viii

TABLE OF CONTENTS

CHAPTER	TITLE	PAGE ii	
	DECLARATION		
	DEDICATION	iv	
	ACKNOWLEDGEMENT	v	
	ABSTRACT	vi	
	ABSTRAK	vii	
	TABLE OF CONTENTS	viii	
	LIST OF TABLES	xii	
	LIST OF FIGURES	xiii	
	LIST OF ABBREVIATIONS	xiv	
	LIST OF APPENDICES	XV	
1	INTRODUCTION	1	
	1.1 An Introduction to Building Information Modeling	1	
	1.2 Sustainable Design	3	
	1.3 Principles of Sustainable Design	4	
	1.4 Sustainable Design Analysis and		
	Building Information Modeling	5	
	1.5 Problem Statement	7	
	1.6 Limitation of Research Scope	7	
	1.7 Research Aim and Objectives	8	
2	LITERATURE REVIEW	9	
	2.1 Overview	9	
	2.2 Sustainability and the Construction Industry	10	
	2.3 Construction Industry and Moving Towards		
	Sustainable Development	12	
	2.4 The Intersection of BIM and Sustainable Design	13	

	2.5 Whole Building Energy, Water and Carbon Analysis	17			
	2.6 Analyzing a Design in the Context of BIM	21			
	2.7 Realizing the Future of Sustainable Design				
	through BIM and Analysis	25			
	2.7.1 Sustainable MEP Design	25			
	2.7.2 Building Information Modeling	27			
	2.7.3 BIM and Sustainable Design	27			
	2.7.4 Sustainable Design Process	29			
	2.7.5 Sustainable Design in Practice	31			
	2.8 Green Building Index	32			
	2.9 Green Building Index Users	33			
	2.10 Defining Autodesk Green Building Studio	34			
	2.11 Benefits of the Green Building Studio	34			
	2.12 BIM and the Autodesk Green Building Studio	35			
	2.13 Analyzing a Building Design	35			
	2.14 History of Autodesk Green Building Studio	36			
	2.15 Inline Energy Analyses	36			
	2.16 Autodesk Green Building Studio Web Service	37			
	2.17 Green Building Studio Energy Analysis				
	and Building Modeling	38			
3	RESEARCH METHODOLOGY				
	3.1 Overview	40			
	3.2 Proposed Methodology and Data collection	40			
4	DATA ANALYSIS - RNC AND NRNC COMPARISON	42			
	4.1 Introduction				
	4.2 An Overview of the Research Process				
	4.3 Energy and Carbon Results	45			
	4.3.1 Estimated Energy and Cost Summary	45			
	4.3.2 Electric Power Plant Sources	48			
	4.3.3 Carbon Neutral Building	48			
	4.3.4 Carbon Neutral Potential	50			
	4.3.5 Natural Ventilation Potential	51			

	4.4	Water 1	Efficiency	52
		4.4.1	Water Usage and Costs	52
		4.4.2	Indoor and Outdoor Water Factors	53
		4.4.3	Building Summary and Efficiency Savings	54
		4.4.4	Net-Zero Measures	54
		4.4.5	Net-Zero Savings	55
	4.5	Day Li	ghting	59
		4.5.1	Glazing Factor	59
		4.5.2	Regularly Occupied Space Type	59
		4.5.3	Side Lighting - Vision Lighting	59
		4.5.4	Side Lighting - Daylight Glazing	60
		4.5.5	Top Lighting Sawtooth Monitor	60
		4.5.6	Top Lighting Vertical Monitor	60
		4.5.7	Top Lighting Horizontal Skylight	60
		4.5.8	Visible Transmittance	60
	4.6	Photov	oltaic Potential	62
		4.6.1	Panel Type	63
		4.6.2	Installed Panel Cost	63
		4.6.3	Surface Tilt	64
		4.6.4	Percent Shaded	64
		4.6.5	Annual Energy	64
		4.6.6	Payback Period	65
		4.6.7	Maximum Payback Period	65
		4.6.8	Applied Electric Cost	65
	4.7	Weathe	er Station Data	66
5	DA'	TA ANA	ALYSIS	
	- C	ONSTR	RUCTION MATERIALS SUSTAINABILITY	67
	5.1	An Intr	roduction on Material Alternatives	67
	5.2	Influen	ice of Construction Material on	
		Reduci	ng Building Energy and Cost	69
		5.2.1	A Summary on Terminologies of	
			Building Energy and Cost	69
		5.2.2	2 Material Alternatives – Energy and Cost Analyses	71

	5.3	Influence	e of Construction Material on		
		Carbon N	Neutrality Potential	85	
		5.3.1	A Summary on Carbon Emission Terminologies	86	
		5.3.2	Material Alternatives – Carbon Analyses	88	
	5.4	Influence	e of Material Insulation on		
		Reducing	g Building Energy and Cost	98	
		5.4.1	A Summary on Terminologies of		
			Building Energy and Cost	98	
		5.4.2	Material Insulation – Energy and Cost Analyses	99	
	5.5	Influence	e of Material Insulation on		
		Carbon N	Neutrality Potential	104	
		5.5.1	A Summary on Carbon Emission Terminologies	105	
		5.5.2	Material Insulation – Carbon Analyses	107	
6	RESULTS AND DISCUSSIONS				
		6.1	Influence of Construction Material on		
			Reducing Building Energy and Cost	110	
		6.2	Influence of Construction Material on		
			Carbon Neutrality Potential	112	
		6.3	Influence of Material Insulation on		
			Reducing Building Energy and Cost	114	
		6.4	Influence of Material Insulation on		
			Carbon Neutrality Potential	116	
7	CONCLUSION AND RECOMMENDATION 1				
	7.1	RNC and	l NRNC Case Study Comparison	118	
	7.2	Construc	tion Material Sustainability Analysis	119	
	7.3	Material	Insulation Sustainability Analysis	120	
	7.0				
REFERENCI	ES			121	
APPENDICE	S			123	

LIST OF TABLES

TABLE NO.	TITLE	PAGE
4.1	RNC and NRNC Points Based on GBI Assessment Criteria	42
4.2.1	Green Building Index Assessment Criteria	43
4.2.2	Green Building Index Classification	44
4.3	RNC and NRNC Comparison of Energy and Cost	46
4.4	RNC and NRNC Comparison of Carbon Neutral Potential	50
4.5	RNC and NRNC Comparison of Natural Ventilation Potential	52
4.6	RNC and NRNC Comparison of Water Usage and Costs	53
4.7	RNC Water Usage Case Study Results	56
4.8	NRNC Water Usage Case Study Results	57
4.9	RNC and NRNC Day Lighting Comparison	58
4.10	RNC Photovoltaic Analysis	61
4.11	NRNC Photovoltaic Analysis	62
4.12	RNC and NRNC Photovoltaic Potential Comparison	66
4.13	Case Study Weather Data	66
5.1	Energy and Cost Data – Material Alternatives	83
5.2	Energy and Cost Variations - Material Alternatives	84
5.3	Energy and Cost Data – Material Insulation	103
5.4	Energy and Cost Variations - Material Insulation	103
6.1	Comparative Energy and Cost Data - Material Alternatives	111
6.2	Carbon Neutrality Potential Data Summary – Material Alternatives	113
6.3	Comparative Energy and Cost Data – Material Insulation	115
6.4	Carbon Neutrality Potential Data Summary – Material Insulation	117

LIST OF FIGURES

FIGURE NO.	TITLE			
2.1	BIM Shift, Courtesy of Construction Users Roundtable	14		
2.2	Autodesk Green Building Studio Web-Based Service	18		
2.3	Linking Revit platform with Autodesk Green Building Studio	18		
2.4	Autodesk Green Building Studio and the Revit-Based Application	20		
2.5	Linking Autodesk Revit with Autodesk Ecotect Analysis Software	21		
2.6	Autodesk Ecotect Analysis – Energy Analysis	22		
2.7	Autodesk Ecotect Analysis – Solar Radiation Analysis	23		
2.8	Autodesk Ecotect Analysis – Spatial Volumetric Rendering	24		
2.9	BIM and its Reliance on a Digital Building Model	28		
2.10	State-of-the-Art BIM Software	29		
4.1	Annual Energy End-Use Charts	47		

LIST OF ABBREVIATIONS

ABBREVIATIONS

FULL NAME

ACEM Association of Consulting Engineers Malaysia

ASHRAE American Society of Heating,

Refrigerating and Air-Conditioning Engineers

AWWA American Water Works Association

BES Building Energy Simulation

BIM Building Information Modeling

BREEAM BRE Environmental Assessment Method

CAD Computer Aided Design

CARMA Carbon Monitoring for Action

CASBEE Comprehensive Assessment System for

Building Environmental Efficiency

CFD Computer Fluid Dynamics

CHPS Collaborative for High Performance Schools

DOE Department of Energy

EA Energy and Atmosphere

EUI Energy Use Intensity

GBI Green Building Index

GBXML Green Building Extensible Markup Language

HVAC Heating, Ventilating, and Air Conditioning

ICF Insulated Concrete Form

LEED Leadership in Energy and Environmental Design

MEP Mechanical, Electrical and Plumbing

NRNC Non-Residential New Construction

OSB Oriented Strand Board

PAM Pertubuhan Akitek Malaysia

RNC Residential New Construction

SIP Structural Insulated Panel

SCM Supplementary Cementitious Materials

LIST OF APPENDICES

APPENDIX	TITLE	PAGE
A	Case Study Weather Data	1
В	Getting Started with Autodesk Green Building Studio	1
С	Preparing Models for Analysis in ECOTECT	1