brought to you by **CORE** provided by Universiti Teknologi Malaysia Institutional Repository

vii

TABLE OF CONTENTS

CHAPTER	TITLE		PAGE
	DECI	LARATION	ii
	DEDI	CATION	iii
	ACK	NOWLEDGEMENTS	iv
	ABST	v	
	ABST	vi	
	TABI	LE OF CONTENTS	vii
	LIST	OF TABLES	xii
	LIST	xiii	
	LIST	OF ABBREVIATIONS	xvi
1	INTR	RODUCTION	1
	1.1	Overview	1
	1.2	Background of the problem	4
	1.3	Problem Statement	7
	1.4	Project Aim	8
	1.5	Objective of Study	8
	1.6	Scope of the Project	8
2	LITE	RATURE REVIEW	9
	2.1	Overview	9
	2.2	Code Generation Technology	10

2.3	Perviou	as Reviews on Code Generation	11
	2.3.1	Comparison of Dataflow Architecture and	11
		Real Time Workshop Embedded Coder	
	2.3.2	Reviews the Object Oriented Design on	12
		ERT	
2.4	ERT C	ode Generation Frameworks	13
	2.4.1	UML-RT	16
		2.4.1.1 Time Managing	17
		2.4.1.2 UML-RT and Code Generator	20
		Features	
		2.4.1.3 UML-RT and Robot Controller	21
	2.4.2	Giotto	24
		2.4.2.1 Time Managing with Giotto	26
		Compiler	
		2.4.2.2 Giotto Code Generation	31
		2.4.2.3 A Giotto–Base Autonomous	31
		Helicopter System	
	2.4.3	Simulink	33
		2.4.3.1 Time Managing in Simulink	35
		2.4.3.2 Simulink and Code Generator	
		(Real-Time Workshop) Features	36
	2.4.4	Labview	36
		2.4.4.1 Time Managing	37
		2.4.4.2 Labview Code Generation	38
	2.4.5	Component oriented programming (COP)	39
		2.4.5.1 Mapping of component behaviour	40
		to task and time managing	
		2.4.5.2 Analysis pattern for autonomous	40
		Mobile Robot software	
		2.4.5.3 COP Framework	41
		2.4.5.4 Components approach in COP	42
2.5	Discus	s on the Evaluation of the Framework	43

3 **RESEARCH METHODOLOGY**

4

3.1	Overviews 4		
3.2	Research Methodology		
3.3	Operational Research Framework 4		
3.4	ERT Case Study		
	3.4.1	Card and Fingerprint based Time Recording Terminal	52
	3.4.2	Concurrency operation in STPro	54
COD	E GENE	CRATOR FOR EMBEDDED REAL	55
TIM	E SOFT	WARE	
4.1	Overvi	ews	55
4.2	Criteria	a of Evaluations for CBD Methodologies in	56
	ERT C	ode Generator	
4.3	Reason	on choosing the four criteria	58
4.4	UML F	RT	58
	4.4.1	Iterative development in UML RT	59
	4.4.2	Optimized Design Concept	60
	4.4.3	Large scale development in UML RT	61
	4.4.4	Integration and adaptation	62
4.5	Giotto		62
	4.5.1	Iterative development	63
	4.5.2	Optimization development	64
	4.5.3	Large scale development	66
	4.5.4	Interaction and adaptation	67
4.6	Simuli	nk	67
	4.6.1	Iterative development	68
	4.6.2	Optimizing generated code	71
	4.6.3	Large-scale development	76
	4.6.4	Integration and adaption	77
4.7	Labvie	W	77
	4.7.1	Iteration development on Labview	77
	4.7.2	Optimizing Generated Code	79
	4.7.3	Large scale development	81

		4.7.4	Integration and adaption	81
	4.8	Discus	sion on the Evaluation of Criteria for Code	81
	4.9	Discus	stion	84
5	RAT	IONAL	ROSE REAL TIME TOOL	85
	5.1	Introdu	iction	85
	5.2	Compo	onent Composition	86
	5.3	Code g	generation	90
		5.3.1	Capsule	91
		5.3.2	Capsule State Diagrams	92
		5.3.3	Classes	93
		5.3.4	Associations	93
		5.3.5	Dependency	95
		5.3.6	Internal messages	95
	5.4	Follow	ing criteria by Rational Rose RT	97
		5.4.1	Supporting the Large Scale by Rational	98
			Rose RT	
		5.4.2	Supporting the Iterative Development by	101
			Rational Rose RT	
		5.4.3	Discussion	102
6	СОР	TOOL		104
	6.1	Introdu	iction	104
	6.2	COP T	OOL requirement	105
		6.2.1	Module 1:Component Development	105
		6.2.2	Module 2:Component Integration	105
		6.2.3	Module 3: Code generation	106
	6.3	COP to	ool design	106
		6.3.1	COP Composition Class Diagram	108
		6.3.2	COP Code Generation class diagram	108
		6.3.3	User Interface	112
		6.3.4	The Tool architecture design	115
	6.4	Follow	ing criteria by COP tool	117

		6.4.1	Supporting the Large Scale by COP tool	117
		6.4.2	Supporting the Iterative Development by	119
			COP tool	
		6.4.3	Discussion	121
7	CON	CLUSIO	N	124
	7.1	Summa	ury	115
	7.2	Researc	ch Contribution	126
	7.3	Future	works	127

REFERENCES 128

LIST OF TABLES

TABLE NO TITLE

PAGE

2.1	Evaluation based on criteria UML RT commercial system	18
2.2	Evaluation based on criteria of Giotto commercial system	27
2.3	Evaluation based on criteria Simulink commercial system	34
2.4	Summary of the comparative evaluation	45
3.1	Shows a STPro system which is provided access control	53
	system	
4.1	Introduce some code generation criteria	56
4.2	Summary of the comparative evaluation of frameworks	82
	based on criteria	
5.1	Send and received of capsule code	96
6.1	Comparing the COP features and Rational Rose	123

LIST OF FIGURES

TITLE

PAGE

1.1	Example of embedded systems	2
1.2	Embedded real time system	3
2.1	Programming model of a node processor (wikender,	14
	1999).	
2.2	Sequence diagram with time consuming	17
2.3	Timing diagram example	18
2.4	Capsule structure diagrams	22
2.5	Capsule structure diagrams	22
2.6	Capsule state transaction diagrams	23
2.7	Component diagram	23
2.8	Traditional control systems development process	25
2.9	The Giotto based control system development	25
2.10	Giotto time tasking diagram	26
2.11	Giotto program example (control off or controller on	29
	specification on helicopter controller)	
2.12	Workflow of the design framework that iteratively	30
	refines code generation using schedulability	
2.13	Time tasking on Giotto	32
2.14	There are no race conditions	32
2.15	The Giotto case block in simulink	33
2.16	Typical output logic for a digital delay generator	38

2.17	Architecture of Lab VIEW in embedded real time system	39
2.18	Architecture Pattern in COP	41
2.19	Motor control composite component	42
2.20	A PID component documented in block form	43
3.1	Research Design Methodology	48
3.2	Operational Framework	50
3.3	STPro Attendence system	54
4.1	Giotto based control systems development	64
4.2	Shows the rapid prototyping development process	70
4.3	Algorithm design and prototyping	71
4.4	Three same product plot on Simulink	75
4.5	Three same product on matlab	75
5.1	class diagram in the STPro System	87
5.2	UML-RT structure model of the STPro	87
5.3	Use case diagram of the STPro System	88
5.4	Sequence diagram representing message sequences	89
	between the Capsules	
5.5	State diagram of STPro	90
5.6	Generalization in class diagram	89
5.7	Relations in class diagram	96
5.8	Relations between class and capsule	96
5.9	Relations in class diagram	97
5.10	considering the library in Rational Rose	101
6.1	Use case diagram of the composition part	107
6.2	Class diagram of the composition part	108
6.3	Class diagram of the code generation part	109
6.4	Definition of code generator	109
6.5	Header of initialization	109
6.6	Body of initialization	110
6.7	Data type declaration	110
6.8	Data declaration error by underline	110
6.9	Execution of Capsule	111
6.10	Main of project	111

6.11	Synchronization part of code generator	111
6.12	Composition of COP tool	113
6.13	Composition of COP tool and ComponentsTab	114
6.14	Code generation of COP tool	115
6.15	Tool architecture design	116
6.16	Composition of COP tool and library Tab	118
6.17	COP Library is reachable by Check Box	118
6.18	Error connections	120
6.19	Representing data type error in generated code	121

LIST OF ABBREVIATIONS

COP	-	Component Oriented Programming
RTS	-	Real Time System
ERT	-	Embedded Real Time System
MASCOT	-	Modular Approach to Software framework
		Operation and Test
CBSE	-	Component Base Software System
CBD	-	Component Base Development
GUI	-	Graphical User Interface
OOP	-	Object Oriented Programming
AOP	-	Aspect Oriented Programming
RTOS	-	Real Time Operation System
AMR	-	Autonomous Mobile Robot
DSP	-	Digital Signal Processor
REI	-	Rose Extensibility Interface
ADL	-	Architecture Description Languages
GRT	-	Generic Real Time
FPGA	-	Field-Programmable Gate Array
regexp	-	Reqular Expression
UI	-	User Interface
SOA	-	Service Oriented Architecture