brought to you by CORE

vii

TABLE OF CONTENTS

CHAPTER		TITLE	PAGE
	AUTI	HOR'S DECLARATION	ii
	DEDI	CATION	iii
	ACK	NOWLEDGEMENTS	iv
	ABST	TRACT	V
	ABST	TRAK	vi
	TABI	LE OF CONTENTS	vii
	LIST	OF TABLES	xi
	LIST	OF FIGURES	xiii
	LIST	OF ABBREVIATIONS	xvi
	LIST	OF SYMBOLS	xviii
	LIST	OF APPENDIXES	XX
1	INTR	ODUCTION	1
	1.1	Introduction	1
	1.2	Problem Statement	3
	1.3	Objectives	6
	1.4	Scope of Study	7
	1.5	Significance of Research	7
2	LITE	RATURE REVIEW	9
	2.1	Introduction	9
	2.2	Overview of Water Quality Modeling in Malaysi	a 10
	2.3	Estuarine Model	12
	2.4	Review of Available Hydrodynamic Models	15
	2.5	Review of Available Water Quality Models	19

2.6	Environmental Fluid Dynamic Code (EFDC)	22
	2.6.1 Summary of EFDC Theory	23
	2.6.2 Modeling Assumption	26
2.7	EFDC Water Quality Model	27
	2.7.1 Water Quality Model Formulation	28

3

4

RESI	EARCH METHODOLOGY	30
3.1	Introduction	30
3.2	Database	32
	3.2.1 Geographical Information System (GIS)	33
3.3	Equipments	34
3.4	Model Set Up	36
	3.4.1 Model Domain	37
	3.4.2 Bathymetry	37
	3.4.3 Model Boundary Conditions	39
	3.4.4 Model Initial Conditions	39
	3.4.5 Model Kinetics	41
	3.4.6 Model Input Parameters	42
3.5	Model Calibration	43
3.6	Model Sensitivity Analysis	44
3.7	Statistical Comparison Techniques	45

DATA	COLLECTION & ANALYSIS	48
4.1	Stream Data Assessment	48
4.2	Meteorological Data	49
4.3	Freshwater Flow	49
4.4	DOE Water Quality Monitoring Data	50
4.5	Intensive Survey	57
4.6	Discrete Water Chemistry Samples	65
4.7	Continuous Monitoring Data	67
4.8	Vertical Profiles	68

RESU	LTS &	DISCUSSIONS	72
5.0	Introd	uction	72
5.1	Hydro	dynamic Model Calibration	73
	5.1.1	Water Surface Elevation Calibration	74
	5.1.2	Temperature Calibration	76
	5.1.3	Salinity Calibration	79
5.2	Water	Quality Model Calibration	81
	5.2.1	Dissolved Oxygen	82
	5.2.2	Ammonia Nitrogen	84
	5.2.3	Nitrate Nitrogen	85
	5.2.6	Total Phosphate	85
	5.2.7	Chlorophyll <i>a</i>	86
5.3	Hydro	dynamic Model Sensitivity Analysis	87
	5.3.1	Sensitivity of Water Surface Elevation to	
		Bottom Roughness	87
	5.3.2	Sensitivity of Salinity to Bottom Roughness	89
	5.3.3	Sensitivity of Salinity to Horizontal Eddy	
		Viscosity	89
	5.3.4	Sensitivity of Salinity to Upstream	
		Boundary Condition	91
	5.3.5	Sensitivity of Salinity to Downstream	
		Salinity Boundary	91
5.4	Water	Quality Model Sensitivity Analysis	92
	5.4.1	Sensitivity of DO to COD Decay Rate	93
	5.4.2	Sensitivity of DO to Nitrification Rate	95
	5.4.3	Sensitivity of DO to SOD	96
	5.4.4	Sensitivity of DO to Maximum Algal	
		Growth Rate	99
	5.4.5	Sensitivity of DO to Loads from	
		Point Sources	99
	5.4.6	Sensitivity of DO to reaeration rate	100

6	CON	NCLUSIONS & RECOMMENDATIONS	101
	6.1	Conclusions	101
	6.2	Recommendations	102
REFEREN	ICES		104
APPENDI	CES		114

LIST OF TABLES

TABLE NO.	TITLE	PAGE
2.1	Available estuary model	14
2.2	Evaluation of capability for hydrodynamic models	18
2.3	Evaluation of capability for water quality models	21
3.1	Data Sources of Sungai Johor Estuary Model	32
3.2	Historical Water Quality and Quantity Data for Sungai Johor Estuary	33
3.3	Initial Conditions for Sungai Johor Estuary Model	40
3.4	EFDC kinetic coefficients in the present model application	41
3.5	Files required for hydrodynamic model simulation	42
4.1	Hydraulic Data for Sungai Johor Basin	49
4.2	Meteorological Data for Sungai Johor Basin	49
4.3	Averaged flow discharges for Sungai Johor Estuary Model	50
4.4	Water Quality Index (WQI)	52
4.5	DOE Water Quality Index Classification	53
4.6	Water Quality Parameters and Value Ranges of Sungai John	or 56
4.7	Summary of Intensive Surveys Data	58
4.8	Water Quality Parameters Data from Kota Tinggi to Tanjung Buai	60
4.9	Summary of Continuous Monitoring Stations of Sungai Joho	or 67
5.1	Error analysis for observed and simulated water surface Elevations	75

5.2	Error analysis for observed and simulated temperatures	77
5.3	Error analysis for observed and simulated salinity	80
5.4	Error analysis for observed and simulated DO	82
5.5	Sensitivity analysis of water surface elevation with bottom roughness at Tanjung Surat	88
5.6	Sensitivity analysis of water surface elevation with bottom roughness at Teluk Sengat	88
5.7	Sensitivity analysis of water surface elevation with bottom roughness at Kota Tinggi Bridge	88
5.8	Sensitivity analysis of salinity with bottom roughness At Tanjung Surat	89
5.9	Sensitivity analysis of salinity with horizontal eddy viscosity At Tanjung Surat	90
5.10	Sensitivity analysis of DO to COD decay rate at Tg Surat	94
5.11	Sensitivity analysis of DO to COD decay rate at Teluk Sengat	94
5.12	Sensitivity analysis of DO to nitrification rate at Tg Surat	95
5.13	Sensitivity analysis of DO to nitrification rate at Teluk Sengat	96
5.14	Sediment oxygen demand values	97
5.15	Sediment oxygen demand for Sungai Tebrau	97
5.16	Sensitivity analysis of DO to SOD at Tanjung Surat	98

LIST OF FIGURES

FIGURE NO	. TITLE	PAGE
1.1	Map of Sungai Johor study area	6
2.1	Primary models of the EFDC model	23
2.2	Structure of the EFDC hydrodynamic model	23
2.3	Structure of the EFDC water quality model	27
2.4	Schematic diagram for the EFDC water column water Quality model	29
3.1	Research Methodology Flow Chart	31
3.2	Garmin GPS 72	34
3.3	YSI Water Quality Monitoring System	35
3.4	Hondex Digital Depth Sounder	35
3.5	Solinst Lovelogger	36
3.6	Curvilinear-orthogornal horizontal model domain for the Sungai Johor	38
3.7	The model bathymetry	38
4.1	Stream flow at Rantau Panjang in year 2006	48
4.2	Location of DOE river and marine water quality stations	51
4.3	Range of WQI for selected rivers along Sungai Johor basin	54
4.4	Water Quality trends at DOE river monitoring stations	55
4.5	Trend of temperature from downstream boundary at Tanjung Pengelih towards upstream boundary at Rantau Panjang	g 56
4.6	Trend of DO from downstream boundary at Tanjung Pengelih towards upstream boundary at Rantau Panjang	57

4.7	Trend of salinity from downstream boundary at Tanjung Pengelih towards upstream boundary at Rantau Panjang	57
4.8	Location of intensive survey stations along Sungai Johor	59
4.9	Trend of salinity from Kota Tinggi towards downstream at Tanjung Buai	60
4.10	Trend of temperature from Kota Tinggi towards downstream at Tanjung Buai	61
4.11	Trend of DO from Kota Tinggi towards downstream at Tanjung Buai	61
4.12	Nitrogen and Phosphorus Loads at Rantau Panjang	63
4.13	Water quality concentration in Sungai Johor tributaries	64
4.14	Water quality concentration along Sungai Johor	66
4.15	Location of vertical profile stations	68
4.16	Vertical profiles of observed salinity, temperature and DO	69
5.1	Observed and simulated water surface elevation at Tanjung Surat	75
5.2	Observed and simulated water surface elevation at Teluk Sengat	75
5.3	Observed and simulated water surface elevation at Kota Tinggi Bridge	76
5.4	Observed and simulated temperature at Tanjung Surat	77
5.5	Observed and simulated temperature at Teluk Sengat	78
5.6	Temperature profile along Sungai Johor	78
5.7	Temperature profile along Johor Straits	79
5.8	Observed and simulated salinity at Tanjung Surat	80
5.9	Salinity profile along Sungai Johor	81
5.10	Salinity profile along Johor Straits	81
5.11	Observed and simulated DO at Tanjung Surat	83

5.12	DO concentration profile along Sungai Johor	83
5.13	DO concentration profile along Johor Straits	84
5.14	Ammonia nitrogen concentration profile	84
5.15	Nitrate nitrogen concentration profile	85
5.16	Total Phosphate concentration profile	86
5.17	Chlorophyll <i>a</i> concentration profile	87
5.18	Sensitivity of salinity to bottom roughness at Tg Surat	89
5.19	Sensitivity of salinity to horizontal eddy viscosity at	
	Station Tanjung Surat	90
5.20	Sensitivity of salinity to upstream boundary condition	91
5.21	Sensitivity of salinity to downstream salinity boundary	92
5.22	Sensitivity of DO to COD decay rate at Tanjung Surat	93
5.23	Sensitivity of DO to COD decay rate at Teluk Sengat	94
5.24	Sensitivity of DO to nitrification rate at Tanjung Surat	95
5.25	Sensitivity of DO to nitrification rate at Teluk Sengat	96
5.26	Sensitivity of DO to SOD at Tanjung Surat	98
5.27	Sensitivity of DO to SOD	98
5.28	Sensitivity of DO to maximum algal growth rate	99
5.29	Sensitivity of DO to loads from point sources	100
5.30	Sensitivity of DO to reaeration rate	100

LIST OF ABBREVIATIONS

AME	Absolute mean error
ASCE	American Society of Civil Engineers
BOD	Biochemical Oxygen Demand
CE-QUAL- ICM	Three-Dimensional Eutrophication Model
CE-QUAL- W2	Two-Dimensional, Laterally Averaged Hydrodynamic and Water Quality Model
CH3D- WES	Curvilinear Hydrodynamics in 3-Dimensions Waterways Experiment Station
COD	Chemical oxygen demand
DID	Department of Irrigation and Drainage
DO	Dissolved oxygen
DOC	Dissolved organic carbon
DOE	Department of Environment
DYNHYD5	Link Node Tidal Hydrodynamic Model
EFDC	Environmental Fluid Dynamic Code
EPA	Environmental Protection Agency
HABs	Harmful algal blooms
HEM-3D	Three dimensional hydrodynamic eutrophication model
INWQS	Interim National Water Quality Standards for Malaysia
ME	Mean error
Ν	Nitrogen

NBOD	Nitrogenous Biochemical Oxygen Demand
NH^{+4}	Ammonium ions
NH ₃ -N	Ammoniacal Nitrogen
NO ⁻³	Nitrate ions
NO ₃ -N	Nitrate Nitrogen
Р	Phosphorus
PAHs	Polycyclic Aromatic Hydrocarbons
PCBs	Polychlorinated Biophenyls
PO ₄	Inorganic Phosphorus
PO_4^{-3}	Inorganic Phosphate ions
POM	Princeton Ocean Model
QUAL-2E	Enhanced Stream Water Quality Model
RIVMOD-H	River Hydrodynamic Model
RMSE	Root mean square error
SOD	Sediment oxygen demand
SS	Suspended Solids
TMDLs	Total Maximum Daily Loads
TOC	Total Organic Carbon
USACOE	United State Army Corps of Engineer's
UTM	Universiti Teknologi Malaysia
WASP5	Water Quality Simulation Program
WQI	Water Quality Index

LIST OF SYMBOLS

=	velocity component in the x-direction
=	velocity component in the y-direction
=	velocity component in the z-direction
=	curvilinear horizontal coordinates
=	turbulent diffusivities in the x-direction
=	turbulent diffusivities in the y-direction
=	turbulent diffusivities in the z-direction
=	internal and external sources and sinks per unit volume
=	von Karman constant
=	dimensionless thickness of the bottom layer
=	dimensionless roughness height
=	buoyancy
=	actual water density
=	reference water density
=	air density
=	water density
=	wind stress coefficient
=	bottom drag coefficient
w =	component of the wind velocity at 10 meter above the water surface
=	horizontal turbulence mass diffusion coefficient
=	vertical turbulence mass diffusion coefficient
=	physical and biogeochemical sources and sinks
=	volume sources and sinks including rainfall, evaporation, infiltration,
	and lateral inflows and outflows having negligible momentum fluxes
<i>y</i> =	scale factors of the horizontal coordinates
=	vertical velocity in the stretched vertical coordinate

Z_s *	=	physical vertical coordinate of the free surface
z_b *	=	physical vertical coordinate of the bottom bed
H	=	total water column depth
ϕ	=	free surface potential
Fe	=	effective Coriolis acceleration
Q	=	horizontal momentum diffusion terms
Av	=	vertical turbulent viscosity
ρ_{atm}	=	atmospheric pressure
ρ _{atm} U*	=	shear velocity
ρ _{atm} u* c _b	= =	shear velocity bottom stress coefficient
$ Patm u* c_b U$	= = =	atmospheric pressure shear velocity bottom stress coefficient flow velocity at the bottom layer
ρ _{atm} u* C _b U Av	= = =	atmospheric pressure shear velocity bottom stress coefficient flow velocity at the bottom layer viscosity
Patm U* Cb U Av Kv	= = = =	atmospheric pressure shear velocity bottom stress coefficient flow velocity at the bottom layer viscosity turbulent diffusivity
Patm U* Cb U Av Kv Kv Rq		atmospheric pressure shear velocity bottom stress coefficient flow velocity at the bottom layer viscosity turbulent diffusivity turbulent intensity Richardson Number

LIST OF APPENDICES

APPENDIX.	TITLE	PAGE
A.1	DO concentration profiles along Sungai Johor	114
A.2	Salinity profiles along Sungai Johor	115
A.3	Temperature profiles along Sungai Johor	116
В	Methods of Analysis	117
С	Temporal Profiles of Stream Flow	118
D	Temporal Profiles of DO Concentrations and Nutrient Loads	119