Closure Depth (h _c) at CH 900 for 2005 Post - Project Profile	92

4.27	Closure Depth (h _c) at CH 1000 for 2005 Post - Project Profile	93
4.28	Closure Depth (h_c) at CH 1100 for 2005 Post - Project Profile	94
4.29	Closure Depth (h_c) at CH 1200 for 2005 Post - Project Profile	95
4.30	Closure Depth (h_c) at CH 1300 for 2005 Post - Project Profile	96
4.31	Closure Depth (h_c) at CH 1400 for 2005 Post - Project Profile	97
4.32	Closure Depth (h_c) at CH 100 for 2006 Post - Project Profile	99
4.33	Closure Depth (h_c) at CH 200 for 2006 Post - Project Profile	100
4.34	Closure Depth (h_c) at CH 300 for 2006 Post - Project Profile	101
4.35	Closure Depth (h_c) at CH 400 for 2006 Post - Project Profile	102
4.36	Closure Depth (h_c) at CH 500 for 2006 Post - Project Profile	103
4.37	Closure Depth (h_c) at CH 600 for 2006 Post - Project Profile	104
4.38	Closure Depth (h_c) at CH 700 for 2006 Post - Project Profile	104
4.39	Closure Depth (h_c) at CH 800 for 2006 Post - Project Profile	105
4.40	Closure Depth (h_c) at CH 900 for 2006 Post - Project Profile	106
4.41	Closure Depth (h_c) at CH 1000 for 2006 Post - Project Profile	107
4.42	Closure Depth (h_c) at CH 1100 for 2006 Post - Project Profile	108
4.43	Closure Depth (h_c) at CH 1200 for 2006 Post - Project Profile	108
4.44	Closure Depth (h_c) at CH 1300 for 2006 Post - Project Profile	109
4.45	Closure Depth (h_c) at CH 1400 for 2006 Post - Project Profile	110
4.46	Closure Depth (h_c) at CH 100 for 2007 Post - Project Profile	112
4.47	Closure Depth (h_c) at CH 200 for 2007 Post - Project Profile	113
4.48	Closure Depth (h_c) at CH 300 for 2007 Post - Project Profile	114
4.49	Closure Depth (h_c) at CH 500 for 2007 Post - Project Profile	115
4.50	Closure Depth (h_c) at CH 600 for 2007 Post - Project Profile	116
4.51	Closure Depth (h_c) at CH 700 for 2007 Post - Project Profile	117
4.52	Closure Depth (h_c) at CH 800 for 2007 Post - Project Profile	118
4.53	Closure Depth (h _c) at CH 900 for 2007 Post - Project Profile	119

4.54	Closure Depth (h _c) at CH 1000 for 2007 Post - Project Profile	120
4.55	Closure Depth (h_c) at CH 1100 for 2007 Post - Project Profile	121
4.56	Closure Depth (h_c) at CH 1200 for 2007 Post - Project Profile	122
4.57	Closure Depth (h_c) at CH 1300 for 2007 Post - Project Profile	123
4.58	Closure Depth (h_c) at CH 1400 for 2007 Post - Project Profile	124
4.59	Closure Depth at Teluk Cempedak beach, Kuantan	127
4.60	Closure Point at Teluk Cempedak beach, Kuantan	127
4.61	Total Sand Volume (m ³)	131
4.62	Sand Gain and Loss for Year 2005	134
4.63	Sand Gain and Loss for Year 2006	134
4.64	Sand Gain and Loss for Year 2007	135
4.65	Sand Volume Distribution Pattern	135
4.66	Average Beach Level 70 m wide	136
4.67	Beach Level at CH 400 and CH 500	137
4.68	Beach Level at CH 600 and CH 700	138
4.69	Beach Level at CH 800 and CH 900	138
4.70	Beach Level at CH 1000 and CH 1100	138
4.71	Beach Level at CH 1200 and CH 1300	139
4.72	PEM Efficiency at CH 400 and CH 500	141
4.73	PEM Efficiency at CH 600 and CH 700	141
4.74	PEM Efficiency at CH 800 and CH 900	141
4.75	PEM Efficiency at CH 1000 and CH 1100	142
4.76	PEM Efficiency at CH 1200 and CH 1300	142

LIST OF ABBREVIATIONS

CED	Coastal Engineering Division
CEM	Coastal Engineering Manual
СН	Chainage
cm	centimeter
DID	Department of Irrigation and Drainage Malaysia
EDM	Electronic Distance Measuring
FDC	Fixed Depth Change
h _c	Depth of Closure
HAT	Highest Astronomical Tide
LAT	Lowest Astronomical Tide
LSD	Land Survey Datum
m	meter
mm	millimeter
MSL	Mean Sea Level
MHW	Mean High Water
MHHW	Mean Higher High Water
MLHW	Mean Lower High Water
MLW	Mean Low Water
MHLW	Mean Higher Low Water

MLLW Mean Lower Low Water

MMD Malaysian Meteorological Department

MRCB Malaysia Resource Corporation Berhad

- NOS National Ocean Survey
- PEM Pressure Equalization Modules
- SDDC Standard Deviation Depth Change
- SSMO Synoptic Shipboard Meteorological Observation
- USGS U.S Geological Survey Quadrangles

LIST OF SYMBOLS

А	profile scale parameter with dimensions of length to the 1/3 power
D ₁₆	size of material of which 16% is finer
D ₅₀	size of material of which 50% is finer
D ₈₄	size of material of which 84% is finer
$D_c\!/\;h*\!/h_c$	closure depth
g	gravity
h	water depth at distance y from the shoreline
h _{Ci}	depth of closure, innershore; from profile survey
h _{cm}	depth of closure, middleshore; from profile survey
h _{co}	depth of closure, outershore; from profile survey
H _e	non breaking significant wave height that is exceeded 12 hour per t years or ($100/730t$)% of the time
H _{0.137}	significant wave height exceeded 12 hours in a year
\overline{H}/H_s	annual mean significant wave height
m	fore shore slope of the beach profile
t	time
T _e	wave period associated with H _e

- y equilibrium beach profile
- v_b amplitude of the wave induced bottom velocity
- ρ mass densities of water
- ρ_s mass densities of sediment
- σ_H standard deviation

LIST OF APPENDIX

APPENDIX TITLE

PAGE

A Profile Surveys from the Coastline of Pantai Teluk Cempedak
Kuantan 2003, 2005, 2006, and 2007
154