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Abstract 

     Incomplete blow-up is a condition under the quasilinear heat 
equation. The Porous Medium Equation (PME) with power source 
are admitting incomplete blow-up. It is used as one of the filtration 
process in the industry. This filtration process has been used globally 
in the medical and laboratory applications. Previously, the standard 
numerical procedure was Gauss Seidel method to solve this problem. 
We propose a new variance of the Alternating Group Explicit 
Scheme (AGE) algorithms to solve incomplete blow-up problem 
through High performance computing (HPC). HPC systems include 
of multiple (usually mass-produced) processors linked together in a 
single system with commercially available interconnects. This is in 
contrast to mainframe computers, which are generally monolithic in 
nature. Four important terms that are, convergent rate by the 
number of iteration, execution time, computational complexity and 
stability are considered in this study to evaluate the performances of 
this approach.  

     Keywords: High performance computing (HPC), blow-up problem, 
Alternating Group Explicit Scheme (AGE), Gauss Seidel method. 
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1      Introduction 

Temperature distribution is a physical model may be imagined in which heat is 
considered to be a fluid inside matter, free to flow from one position to another. 
The amount of fluid present is measured in some unit such as the calorie (cal) or 
BTU (British Thermal Unit). Evidence of its presence in matter is the temperature 
thereof; it is assumed that the more heat presents the higher the temperature, and 
that it flows from places of high temperature to places of low temperature. 
Temperature can be measured directly by a thermometer; the quantity of heat 
present is inferred indirectly. 

Five types of blow-up patterns were illustrated for the 4th-order semilinear 
parabolic equation of reaction-diffusion type by Galaktionov [1] and Noriko 
Mizoguchi [2] presented multiple blow-ups to solve a semilinear heat equation 
problem. R. Natalini, C. Sinestrari and A. Tesei [3] presented an incomplete 
blowup of entropy solutions to first-order quasilinear hyperbolic balance laws. 
They specified a general procedure to continue solutions beyond the blowup time, 
which made use of monotonicity methods. The continuations thus obtained were 
possibly unbounded and satisfied suitable generalized entropy and Rankine-
Hugoniot conditions. Then they proved the uniqueness of continuations satisfying 
such conditions as well. José M. Arrieta and Aníbal Rodríguez-Bernal [4] showed 
that blow-up occurred only on the boundary while they analyzed the existence of 
solutions that blow-up in finite time for a reaction-diffusion equation. Noriko 
Mizoguchi and Juan Luis Vazquez [5] demonstrated multiple blow-ups for 
semilinear heat equations at different places and different times and also solutions 
for a semilinear heat equations II described by Noriko Mizoguchi [6]. Nonlinear 
Volterra integral equations of the second kind with solutions that blow-up or 
quench had analyzed by Catherine A. Roberts [7]. 

1.1 Incomplete Blow-up 

In general, quasilinear heat equation is a natural problem which is to find 
conditions for complete and incomplete blow-up in terms of the constitutive 
functions. In principle, the alternative will also depend on the initial data. It is 
clear that for flat initial data ( 0u  constant) blow-up is always flat, hence complete. 
Incomplete blow-up is an admitting of power source of Porous Medium Equation 
(PME). The incomplete blow-up has some properties to consider. But, in this 
study, only one of the properties will be discussed. 

The nonnegative solutions u=u(x, t) of the quasilinear heat equation 

( ) p
xx

m
t uuu += ,                                       (1) 
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may blow up in finite time for some initial data ( ) ( ) ,0, 0 ≥= xuoxu  0≠u . For 
,21 +≤< mp  solutions blow up for arbitrarily small initial data 0u , while for 

2+> mp  blow up always occurs for sufficiently large initial function. 

Let u(x, t) be the unique global proper (minimal) solution constructed by 
monotone increasing approximations, and )( 0uTT = be its finite blow up time. If 
the continuation of the solution beyond blow-up is trivial, i.e., ∞≡),( txu  for t>T, 
we say that the blow-up is complete, otherwise, if ∞≡),( txu for t>T, it is 
incomplete. 

The blow-up set [ ]( )tuB  is defined for every t>T by the formula 

[ ]( ) { } { } −→→∃ℜ∈= ttxxxtuB kk ,:{  with }),( ∞→kk txu ,        (2) 

and in the case of incomplete blow-up [ ]( ) ℜ≠tuB  at least for +≈ Ti . This 
corresponds to the idea of burnt zone in the theory of flame propagation, while the 
boundary of this set [ ]uB∂  corresponds to the flame zone. 

 

 
 

Fig. 1: The idea of incomplete blow-up is comparison: u(x, t) cannot overtake the 
singular Traveling Waves (TWs) V(x, t) for all t>0. Here 210 tTt <<< . 
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1.2 The application to industry 

Incomplete blow-up is one of a special Porous Medium Equation (PME) with 
power source. In industrial world, the porous medium is used as one of the 
process such as in the filtration process. 

As we can see, filtration is the process of passing a flow containing suspended 
solids through a porous medium, the fabric. It has been widely accepted as an 
effective, reliable and economic method for solid-liquid separation. Some critical 
applications include sterilization of pharmaceutical fluids; control of sub micron 
contaminants is deionized water for integrated circuit manufacture and 
purification of a variety of chemicals and solvents. Greater performance demands 
are being placed on filtration systems with particular reference to increase security, 
improved economy and enhanced removal efficiency. A good knowledge of the 
technique is, therefore, essential for the process industry personnel. 

For a number of reasons, the medical and laboratory product industries cannot 
rely solely on the current forms of filtration and separations materials for a new 
application. 

The incomplete blow up Heat Equation (HE) will be discretized by using Partial 
Differential Equation (PDE) in this study. This discretization must be done to see 
whether the function is satisfying or not the condition that have been stated. 

The key purpose on this study is to implement the new variance of AGE method. 
The accuracy of the AGE method is comparable. This method also employs the 
fractional splitting strategy and the implicit form. The second endeavor is to run 
the AGE method with the HPC platform. Through the Linux Programming, the 
algorithms of the AGE method will be coded and run by the HPC. 

The final target is to analyze the equation. This step is important because there 
will be an example that can be run to find the error residual. The error will be 
compared through two methods which are Gauss-Seidel method and AGE method. 
The best method which can give the lowest error is the best method. 

The scope of this study is to develop the code of AGE algorithms and to 
determine the performance of the coding on the HPC. On the other hand, the 
equation of the incomplete blow-up which is one of the subtopic in HE will be 
solved by the AGE algorithms. For the comparison, AGE method will be 
compared by Gauss-Seidel method in numerical analysis to get the error residual. 

This paper describes some previous research work relevant to the incomplete 
blow-up equation in this section. Also discusses about its application in the 
industry and introduces two dimensional heat equations. In section 2, the iterative 
methods i.e. Gauss Seidel and AGE methods are exposed that are used in this 
study, as a numerical approximation under consideration. Section 3 introduces the 
High Performance Computer (HPC) systems to solve the mathematical model. A 
brief clarification about parallel architecture and Parallel Virtual Machine (PVM) 



  
 
 
373                                              An Improved Parallel AGE Method to Solve … 

which is used as a communication platform will be discussed in this section. The 
discretization of the incomplete blow-up and the performance analysis of Gauss 
Seidel and AGE programming will be discussed and the result will be compared 
in order to evaluate the performance in section 4. Finally, Section 5 will conclude 
the paper. 

2.0 Numerical Method under Consideration 

There are two methods that have taken under consideration for this study which 
are the Alternating Group Explicit Scheme (AGE) method and the Gauss-Seidel 
method in solving the equation. 

2.1 Alternating Group Explicit Scheme (AGE) Method 

Through the Alternating Direction Implicit (ADI), Alternating Group Explicit 
Scheme (AGE) methods with Peaceman-Rachford variation are created to be 
more extremely powerful, flexible and these offer users many advantages. The 
accuracy of these methods are comparable if not better than that of the GE class of 
problem as well as other existing schemes presented by Evans and Abdullah [8]. 
These methods employ the fractional splitting strategy and the implicit form is as 
follows, 

( ) ( ) ( )[ ],2
1

1
2
1

fuGrIrIGu k
k

+−+= −⎟
⎠
⎞

⎜
⎝
⎛ +

                            (3) 

( ) ( ) ( ) .2
1

1
1

2
1

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
+−+=

⎟
⎠
⎞

⎜
⎝
⎛ +

−+ fuGrIrIGu
k

k                           (4) 

We have 
.21 GGA +=                                                  (5) 

if we resume m to be odd then Ĝ  could be written as,  
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where .
22
arr +=  The alternating implicit nature of the )22( ×  groups where the 
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with i=2,4,6,…..,m-1, 
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All the equations are not dependent on every point i-1, i and i+1 event for every 
time step. This is the advantages to create the parallel algorithm for AGE. 
Computational complexity of the new variance of AGE method i.e. 
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IADE_BRIAN and IADE_DOUGLAS for one dimensional problem is presented 
in table 1 below. 

 
Table 1: computational complexity for sequential IADE_BRIAN and 

IADE_DOUGLAS for one-dimensional problem 
Methods Multiplication Addition 
Constant of IADE_BRIAN 
IADE_BRIAN 

18 
10m + 5 

7 
8m + 5 

Constant of IADE_DOUGLAS 
IADE_DOUGLAS 

21 
12m + 7 

11 
8m + 5 

Gauss Seidel Red Black 6m + 5 4m + 3 
 

2.2 Gauss-Seidel Method 

The Gauss-Seidel method attempts to solve the equations in a non-linear system 
within each period by a series of iterations which do not involve linear 
approximations. In the descriptions below the superscript represents the value 
calculated in the “n” th iteration and the superscript 0 indicates the starting value 
for the variable. 
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The Gauss-Seidel Method is more efficient than the Jacobi Method in terms of the 
rate of convergence. 

2.3 The Discretization 

In previous sections, we have been overviewed the incomplete blow-up equation. 
In this subtopic, we will discuss the discretization of the incomplete blow-up 
equation. The incomplete blow-up is a two dimensional parabolic equation. From 
equation (1), we have 
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The discretization is based on partial differential equation as shown below. 
 
Substitute equation (18), (19), (20) into equation (1), 
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The equation (23) can be written in the matrix form: 
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2.4 Gauss Seidel Programming 

The classical Gauss Seidel has been discussed in the previous section. The 
incomplete blow-up equation has been discrete according to the classical Gauss 
Seidel. The one dimensional incomplete blow-up: 
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and the discretization of the form, 
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Giving the explicit formula, 
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The Gauss Seidel programming has been done by using C Programming. The 
graph of the Gauss Seidel approximation can be seen in the Fig. 2. 

From Fig. 2, we can see that the Gauss Seidel method gives the parabolic curve to 
the value of xi. The value of x1 = x9 =0.415383, x2=x8=0.676786, x3=x7=0.880472, 
x4=x6=0.999940, and x5=1.040007. From the programming that has been run, the 
number of iteration for Gauss Seidel method is 150 iterations with the error drop 
to 0. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 2: Gauss Seidel Approximation Graph 

2.5 AGE Method Programming 

The algorithm for the AGE method has been discussed in the previous section. 
This method employs the fractional splitting strategy and the implicit form is as 
follows, 
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with k=1,2,…..,n and 
.21 GGA +=                                              (31) 

By using AGE approximation, we got the result as in Fig. 3. 
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Fig. 3: AGE Approximation Graph 

 

From Fig. 3, we can see that the AGE method gives the parabolic curve to the 
value of xi. The value of x1 = x9 =0.415382,x2=x8=0.676786, x3=x7=0.880472, 
x4=x6=0.999939, and x5=1.040007. From the programming that has been run, the 
number of iteration for AGE method is 200 iterations with the error drop to 0. 

3.0 Performance Analysis 
We can compare both Gauss Seidel and AGE approximation method to get the 
four important components which are convergent rate by the number of iteration, 
execution time, computational complexity and stability. 

As we can see from Fig. 4, Gauss Seidel and AGE method got the parabolic curve 
which means that the both approximations are valid. 
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Fig. 4: Gauss Seidel and AGE Approximation Graph 
 

From the Fig. 4, we cannot see any different between Gauss Seidel and AGE 
approximation. But by the value of each xi, we can see the different at x1 , x4 , x6 
and x9. The different is 0.000001 at all point x1 , x4 , x6 and x9. From Table 2, we 
can see that the number of iteration for Gauss Seidel method is 600 and AGE 
method is 250 with the lower error rate that Gauss Seidel method. The rate of 
convergence of AGE is better than Gauss Seidel method.  The degree of accuracy of AGE 
method is higher than Gauss Seidel method. This proved by texecution (Execution time), 
iteration and |r|=absolute errors, generated by AGE method have a lowest value than 
Gauss Seidel method. Table 3 shows the parallel computational complexity and 
communication cost for AGE and GS methods and here it’s shown that computational 
complexity and communication cost of AGE are lower than GS method. Hence, it is 
showed that AGE method is better than Gauss Seidel (GS) method. It is because 
the AGE method converges faster than GS method. 
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Table 2: Analysis of AGE_BRAIN and Gauss-Seidel methods 
 

Parameters AGE GS 
texecution 48.743 156.4432 
Iteration 250 600 
rmse 1.5921E-9 1.5921E-9 
|r| 1.11022E-16 1.1123E-16 
rmse.maks 1.9846E-7 1.9846E-7 
ave_rmse 5.3374E-17 5.3374E-17 
m 720003 720003 
∆x 1.3889E-6 1.3889E-6 
∆t 9.6450E-13 9.6450E-13 
t 4.8225E-11 4.8225E-11 
λ 0.5 0.5 
θ 1.0 1.0 
Level 50 50 
r 0.8 - 
ε 1.0E-15 1.0E-15 

 
rmse=root mean square error, |r|=absolute error, r.maks=maximum error and 

ave_rmse=average of rmse 
  

Table 3: Computational complexity and communication cost of AGE 
 

Method Computational complexity communication cost 
AGE 

D
p

mT
p

m
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
++⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
+ 1268225012572250  

3000tdata+1500(tstart+ 
tidle) 

GS 
D

p
mT

p
m

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
++⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
+ 3000360018002400  

7200tdata+3600(tstart+ 
tidle) 

D=multiplication, T= addition 

4.0 Parallel Architectures 

The classification of the parallel computer architecture can be divided into three 
categories: Flynn’s taxonomy, Quinn classification, Cheong classification. The 
PVM system supports the message passing, shared memory, and hybrid 
paradigms, thus allowing applications to use the most appropriate computing 
model, for the entire application or for individual sub-algorithms. Processing 
elements such as scalar machines, distributed-and shared-memory multiprocessors, 
vector supercomputers and special purpose graphics engines, permitted the use of 
the best suited computing resource for each component of an application. This 
versatility is valuable for several large and complex applications including global 
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environmental modeling, fluid dynamics simulations, and weather prediction 
applications. 

PVM system is implemented on a hardware base which is consists of different 
machine architectures, including single CPU systems, vector machines, and 
multiprocessors. This computing element is interconnected by one or more 
networks, which may themselves be different like one implementation of PVM 
operates on Ethernet, Internet and a fiber optic network [9]. 

C, C++ and FORTRAN are all languages that can be used to write PVM codes. 
This project is done by using C languages by UNIX as an operating function. To 
execute an application, a user typically starts one copy on one task from a 
machine within the host pool. 

Task-to-task communication in PVM is done with message passing. Message 
passing is a set of tasks that use their own local memory during computation. 
Multiple tasks can reside on the same physical machine as well as across an 
arbitrary number of machines. Tasks exchange data through communications by 
sending and receiving messages. Data transfer usually requires cooperative 
operations to be performed by each process. For example, a send operation must 
have a matching receive operation. 

5.0 Performance Analysis of PVM 
There are a master task and a number of worker tasks in the PVM implementation 
of the modeling codes. Master task is responsible to divide the model domain into 
sub domains and distribute them to worker tasks. Then, the workers tasks perform 
time marching and communicate after each time step. Time execution, speedup, 
efficiency, effectiveness and temporal performance will be analyzed by looking at 
the performance of the parallel algorithm. 

Parallel Analyses of the basic PDE 
 

   
 
 
Fig. 5: Execution time vs. number of processors Fig. 6: Speedup vs. number of processors 
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From Fig. 5,6,7,8 and 9, we can see that AGE method is providing better results 
than Gauss Seidel method on parallel environment in terms of time of execution, 
speedup, efficiency, effectiveness and temporal performance depending on the 
number of processors. One dimensional PDE was applied for this analysis. 

 
Parallel Analyses to solve incomplete blow-up 
 
The Time Execution 
 

The time execution has been determine when running the parallel algorithm. The 
result of the time execution is as below. 

Table 4 and Fig. 10 shows the time execution of one dimensional parabolic 
equation model implemented to the parallel computing. The time execution has 
been determined by using two different method which are AGE and Gauss Seidel 
(GS) method. The size of the matrices; m=70000 has been used to see the time 
execution. The time execution of AGE method is lower than GS method for all 
number of processors. It means that AGE method is the better than GS method 
while running the incomplete blow-up parallel computing system. 

 

 

Fig. 7: Efficiency vs. number of processors Fig. 8: Effectiveness vs. number of processors 

Fig. 9: Temporal performance vs. number of processors 
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The Speedup 

The Amdahl’s law state that the speed of a program is the time to execute the 
program while speedup is defined as the time it takes a program to execute in 
serial (with one processor) divided by the time it takes to execute in parallel (with 
many processors). 

 
         Table 5: The Speedup of Parallel Computing 
 

No. of 
Proce
ssors 

Time (Micro Second) Speedup 

GS AGE GS AGE 
1 23483497 5791478 1 1 
5 12186957 2499727 1.926936888 2.316844199 
10 8799795 1653622 2.668541372 3.502298591 
15 6169910 1221648 3.806132829 4.740709271 
20 4785296 980992 4.907428297 5.903695443 
25 3926748 809072 5.98039319 7.158173809 
30 3346007 706481 7.018364576 8.19764155 
35 3222810 644276 7.286652642 8.989125778 

 

Table 5 and Fig. 11 show that the speedup of parallel computing system while 
running the AGE and GS method. From Fig. 6, the speedup for both AGE and GS 
methods are increased. According to the Amdahl’s law, the speedup increases 
with the number of processors increase up to the certain level. For this problem, 
the speedup of the level from 15 to 35 processors increases slower than the 
speedup of lower number of processors. However, the parallel computing has 
been used to show that AGE method has higher than GS for the number of 
processors. 

 
The Efficiency 
The efficiency of a parallel algorithm is a measure of processor utilization. 
Efficiency is the speedup divided by the number of processors that has been used. 

Number of 
Processors 

Time (Micro Second) 
GS AGE 

1 23483497 5791478 
5 12186957 2499727 

10 8799795 1653622 
15 6169910 1221648 
20 4785296 980992 
25 3926748 809072 
30 3346007 706581 
35 3222810 644276 

Fig. 11: Speedup vs. Number of 
Processors 
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Table 4: The Time Execution of Parallel 
Computing 

Fig. 10: Time Execution vs. Number of 
Processors 
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    Table 6: The Efficiency of Parallel Computing 
 

No. of 
Proce
ssors 

Time (Micro Second) Efficient 
GS AGE GS AGE 

1 23483497 5791478 1 1 
5 12186957 2499727 0.385387 0.463369 
10 8799795 1653622 0.266864 0.350230 
15 6169910 1221648 0.253742 0.316047 
20 4785296 980992 0.245371 0.295185 
25 3926748 809072 0.239216 0.286327 
30 3346007 706481 0.233945 0.273255 
35 3222810 644276 0.208190 0.256832 

 
 

Table 6 shows that the efficiency decreases with the increasing of the number of 
processors, p. Poor load balance when imbalance workload distributed among the 
different processors is the factor that the decreasing of efficiency happened. It is 
also contributed by idle time, time startup and waiting for all processors to 
complete the computations. However, from the Fig. 12, the AGE method still 
more efficient method than GS method. 

 
The Effectiveness 

The effectiveness of the method by using parallel algorithm has been determined 
by calculate the speedup and efficiency. 
Table 7: The Effectiveness of Parallel Computing 
 

No. of 
Proce
ssors 

Time (Micro Second) Effectiveness 
GS AGE GS AGE 

1 23483497 5791478 4.258310E-08 1.726675E-07 
5 12186957 2499727 3.162294E-08 1.853678E-07 
10 8799795 1653622 3.032618E-08 2.117956E-07 
15 6169910 1221648 4.112575E-08 2.587057E-07 
20 4785296 980992 5.127612E-08 3.009044E-07 
25 3926748 809072 6.091955E-08 3.538955E-07 
30 3346007 706481 6.991781E-08 3.867828E-07 
35 3222810 644276 6.459893E-08 3.986369E-07 

 
 

Table 7 and Fig. 13 show the effectiveness for both AGE and GS method by using 
parallel computing system. The formula of the effectiveness depending on the 
speedup; when speedup increases, the effectiveness is also increase. From the 
graph we noticed that the AGE method is more effective than GS method. 

 

 

 

Fig. 12: Efficiency vs. Number of 
Processors 

Fig. 13: Effectiveness vs. Number of 
Processors 
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The Temporal Performance 
 
Temporal performance is a parameter to measure the performance of a parallel 
algorithm which is 

Temporal=1/Time (p) 
Where Time P = time execution using p processor. 
 
Table 8: The Temporal Performance of Parallel  
                              Computing 
 

No. of 
Proce
ssors 

Time (Micro Second) Temporal Performance 
GS AGE GS AGE 

1 23483497 5791478 4.258310E-08 1.889831E-07 
5 12186957 2499727 8.205494E-08 3.704078E-07 
10 8799795 1653622 1.136390E-07 6.047331E-07 
15 6169910 1221648 1.620769E-07 7.863811E-07 
20 4785296 980992 2.089735E-07 1.019376E-06 
25 3926748 809072 2.546637E-07 1.235984E-06 
30 3346007 706481 2.988637E-07 1.456705E-06 
35 3222810 644276 3.102882E-07 1.552130E-06 

 
 

The temporal performance of parallel computing of AGE and GS method can be 
determined from Fig. 14. The Fig. shows increasing temporal performance for 
both methods. As showed above, the AGE method has higher temporal 
performance than GS method. 

5.1 Granularity 

Migration from sequential to parallel promises the existence of communication 
between working processors. Thus, the execution time measured for parallel 
implementation will be totally different with sequential. Parallel execution time 
will consider the time consumed for computation as well as time consumed for 
communication process. Communication cost involves time spent during sending 
and receiving messages. As computation and communication can be separately 
measured, granularity can be taken into account parallel performance evaluation. 
In [10], Kwiatkowski defines granularity as 

comm

comp

T
T

G =  

 Where compT  and commT  each represents computation and communication time. By 
measuring granularity, the ratio between computations to communication time can 
be explicitly shown. High rate of granularity shows that computation time holds 
the higher percentage out of overall execution time.  

 

Fig. 14: Temporal Performance 
vs. Number of Processors 
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Table 9x: Granularity Rate, Percentage of Execution, Communication, and 
Computation Time for Solution Using GS method 

 
p  Execution time Computation time Granularity Communication 

time 
  Gauss Seidel   
     
5  44.10 30.99 2.36 13.11 
%  70.27  29.73 
10 24.88 16.04 1.82 8.831 
%  64.47  35.49 
15 17.19 10.33 1.51 6.856 
  60.09  39.88 
20 13.90 7.822 1.29 6.078 
%  56.26  43.72 

 
Table 9y: Granularity Rate, Percentage of Execution, Communication, and 

Computation Time for Solution Using AGE method 
 

p  Execution time Computation time Granularity Communication time 
  AGE   
     
5  11.00 9.60 6.9 1.40 
%  87,27  12.72 
10 5.85 4.72 4.2 1.12 
%  80.68  19.14 
15 4.35 3.18 2.7 1.16 
  73.10  36.47 
20 3.62 2.39 1.9 1.23 
%  66.02  51.46 

 

Table 9x and 9y shows the granularity rate for red black Gauss Seidel and AGE 
method which is the ratio between computation and communication time. The 
ratio is decreasing upon increasing number of processor as more processor 
causing more communication session during parallel execution. The comparison 
of granularity between GS and AGE method is as depicted in Fig. 15. It can be 
conclude that AGE is an alternative method that promise better result in 
performance evaluation compared to the use of GS classical iterative method. This 
is due to the ability of AGE in donating high granularity rate compared to GS 
method. The ability of maintaining the ratio between computation and 
communication time will be more advantageous as more processors added to the 
parallel cluster. 
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This evaluation of granularity will be use in measuring parallel efficiency as 
stated by J. Kwiatkowski [10] where  

111

1
+

=
+

=
G

G

G

E  

This formula had been used to calculate the rate of efficiency and the result is as 
shown in Fig. 16. It shows the comparison of efficiency rate for problem solution 
using GS and AGE method. AGE donates better efficiency rate compared to GS 
and this shows the benefit of AGE method’s usage in computation. 

6.0 Conclusions and Open Problems 

Porous Medium Equation (PME) has been adopted in one of the important process 
in the industry that is the filtration process. In recent years, this filtration process 
is very important to the industry especially in medical and laboratory application. 
In 1950, Zel’dovich and coworkers developed the heat radiation in plasma by 
using the PME [11, 12]. Other applications that have been proposed is in 
mathematical biology, spread of viscous fluids, boundary layer theory, and other 
fields. 

 

Though, it is still an open problem to discover conditions for complete and 
incomplete blow-up in terms of the constitutive functions by quasilinear heat 
equation, in this study, one of the properties (i.e., incomplete blow-up) under 
PME has been chosen to be solved by using the AGE method. The properties have 
been stated in the book written by Victor A. Galaktionov [13]. This parabolic 
equation described the first properties in incomplete blow-up that may blow-up in 
finite time ( ) .0,00, 00 ≠≥= uuxu  

 

Fig. 16: Efficiency vs. Number of Processors Fig. 15: Granularity vs. Number of Processors 
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The mathematical problem in this study is solved by using the HPC system with 
PVM. The performance analysis of PVM has been done and the five terms which 
are time execution, speedup, efficiency, effectiveness and temporal performance 
has been determined. Both AGE and Gauss Seidel method has been compared 
when determined the graph of each terms. The HPC has been used to run a large 
scale problem. 

 

At the beginning the parabolic equation incomplete blow-up has been solved by 
the Gauss Seidel and a new variance of the AGE method. Both equations have 
been run using C programming to see whether Gauss Seidel or AGE method is the 
best algorithm to solve the equation by comparing their convergence rate. From 
that analysis, it’s proved that AGE is the best algorithm to solve the parabolic 
equation incomplete blow-up. 
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