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The increase in the proportion and number of older people in developed coun-
tries has resulted in research investigating risk factors for adverse health out-
comes, including mortality. However, research has been limited by the range of
risk factors included in regression models. This is partly because traditional
statistical methods and software packages allow a restricted number of variables
and combinations of variables. This article describes ongoing research to over-
come these limitations through the CoRGA program, which combines Cox regres-
sion with a genetic algorithm for the variable selection process. CoRGA was used
to try and identify the best combination of risk factors for 4-year all-cause mor-
tality. The combination of 10 risk factors identified by CoRGA included both
known and new risk factors for mortality in older people. Further research is
seeking to develop the program further and to identify further risk factors for all-
cause mortality in older people.
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Introduction

The increase in the population of older people in developed countries has created chal-
lenges for health policy makers, service managers and planners, as well as healthcare
professionals [1]. Associated with the increase in the numbers and proportions of older
people is an increase in the levels of disability among people of advanced age, and a need
for improvements in health and social care services used by them. To provide a better
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understanding of the levels of poor health and disability among older people, research
on health outcomes has sought to describe the epidemiology of specific causes of illness
and disability, e.g. falls, stroke, cardiovascular disease. The identification of risk factors for
all-cause mortality in older people has also attracted much interest in longitudinal studies
of older people, because of the information it provides about the health and wellbeing
of the population of older people.

Research over the last few decades has revealed a variety of risk factors for mortality
among older people, e.g. from health, medical and social science perspectives [24].
Previous research on all-cause mortality has applied conventional statistical techniques,
e.g. regression analyses, for identifying risk factors from data gathered in longitudinal
studies of older people. However, common traditional statistical software packages, e.g.
SPSS Statistical Package for the Social Sciences and SAS, do not provide random selec-
tion procedures, and only those data and variables that are selected by the researchers
themselves are considered for inclusion as independent variables in regression models.
This means that very limited combinations of risk factors can be considered and import-
ant variables and potential risk factors may be overlooked or ignored. Variables that are
not selected for inclusion in models may be better predictors of all-cause mortality. 
Therefore, the development of techniques that permit all variables to be considered for
inclusion within the Cox proportional hazard models, and from these to be selected those
variables that form the best combination for predicting mortality, may confirm current risk
factors as being important predictors of mortality. However, it may also identify previously
unknown, or unsuspected, risk factors, and enhance our understanding of the mediators
of mortality among older people. This article describes a study that is developing a new
approach called CoRGA (Cox regression and genetic algorithm) to select the best combi-
nation of risk factors for mortality in older people.

The article contains several sections describing the overall research on CoRGA and how
this research has been conducted. The methods section describes the principles of Cox
regression and genetic algorithms, and how these have been combined to analyse data
from the Nottingham Longitudinal Study of Activity and Ageing. Early results using
CoRGA are described, together with their validation using the SPSS. The article concludes
with a discussion on the potential of CoRGA for analysing risk factors for all-cause mortal-
ity and future directions in this research.

Methods

Survival analyses are used for analysing risk factors for an event occurring over a period
of time within a population or group of interest [5, 6]. The word ‘survival’ suggests that
the event of interest could be the death (or not) of the individual, but in reality it could
be any event, e.g. myocardial infarction or fall. Thus ‘survival’ refers to the length of time
the person ‘survives’ before the occurrence of the event, death or otherwise. This study
employs one specific method of survival analysis, Cox proportional hazards regression.

Cox proportional hazards regression

Cox proportional hazards regression, often referred to as Cox regression, is a very specific
type of regression used to model outcomes in health and medical research [7, 8]. Cox
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regression is important in that the dependent variable consists of a binary attribute which
indicates whether the event of interest actually occurred, and a secondary attribute that
indicates the time to when the event of interest occurred. Therefore, if the outcome or
event of interest is mortality, Cox regression not only takes into account whether the
individual has died, but also considers the length of time until the person died. Cox
regression uses this information to assess the importance, or statistical significance, of the
independent variables as potential risk factors for the event of interest, which in this study
is death.

Cox proportional hazards regression is derived from logistic regression that was
developed for regressing dichotomous, or binary, outcomes. The basic logistic regression
function is a transformation of outcome in linear regression. The general equation for
linear regression is as follows:

y = c � m1x1 � m2x2 � m3x3 � . . . mnxn (1)

in which the outcome variable is a continuous variable y associated with independent 
variables xi, where i = 1 . . . n. The degree of relationship between each of the inde-
pendent variables x and the outcome y is shown by variable m. Variable m is calculated
using the least squares method described elsewhere [5]. Parameter c is a constant for the
equation, indicating the intercept on the y-axis for the graph of y against x.

When the outcome variable is binary, y is transformed using a logit calculation as follows:

log (y) = �0 � �1x1 � �2x2 � . . . �nxn (2)

Here log (y) is equal to the probability of either the presence or the absence of y. The
logit of y can also be expressed as follows. Here variable p is defined as the probability
of y = 1, and 1 � p as the probability of y = 0.

p
–––––logit (p) = loge �1 � p� (3)

When the proportion p is 0, the log odds are minus infinity, and when the proportion
p is 1, the log odds are plus infinity. 

Regression models for the log odds can be fitted using a regression equation similar
to that used for linear regression [9]:

p
–––––loge �1 � p� = b0 � b1x1 � b2x2 � . . . � bmxm (4)

where p is the proportion to be predicted and x1, x2 etc. are the independent or predic-
tor variables.

In the Cox proportional hazards regression, the function incorporates the additional
time parameter. Thus algebraically equation (2) can be represented as follows:

y = exp�xh0(t) (5)

The hazard function h0(t) gives time to death for the sample population. To obtain the
relationship between y, x and h0(t), Cox [7] introduced the maximum partial likelihood
estimator for estimating the value of coefficient �. The coefficient can be used to produce
the standard error, the hazard ratio and the 95 per cent confidence interval for each inde-
pendent variable. This information is useful to show the proportion of death caused by
the predicted factors.
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In order to measure model adequacy, the minus twice log-likelihood ratio test is used.
The smaller the value of the minus twice log-likelihood ratio for a given set of independent
variables, the better is the model [8]. Additionally, Akaike proposed Akaike’s information
criterion (AIC) for selecting the best model based on the minus twice log-likelihood value
(further details in [10]). The model that reduces the AIC is considered a better model.

Variable section techniques for regression models

Traditionally, the Cox regression function has applied the same selection procedure as in
linear and logistic regression. The stepwise selection procedure is a common technique
for selecting variables to be fitted into the Cox model. This method has been applied in
most studies of mortality in older people. The complete description of stepwise selection
is available in Hosmer and Lemeshow [11]. The research described in this article did not
apply the stepwise selection procedure as a selection technique for the Cox proportional
hazard model. However, using the AIC and minus two log-likelihood values, the CoRGA
model was developed to undertake a genetic search to develop a model containing the
best predictors of mortality.

Genetic algorithms

Evolutionary computational tools such as genetic algorithms (GAs) have been developed
as methods of searching through the high-dimensional space of possible solutions to find
an optimal solution for a given problem [12] and have recently been used to tackle such
problems in health and medical research [6, 13]. They are particularly suited for use in
data mining in health and medical research, where there is a preponderance of variables
and multivariate relationships. Genetic algorithms were developed by Holland in the
1960s as a random selection scheme inspired by biological evolution and are described
in full detail elsewhere [12, 14, 15]. GAs have been applied in health and medical related
research for diagnosis, prognosis, imaging, signals, planning and scheduling [13]. They
have been used as variable selection tools for predicting health outcomes in combination
with artificial neural networks [16, 18]. In addition, several studies have been identified
that used GAs in combination with statistical techniques, e.g. linear and logistic regres-
sion, for variable selection [19, 21]. However, no study has applied GA in combination
with Cox regression for survival analysis.

In general, the genetic algorithm increases the size of the search space within a data
set first by initiating a random potential solution coded in artificial genes on a series of
chromosomes. This initial population is generated at random or using heuristics [13]. The
attributes of each individual, in this study the independent variables, are encoded via
genes on a chromosome. Each chromosome has a fitness function associated with it, and
this measures its suitability to the problem situation being investigated, in this case the
relationship with the dependent variable.

Once a full set of fitness values has been calculated, the genetic operator will play a
role in the reproduction process. In genetic algorithms, selection, recombination and
mutation are considered as reproduction operators to enlarge the dimensionality of the
search space.

The population of chromosomes undergoes a series of iterations, synonymous with
generations in evolution, in which individuals within the population undergo sexual repro-
duction to create new individuals (chromosomes) with new genotypes, or combinations of
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independent variables. In order to avoid premature convergence, GA provides mutation
for the existing chromosomes, which introduces random changes into the genotypes of
the chromosomes.

These offspring join the population and each has a fitness function associated with its
genotype. Each individual has its fitness evaluated by decoding the genotype, in this case
the strength of the relationship between the independent variables and the outcome
variable. The value of this fitness function is used to determine whether that chromosome
survives the next generation to reproduce and pass on its genetic material. Over a number
of generations the population should adapt to the environment, and an optimal solution
should emerge, in this case a Cox regression model with an optimal combination of risk
factors.

GAs can be applied in several ways, i.e. genetic algorithms with or without elitism and
steady-state GAs with or without an elitist strategy. A complete description of both
methods is available in [14, 22]. In this research a steady-state GA with an elitist strategy
was employed. The steady-state GAs, sometimes called incremental GAs, permit only a
few of the least fit chromosomes to be replaced by genetic operators. This can be done
using a fraction procedure called a generation gap. In order to increase the number of
individuals for future generations, the proportion of the fraction can be expanded. It is
useful to set that only successors for the current generation will be inserted for repro-
duction. This term is referred to as elitism [22].

The termination process of the GA depends on the number of generations set by the
user. An increased number of generations can add to the number of search spaces.
However, if the number of chromosomes is small, GAs may reach premature convergence.
The best solution is evolved at the final generation.

Cox regression and genetic algorithm (CoRGA)

The aim of the research described here was to use a GA combined with Cox regression
to develop a model that permitted all variables to be considered for insertion into the Cox
regression model. The Cox function built using Matlab is able to regress survival data and
produce statistical descriptors, i.e. coefficient value, standard error, hazard ratio, 95 per
cent confidence interval, minus twice log-likelihood and AIC value as described earlier. In
combination with the GA, the minus twice log-likelihood and the AIC have been used as
the fitness measurement for each chromosome.

In this study, the genes were represented as integers. The integer genotypes allow all
variables to be included for consideration in each hazard model. Different sizes of chromo-
somes permit different numbers of variables to be used in combinations. Increasing the
number of chromosomes in the initial population will increase the potential combination
of variables to be analysed. The chromosomes were coded in integers with length l and
with number q of chromosomes in the initial population. The assumed number of vari-
ables was p. Thus the maximum number of combinations or hazard models H randomly
created without duplicating variables was given by the following equation for I � l. If l is
set to 1, the maximum number of hazard models is equal to the number of variables p.

H = pl � p (6)

However, in the experiments described here, the number of chromosomes in the initial
population was set to 50. Therefore, the maximum number of combinations or hazard
models for this experiment was 50.
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The genotype represented the variables index in the data set. The initial chromosomes
were decoded into actual variables before entering the Cox regression model. The Cox
proportional hazard function computed the AIC from the number of chromosomes H,
which represented H hazard models. The complete array containing the AIC was used for
evaluation of the ranking function.

The complete set of fitness functions included the ranking parameter to be used by
the selection operator to choose the best potential parents for the intermediate gener-
ation. The ranking function assigned artificial weight to each chromosome for future
sampling. The fittest AIC will get the highest ranking and is ready to be selected. A
stochastic universal sampling selection scheme was applied to reduce bias. The gener-
ation gap was set to 1.0, which means that populations of equal numbers appear at each
generation. The selected chromosomes were sent for crossover operation. The new
offspring were produced through performing multipoint crossover. Figure 1 shows how
selection of the chromosomes is achieved in CoRGA.

Once the chromosomes have been selected, they undergo crossover as shown in
Figure 2.

Figure 3 shows how mutation is undertaken in CoRGA. A mutation probability of 0.01
was used. By the random insertion of new genetic material (i.e. new variables), the
mutation process can restructure the hazard model to increase the search space that is
being explored and prevent premature and suboptimal convergence.

The new offspring from the crossover and mutation processes are re-evaluated using
Cox regression to determine a fitness function, the AIC value. The best chromosomes
(combinations of variables) are retained in the current generation, and are reinserted into
the gene pool to maintain the population size. In order to reduce bias, previously un-
selected chromosomes from the initial population are mixed with the fittest model in the
current generation to open a new dimension of search space in the succeeding generation.
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Figure 1 Selection of chromosomes in CoRGA. Four chromosomes (Ch) are shown,
together with the genes (independent variables) that they contain and the AIC value. 
A fitness rank is then associated with each chromosome, based on the AIC value, and the
chromosomes with the highest fitness rank are selected for crossover

Selected chromosomes

Fitness rank



The reinsertion function in Matlab provides steady-state GAs with an elitist strategy. In
this research, the generation gap was set to 1.0 and 90 per cent of the population was
replaced by the fittest chromosomes. Therefore only about 10 per cent of unselected
chromosomes were inserted into each succeeding generation. Figure 4 shows the overall
process of CoRGA.

Use of CoRGA

A series of seven CoRGA experiments was conducted using data from the Nottingham
Longitudinal Study of Activity and Ageing (NLSAA) in which the number n of genes
(variables) in each chromosome was varied to identify the best combinations of n variables
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Figure 2 Crossover of the selected chromosomes. Crossover is seen to be taking place at
two points on each chromosome: between genes 2 and 75 and genes 75 and 81 on 
parent chromosome 2, and between genes 34 and 45 and genes 45 and 5 on parent
chromosome 3
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Figure 3 Mutation in CoRGA: gene 34 chromosome 2 has mutated to a new gene 61



for n = 1, 2, 4, 8, 10, 12, 16. The number of generations that was set for each experiment
was based on the size of chromosomes, i.e. the greater the number of genes, the longer
the program took to reach convergence. Initial experiments were used to establish the
approximate number of generations required to ensure convergence occurred and to
avoid premature convergence. Table 1 shows the features of the experiments conducted
in this research.
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Figure 4 The overall process of CoRGA
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Data were derived from the NLSAA. This is an ongoing survey of activity, health and
wellbeing conducted within a representative sample of 1299 community-dwelling people
originally aged 65 and over, of whom 1042 (406 men; 636 women) agreed to participate
(response rate = 80 per cent). The baseline survey was conducted between May and
September 1985, and information on mortality within the sample was provided by the
UK National Health Service Central Register, where all UK deaths are recorded and which
supplied copies of all the death certificates as they accrued. Interview data collected from
respondents included information on cognition, physical health, psychological wellbeing,
perceptions of health and wellbeing, and customary physical activity, and are described
in detail elsewhere [23]. The actual data consist of four main types of variables, i.e.
continuous, nominal, ordinal and logical (binary). However, CoRGA only supports continu-
ous and logical data sets, so that nominal and ordinal variables were transformed into
binary variables. CoRGA provides facilities to deal with missing values for individuals, by
removing all cases containing missing values for the variables included in the Cox regres-
sion models, in a manner similar to SPSS. Following transformation of the variables, 460
variables were available for analyses using CoRGA. CoRGA was used to identify the best
combinations of risk factors for predicting 4-year mortality, i.e. mortality to 30 April 1989.
Once the combination of each set of variables had been established, these variables were
entered into a Cox regression model within SPSS to determine the hazard ratios, 95 per
cent confidence intervals and p-values associated with each variable and category.

The overall results for the seven sets of experiments are described here, with a detailed
discussion of the combination of risk factors identified in the experiment to determine
the optimal combination of 10 risk factors for mortality.

Results

CoRGA developed models containing combinations of 1, 2, 4, 8, 10, 12, 16 risk factors
for 4-year mortality. Figure 5 shows the AIC values for the final combination of risk factors
for each chromosome size, according to the size of the chromosome. The highest AIC value
(i.e. least negative) was computed for the model containing a single chromosome, and the
lowest AIC value was obtained for the model containing 16 variables in the chromosomes.
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Table 1 CoRGA Experimental Features showing the number of genes in the chromosomes
and the number of generations required to reach convergence

Experiment Number of variables Number of
number in chromosome generations

1 1 250
2 2 250
3 4 250
4 8 250
5 10 500
6 12 500
7 16 639



The results for the model containing 10 genes are described in detail here. Several
experiments needed to be re-executed because of certain failures, i.e. premature conver-
gence and non-convergence. However, further details and the results for other experiments
are described elsewhere [24].

Results for 10 genes

CoRGAs successfully identified 10 variables in the final hazard model obtained after 500
generations. The AIC value for this final model was –12,274.75 (see Figure 5), and 920
cases (individuals) were included in the model once individuals with missing values for
those variables were excluded. The variables that were selected by CoRGA were (in no
particular order):

● period of time since separation from spouse or bereavement

● ability to raise £200 in an emergency

● number of cigarettes smoked daily

● whether employed or not

● possesses a television or radio or not

● reported age in years

● perceived activity relative to other people of the same age

● time since visited the dentist
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Figure 5 Graph of AIC value in converged models according to the number of genes
(variables) in the model
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● walks out alone or never walks out alone

● whether joint pain or stiffness causes difficulty in walking.

Table 2 shows the adjusted hazard ratios, 95 per cent confidence intervals (CIs) and 
p-values for each variable and category when all the variables were included in the Cox
regression model in SPSS. It can be seen from Table 2 that, in this adjusted model, the
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Table 2 Adjusted model for combination of 10 risk factors evolved by CoRGA 
determined using SPSS

Category where Adjusted
Variable name appropriate hazard ratio 95% CI P-value

Period of time since 0.986 0.972, 1.001 0.073
separation from spouse
or bereavement

Ability to raise £200 in No difficulty 0.031
an emergency A little difficulty 1.423 0.938, 2.160 0.097

A lot of difficulty 1.272 0.757, 2.137 0.363
Impossible to raise 1.995 1.194, 3.333 0.008

Number of cigarettes Never smoked 0.068
smoked daily 0–5 1.263 0.773, 2.028 0.344

6–10 1.832 1.233, 2.787 0.004
11–20 1.458 0.914, 2.275 0.107
21–30 2.309 1.044, 4.758 0.031
31–40 1.712 0.666, 4.256 0.256
41–50 2.178 0.661, 6.914 0.194
51–60 3.070 0.697, 12.775 0.131

Whether employed or not Employed 0.476 0.030

Possesses a television or Possesses a television 0.800 0.450, 1.425 0.449
radio or not

Age 1.129 1.098, 1.160 0.000

Perceived activity relative Much more active 0.002
to peers More active 1.238 0.722, 2.122 0.438

About as active 1.483 0.829, 2.653 0.184
Less active 1.984 1.061, 3.709 0.032
Much less active 3.551 1.745, 7.224 0.000

Time since last visited the 1.266 0.898, 1.78 0.178
dentist

Walk out alone and never Never walk with friend 0.362 0.132, 0.991 0.048
walk out alone at same age

Whether joint pain or Causes difficulty 1.106 0.785, 1.558 0.566
stiffness causes 
difficulty in walking



ability to raise £200 in an emergency (p = 0.031), being employed or not (p = 0.030),
age (p � 0.001), perceived activity (p = 0.002), and whether a person walks out alone or
not (p = 0.048), were all significant predictors of 4 year mortality, independent of the
other variables in the model.

Table 3 shows the unadjusted hazard ratios, 95 per cent CIs and p-values for each
variable and category when the variables were included in separate Cox regression models
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Table 3 Unadjusted model for combination of 10 risk factors evolved by CoRGA
determined using SPSS. Variables entered into separate models. Ns = non-significant

Category where Adjusted
Variable name appropriate hazard ratio 95% CI P-value

Period of time since 1.011 1.000, 1.002 0.051
separation from spouse
or bereavement

Ability to raise £200 in No difficulty 0.008
an emergency A little difficulty 1.586 1.095, 2.297 0.015

A lot of difficulty 1.439 0.953, 2.172 0.083
Impossible to raise 1.758 1.140, 2.711 0.011

Number of cigarettes Never smoked 0.001
smoked daily 0–5 0.946 0.620, 1.444 0.798

6–10 1.283 0.896, 1.836 0.174
11–20 1.124 0.779, 1.624 0.532
21–30 0.803 0.390, 1.653 0.551
31–40 1.350 0.549, 3.319 0.514
41–50 1.666 0.612, 4.533 0.317
51–60 5.319 1.953, 14.487 0.001
60� 7.760 2.451, 24.570 0.000

Whether employed or not Employed 1.156 0.631, 2.119 Ns

Possesses a television or Possesses a television 1.451 0.917, 2.295 Ns
radio or not

Age 1.091 1.072, 1.113 0.000

Perceived activity relative Much more active 0.000
to peers More active 1.378 0.812, 2.338 0.234

About as active 1.461 0.833, 2.562 0.185
Less active 1.857 1.043, 3.306 0.035
Much less active 4.645 2.542, 8.489 0.000

Time since last visited 1.389 1.039, 1.857 0.027
the dentist

Walk out alone and never Never walk with friend 1.339 0.631, 2.842 Ns
walk out alone at same age

Whether joint pain or Causes difficulty 0.646 0.493, 0.848 0.002
stiffness causes
difficulty in walking



in SPSS. It can be seen from Table 3 that in the unadjusted models, the length of time
since separation from spouse or bereavement (p = 0.051), the ability to raise £200
in an emergency (p = 0.008), the amount of cigarettes smoked daily (p = 0.001), age
(p � 0.001), perceived activity (p � 0.001) and whether joint stiffness causes difficulty
walking (p = 0.002), were all significant predictors of 4-year mortality.

Discussion

A large amount of research has been conducted to identify risk factors for all-cause
mortality in older people [2, 25, 27]. However, this body of research has been limited by
both the number and selection of variables included in hazard models. In this study we
have attempted to overcome these limitations by developing a selection procedure for the
Cox proportional hazards regression model that is inspired by the evolutionary theory of
natural selection.

The CoRGA program was used to analyse interview and mortality data for older people
living in Nottingham. The variables selected in the final model for 10 variables included
known risk factors for mortality, e.g. age and smoking, in the general population, not just
among older people. Age has long been regarded as an important predictor of mortality,
and its importance has been confirmed here, as it was highly significant in both adjusted
and unadjusted models. In addition CoRGA identified a number of variables, e.g. the
ability to raise £200 in an emergency, employment status, time since visited the dentist,
joint pain restricting ambulatory activity, and general walking activity, which may be acting
as proxy for previously implicated variables such as socio-economic circumstances, poor
health and general frailty.

What is particularly interesting about the results generated by CoRGA is that risk
factors were identified that were not apparent from the research literature, i.e. perceived
level of activity, time since bereavement/separation. Although perceived health (some-
times called self-rated health) has been identified as an independent risk factor for
mortality [28, 29], to our knowledge how people perceive their activity relative to that
of their peers has previously not been reported as a risk factor. The time that a person
has been bereaved or separated has not previously been identified as a risk factor, and
may be due to loneliness or additional risks associated with living alone [30]. CoRGA also
identified possession of a radio or television as a predictor of mortality, which has not
previously been reported as a risk factor, and may be acting as a proxy for depression or
loneliness, or for lack of social engagement with the world. The importance of these risk
factors will be subject to further research to gain a deeper understanding of their effect
on mortality.

CoRGA should not be regarded as a deterministic process by which the program will
necessarily generate the same results, i.e. identify the same combination of risk factors
for a particular number of genes in the chromosome. However, by having a large initial
population of chromosomes and allowing a large number of generations we are confi-
dent that CoRGA reached convergence, and similar if not identical results are achievable
if this were to be undertaken again. Our confidence is supported by the combinations of
risk factors identified for chromosomes of other sizes. Although these are not reported
in detail here, the risk factors identified for chromosomes containing n = 1, 2, 4, 8, 12
and 16 genes [24] correspond very closely with the risk factors reported and identified
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here. In this research, we are not so much trying to find the perfect combination of risk
factors for mortality; rather we seek to develop our understanding of risk factors through
consideration of all possible variables.

When comparing CoRGA with other intelligent analysis methods, CoRGA is able to
produce a mortality (hazard) ratio with confidence intervals, which provides useful infor-
mation for healthcare professionals and planners. In contrast, neural networks make
predictions on individuals in the data set and then compare the results with the observed
outcome, in order to develop a measure of the accuracy of the predictive models.
Although this may be useful in developing prognostic models [6], it provides no infor-
mation on the importance of the variables used to make the predictions. CoRGA, on the
other hand, produces numerical values similar to those provided by statistical models to
provide researchers with information on the relative importance of predictor variables. In
addition, most non-statistical analysis tools, e.g. neural networks and recursive partition-
ing, analyse survival data using binary variables only and do not include the time to the
event occurring [31, 32]. The data analyses, and therefore the results, are less precise.

Using a GA approach to variable selection in CoRGA meant that a much larger set of
variables could be considered for inclusion in the Cox regression than has previously been
possible. Using mutation, the random genetic selection component in CoRGA helped to
increase the dimensionality of space that could be searched within the data sets. These
two features in CoRGA enabled new combinations of potential risk factors for all-cause
mortality to be considered in Cox regression models.

A further novel aspect of the use of CoRGA was representing the genes and genotype
using integer rather than binary values. This allowed each variable to be included within
a model. Previous studies combining logistic regression and GAs have represented the
genotype in a binary mode, which meant that not all variables were included in the logistic
regression model [20, 21].

CoRGA also provides facilities for dealing with missing values. All cases containing
missing values for each combination of variables (genotype) generated by the GA are
removed from the Cox regression model. This mean that data sets containing missing
values can be analysed using CoRGA, which means that it will be possible to use CoRGA
on large data sets, and therefore a greater number of data sets. However, the disadvan-
tage of this approach is that the different Cox regression models contained different
numbers of cases, and that the greater the number of variables included in models (i.e.
the larger the genotype or number of genes in each chromosome), the higher the number
of cases that would be removed. The problem of dealing with missing values is not unique
to this study and there is currently no completely satisfactory method of dealing with it.
The ideal situation is to have no missing data. This may be feasible in small-scale studies
in which the data collection is very tightly controlled, e.g. clinical settings, but in large-
scale epidemiological studies such as the NLSAA it is almost inevitable that data will be
missing. Another possible solution is to replace missing values with a suitable value
derived from the variable in the sample, e.g. the mean or mode, but this method is not
without limitations. We aim to conduct further research to investigate alternative methods
of overcoming the problem of missing data. Further research will also use the CoRGA
program to identify risk factors for mortality over different time periods and will examine
in greater detail the importance of the risk factors identified here.

CoRGA has the potential to be used for identifying risk factors for events other than
mortality occurring, e.g. admission to hospital, fall, strokes and other health outcomes,
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as long as data are available not only on whether the event occurs but on the timing of
the event. Such applications would have uses in health services research, public health
and epidemiology.

Conclusions

The combination of Cox regression with a genetic algorithm increased the dimensional-
ity of the search space and allowed all variables to be considered for inclusion in the
models for identifying risk factors for all-cause mortality. This research has introduced the
use of artificial genetic searches into survival analysis and has revealed useful information
on older people for public health and health service planning. The study confirmed known
risk factors for mortality in older people and also identified new risk factors.
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