brought to you by CORE

TABLE OF CONTENTS

CHAPTER	TITLE	PAGE
	DECLARATION	iii
	DEDICATION	iv
	ACKNOWLEDGEMENT	v
	ABSTRACT	vi
	ABSTRAK	vii
	TABLE OF CONTENTS	viii
	LIST OF TABLES	х
	LIST OF FIGURES	xi
	LIST OF ABBREVIATIONS	xii
1	INTRODUCTION	1
	1.1 Introduction	1
	1.2 Introduction to Defect Prediction Model for	
	Software Testing	1
	1.3 Background of Company	2
	1.4 Background of Problem	3
	1.5 Statement of Problem	5
	1.6 Objectives of Study	6
	1.7 Importance of Study	7
	1.8 Scope of Work	7
	1.9 Project Schedule	7

2	LITERATURE REVIEW ON DEFECT PREDICTION MODEL FOR TESTING PHASE	10
	2.1 Introduction	10
	2.2 Defect Prediction across Software	
	Development Life Cycle (SDLC)	10
	2.3 Reviews on the Defect Prediction across SDLC	
	and Testing Phase	19
	2.4 Applications and Issues of Defect Prediction	20
	2.5 Summary of the Proposed Solution	30
3	METHODOLOGY	31
	3.1 Introduction	31
	3.2 Six Sigma - DMADV Methodology	31
	3.3 Supporting Tools	36
4	PROJECT DISCUSSION	37
	4.1 Introduction	37
	4.2 Findings of Define Phase	37
	4.3 Findings of Measure Phase	44
	4.4 Findings of Analyze Phase	50
5	CONCLUSION	53
	5.1 Achievements	53
	5.2 Constraints and Challenges	55
	5.3 Recommendation	56

REFERENCES

8

58

LIST OF TABLES

TABLE NO.

TITLE

PAGE

1.1	Project schedule	8
2.1	Short-term defect inflow prediction example	17
2.2	Strength and weakness of defect prediction	
	techniques	27
3.1	Project team	32
3.2	Customer identification	33

LIST OF FIGURES

FIGURE	TITLE	PAGE
NO.		

2.1	Defects detection techniques	12
2.2	Defects per life cycle phase	14
2.3	Defects based on testing metrics	15
2.4	Relationship between CMM levels and delivered	
	defects	15
2.5	Short-term defect inflow prediction example	16
2.6	Normalized results from the application of CDM	
	Model to test process	19
2.7	Process Performance Model	22
2.8	Graphical representation of Rayleigh model	
	parameters	24
2.9	Prediction without process metrics	25
2.10	Prediction with process metrics	25
2.11	High level schematic of whole phase BN	26
3.1	DMADV phases	32
4.1	MIMOS software production process	38
4.2	Schematic diagram	39
4.3	Detail schematic – Y to X tree diagram	40
4.4	Team charter	41
4.5	Customer need statement	42

4.6	1 st level of KJ analysis	43
4.7	2 nd level of KJ analysis	43
4.8	Kano analysis	44
4.9	House of quality for defect prediction model	45
4.10	Test case experiment result	46
4.11	Assessment agreement	47
4.12	Assessment agreement for within appraiser	47
4.13	Assessment agreement for each appraiser against	
	standard	48
4.14	Assessment agreement for all appraisers against	
	standard	48
4.15	Operational definition	49
4.16	Data collection plan	50
4.17	Data for regression	51
4.18	Regression result	51

LIST OF ABBREVIATIONS

BN	- Bayesian Network
CMM	- Capability Maturity Model
CMMI	- Capability Maturity Model Integration
COE	- Centre of Excellence
COQUALMO	- Constructive Quality Model
CUT	- Code and Unit Testing
DfSS	- Design for Six Sigma
DMADV	- Design, Measure, Analyze, Design, Verify
FMEA	- Failure Mode and Effect Analysis
FP	- Function Point
IPF	- In-Process Fault
ISP	- Internet Service Provider
JARING	- Joint Advanced Research Integrated Networking
KJ	- Kawakita Jiro
KLOC	- Kilo Lines of Code
LOC	- Lines of Code
MEMS	- Micro-Electro-Mechanical Systems
MIMOS	- Malaysian Institute for Microelectronic Systems
MOF	- Ministry of Finance
MSA	- Measurement System Analysis
NEMS	- Nano-Electro-Mechanical Systems
PC	- Personal Computer
PDF	- Probability Density Function

- QFD Quality Function Deployment
- R&D Research and Development
- SDLC Software Development Life Cycle
- SEI Software Engineering Institute
- TER Test Effectiveness Ratio
- UAT User Acceptance Test
- V&V Verification and Validation