
The Parallelization of the direct and Iterative Schemes
for Solving Boundary Layer Problem on Heterogeneous

Cluster Systems

Norma Alias1 , Norhafiza Hamzah2, Norsarahaida S. Amin2, Noriza Satam2,
Zarith Safiza Abd. Ghaffar2 and Roziha Darwis2

1 Ibnu Sina Institute for Fundamental Science Studies, Universiti Teknologi Malaysia, 81310

Skudai, Johor Bahru, Malaysia.
norma@ibnusina.utm.my

Department of Mathematics, Faculty of Science, Universiti Teknologi Malaysia, 81310

Skudai, Johor Bahru, Malaysia.
nsarah@mel.fs.utm.my,

{norhafizahamzah, norizasatam, roziha.darwis, zarithsafiza.ag}@gmail.com

Abstract. In this paper, we present iterative schemes, specifically the iterative
schemes: conjugate gradient, and Gauss-Seidel as well as direct schemes: LU
factorization and Gauss elimination for solving boundary layer problem. The
aim of this paper is to offer reasonable assessments and contrasts on behalf of
the numerical experiments of these two schemes. The sequential and parallel
programming is developed using a C programming language under Linux
environment, while the parallel programming is running using the Parallel
Virtual Machine (PVM) on a heterogeneous cluster systems. The analysis of the
results are conducted in terms of numerical and parallel performance
evaluations namely execution time, speedup, efficiency, effectiveness and
temporal performance. The results prove that the iterative methods of conjugate
gradient and Gauss-Seidel method are the alternatives scheme for solving the
large scale computation.

Keywords: Parallel, Keller-box, high performance computing, performance
analysis.

1 Introduction

The numerical solution methods for linear systems of equations, bAx = , are
broadly classified into two categories, direct methods, and iterative methods [1]. The
most reliable and simplest solvers are based on direct methods, but the robustness of
direct solvers comes at the expense of large storage requirements and execution times,
while the iterative techniques exhibit problem-specific performance and lack the

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Universiti Teknologi Malaysia Institutional Repository

https://core.ac.uk/display/11785427?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

generality, predictability and reliability of direct solvers. Yet, these disadvantages are
outweighed by their low computer memory requirements and their substantial speed
especially in the solution of very large matrices [2]. However, direct methods have
been recommended for solving large sparse linear systems when, among other
reasons, the system is ill-conditioned [3].

Direct methods obtain the exact solution in finitely many operations and are often
preferred to iterative methods in real applications because of their robustness and
predictable behavior. However, as the size of the systems to be solved increases, they
often become almost impractical due to the phenomenon known as fill-in [1]. The fill-
in of a sparse matrix is a result of those entries which change from an initial value of
zero to a nonzero value during the factorization phase.
Although iterative methods for solving linear systems find their origins in the early
nineteenth century especially by Gauss, the field has seen an explosion activity
stimulated by demand due to extraordinary technological advances in engineering and
sciences [4]. According to [5], the term ‘iterative methods’ refers to a wide range of
techniques that use successive approximations to obtain more accurate solutions to a
linear system at each step. Beginning with a given approximate solution, these
methods modify the components of the approximation, until convergence is achieved.
They do not guarantee a solution for all systems of equations. Within the context of
the previous studies of direct methods, there is no advantages. Direct method can be
used as a preconditioner of iterative methods for symmetric definite or indefinite
problems that provided the tolerance parameter is somewhat relaxed [17]. However,
when they do yield a solution, they are usually less expensive than direct methods [1].

2 Problem Statements

In aerodynamics, the details of the flow within the boundary layer are important for
many problems including the skin friction drag on an object, the heat transfer in high
speed flight, and wing stall which is the condition when aircraft wings will suddenly
lose lift at high angles to the flow. The simplified Navier-Stokes equations, known as
Prandtl's boundary layer equations are

0=
∂
∂

+
∂
∂

yx
u υ

, (4)

,1
2

2

y
u

y
u

x
uu

t
u

∂
∂

−=
∂
∂

+
∂
∂

+
∂
∂ νυ

l
 (5)

with the boundary conditions

x = 0,),(:;0:0 txUuyuy =∞==== υ , (6)
where the potential flow),(txU is to be considered known [6]. A suitable

boundary layer flow must be prescribed over the whole x, y region under

consideration for the instant t=0. In the case of steady flow, the system of equations is
written as

0=
∂
∂

+
∂
∂

yx
u υ

 (7)

,1
2

2

y
u

dx
dp

y
u

x
uu

∂
∂

−=
∂
∂

+
∂
∂ νυ

l
 (8)

Figure 1 shows a boundary layer along a flat plate at zero incidences. Let the

leading edge of the plate be at 0=x , the plate being parallel to the x -axis and
infinitely long downstream, Figure 1. We shall consider steady flow with a free-
stream velocity, ∞U which is parallel to the x -axis. The velocity of potential flow is

constant in this case, and therefore, 0≡
dx
dp

 [6]. The boundary layer equations 7 to 8

become

0=
∂
∂

+
∂
∂

yx
u υ

 (9)

,2

2

y
u

y
u

x
uu

∂
∂

=
∂
∂

+
∂
∂ νυ (10)

As velocity changes in the stream wise direction, velocity in the other directions

will change as well. There is a small component of velocity at right angles to the
surface which displacement the flow above it. The thickness of the boundary layer can
be defined as the amount of this displacement.

∞U

δ

Fig. 1. The boundary layer along a flat plate

3 Numerical Direct and Iterative Methods

Some numerical methods used in this research come from two categories which are
direct and iterative methods. Solution using direct method involved LU Factorization
and Gaussian Elimination. On the other hand, Conjugate Gradient and Gauss Seidel
method represents the solution using iterative scheme.

3.1 Direct Schemes

LU factorization and Gauss Elimination are two numerical simulations of the direct
methods under consideration for solving systems of linear equations.

3.1.1 LU Factorization

A block tridiagonal matrix is obtained after we applied the finite difference scheme

and Newton’s method on the boundary layer equation (11), which is having square
matrices blocks in the lower, main, and upper diagonal, where all other blocks is a
zero matrices. It is basically a tridiagonal matrix but has submatrices in places of
scalars. A block tridiagonal matrix in this case study has the form as follow:

[][] []A rδ =

 (11)

To solve equation (11), we use LU factorization for decomposing A into a product

of a lower triangular matrix, L and an upper triangular matrix, U as follows,

[] [][]A L U=

 (12)

The step in which jΓ , jα , and jW are calculated is usually referred to as the

forward sweep. Once the elements of W are found, equation (11) then gives the
solution δ in the so-called backward sweep. Once the elements of δ are found,
Newton’s method can be used to find the (i+1)th

 iteration. These calculations are
repeated until some convergence criterion is satisfied and calculations are stopped
when 1

)(
0 εδ <iv where 1ε is a small prescribed value. In this paper, the value of 1ε

is 0.00005.

[][] []1 1 1W rα =

, (13)

3.1.2 Gaussian Elimination

Objective of Gaussian elimination is to convert the general system of linear

equations into a triangular system of equations [1]. The process of Gauss elimination
has two parts. The first part is forward elimination reduces a given system to a
triangular system. This is accomplished through the use of elementary row operations,
which applies the characteristic of linear equations that any row can be replaced by a
row that added to another row and multiplied by a constant. The second step uses
back substitution to find the solution of the triangular system.

3.2 Iterative Schemes

Iterative schemes, on the other hand, do not modify matrix A. Rather, they involve
the matrix only in the context of matrix-vector product operations. The term “iterative
methods” refers to a wide range of techniques that use successive approximations to
obtain more accurate solutions to a linear system at each step [5]. Beginning with a
given approximate solution, these methods modify the components of the
approximation, until convergence is achieved. They do not guarantee a solution for all
systems of equations. However, when they do yield a solution, they are usually less
expensive than direct methods.

The conjugate gradient method (CG) is an algorithm for the numerical solution of
particular systems of linear equations. As it is an iterative method, so it can be applied
to sparse systems that are too large to be handled by direct methods.

Another popular iterative scheme to solve a system of linear equation is Gauss
Seidel. In this work, Gauss Seidel method is used to solve the problem sequentially.
For parallel purpose, we applied other generation of Gauss Seidel namely red-black
Gauss Seidel which is more efficient when implements into a parallel machine [12].

4 Formulation of Parallel Algorithm

The formulation of parallel direct and iterative methods is based on the domain
decomposition technique. where domain A is decompose into subdomains and being
distributed to all processors. For the direct method, the subdomians are overlapping,
so we used a pipeline configuration, but for iterative methods, the data dependencies
are low, so the subdomain can be easily distributed to the processors [13].

4.1 Gauss Elimination

The backward data distribution of Gauss elimination to the parallel processors was
designed: the data is divided by rows block based on the upper triangular matrix (U).
The P1 to Pp are the processes involved in the parallel implementation. As it is an

upper matrix, the data on process Pp needs to be calculated first by P1, and then the
results will be passes to the next processor, P2. This process will continue up to Pn for
solving the large scale of the linear system.

4.2 LU Factorization

Parallel LU factorization is using the same technique as parallel Gauss elimination,
but the computation is including the U and lower triangular (L) matrices respectively.
The computational complexity is extremely expensive for solving the backward and
forward substitution of two linear systems. The calculation is started with L matrix
then continues by U matrix [14].

4.3Gauss Seidel Red-Black (GSRB)

Gauss seidel red-black decompose domain Ω to two subdomain on red grid R,
RΩ and subdomain on black grid, B, BΩ .

RΩ is an approximate solution on odd grid
and BΩ is an approximation solution on even grid. The computation is first done on

RΩ and followed by computation on BΩ .The decomposition of domain Ω to these
two subdomain makes the computation on grid ith is independent and easy to be
implemented on parallel computer system.

4.4 Conjugate Gradient

The implementation of parallel CG can be developing directly without much
modification on sequential CG. The non-overlapping subdomains of CG make it easy
to distribute the data equally among all processors [15]. The CG method used for
solving symmetric positive definite linear systems [16].

5 Numerical Results

Table 1 and 2 show numerical analysis on direct and iterative methods

respectively. The analysis are in terms of execution time, mean square error (MSE),
root mean square error (RMSE), number of iteration for iterative methods, and
maximum error (Max. Err) for m =20,000size of matrix.

From Table 1, we can see that execution time of Gauss elimination is less than LU
factorization. This may caused by the computational complexity of LU is greater than
Gauss elimination, as LU needs to calculate L and U matrices while Gauss
elimination only involved U matrix, and so the waiting time is lower than LU method.
There’s only a slightly different of MSE, RMSE and maximum error for both

methods. This proved that the direct method is really accurate and the result is nearly
to the exact solution.

Table 1. Numerical analysis of direct methods

Method G. Elimination LU
Execution time
(μ second)

577067880 691048023

MSE 3.54E-09 1.94E-09
RMSE 1.25E-17 3.76E-17
Max. Err 4.60E-7 5.20E-7

The numerical analysis of iterative methods is shown in Table 2. From the table, we
can see that CG is much better than GSRB. The number of iteration also shows that
CG is performing better than GSRB in obtaining the approximation result. So we can
say that CG is the best choice among other iterative methods to solve the problems
with large size of matrix as it is also easy to implement to the parallel computers.

Table 2. Numerical analysis of iterative methods

Method G. Elimination LU
Execution time
(μ second)

577067880 691048023

Iteration
MSE

120
5.43E-6

56
9.80E-8

RMSE 2.33E-3 3.13E-4
Max. Err 5.39E-3 5.23E-3

6 Parallel Performance Evaluation

The analysis of the parallel performance evaluations are conducted in terms of
execution time, speedup, efficiency, effectiveness and temporal performance. The
distributed memory of the heterogeneous cluster systems are supported by Pentium
IV, dual core and quad core CPUs for implementing the parallelism of a huge
simulation and computational task.

6.1 Software and Hardware

The sequential and parallel programming is developed based on a C programming
language under Linux environment, while the parallel programming is running using
the Parallel Virtual Machine (PVM) on a heterogeneous cluster systems.

6.2 Execution Time

The execution time is basically the CPU running time during the calculation of the
program in micro second. The bigger size of matrices lead to higher calculation
complexity that implies the longer time it takes to execute the process. Figure 3 shows
the execution time for all methods discussed above. From the graph shows the
iterative methods is better than direct methods in terms of execution time.

0.0E+00

1.0E+10

2.0E+10

3.0E+10

4.0E+10

5.0E+10

6.0E+10

7.0E+10

1 2 4 6 8 10 12 14 16 18 20

Number of processors

E
xe

cu
tio

n
tim

e

G.Elimination
LU
CG
GSRB

Fig. 3. The execution time vs number of

processors

6.3 Speedup

Figure 4 shows the speedup and efficiency for parallel direct methods. Based on
the graphs, the speedup is increased when the number of processor is increase. The
gradient of speedup is linear on p<12, since of optimum load balancing and data
distribution on all processors. For the iterative methods, conjugate gradient shows the
great improvement on speedup compared to GSRB method. This proved that
conjugate gradient is very suitable to be implemented on parallel computers and to
solve large problems.

0

5

10

15

20

25

30

1 2 4 6 8 10 12 14 16 18 20

Number of processors

S
pe

ed
up

G.Elimination
LU
CG
GSRB

Fig. 4. The speedup vs number of processors

6.4 Efficiency

The efficiency of a parallel program is a measure of processor utilization. The
efficiency graph (figure 5) is incline when p>10 for iterative methods, where the
processors need additional communication time to send and receive data, while idle
time increase as the imbalance of the workload and also caused by the pipeline
implementation on parallel algorithms of direct methods.

0

0.2

0.4

0.6

0.8

1

1.2

1 2 4 6 8 10 12 14 16 18 20

Number of processors

E
ffi

ci
en

cy

G.Elimination
LU
CG
GSRB

Fig. 5. The efficiency vs number of processors

6.5 Effectiveness

Figure 6 shows that effectiveness increase when the number of processors increases.
The formula of the effectiveness depends on the speedup, when the speedup increases,
the effectiveness will also increase. The graph shows effectiveness of parallel direct
methods is dominant by Gauss elimination. For iterative methods, the effectiveness of
CG is much better than GSRB. This proved that CG has a very good performance in
solving a large sparse problem.

1.0E-12

1.0E-10

1.0E-08

1.0E-06

1.0E-04

1.0E-02

1.0E+00
1 2 4 6 8 10 12 14 16 18 20

Number of processors

E
ffe

ct
iv

en
es

s G.Elimination
LU
CG
GSRB

Fig. 6. The effectiveness vs number of processors

6.6 Temporal Performance

Temporal performance is a parameter to measure the performance of a parallel
algorithm. The results in Figure 6 shows that the temporal performance of Gauss
elimination is better than LU factorization and the iterative schemes are higher than
the direct schemes.

1.0E-11
1.0E-10
1.0E-09
1.0E-08
1.0E-07
1.0E-06
1.0E-05
1.0E-04
1.0E-03
1.0E-02
1.0E-01

1.0E+00
1 2 4 6 8 10 12 14 16 18 20

Number of processors

Te
m

po
ra

l p
ef

or
m

an
ce

G.Elimination
LU
CG
GSRB

Fig. 7. The temporal performance vs number of

processors

7 Conclusion

In this work, we have presented the experimental results illustrating the
parallel implementation of iterative and direct method using PVM programming
environment on heterogeneous architecture. The contributions of this paper: in terms
of the parallel performance evaluations, the parallelization of iterative CG method is
the alternative scheme and in term of numerical analysis, the parallelization of direct
Gauss elimination method is the alternative scheme for solving the large-sparse
matrices of the boundary layer problem. The combinations of the parallel direct and
iterative methods for improving the performances results are the suggested directions
for future research.

Acknowledgments

This work was supported in part by Research Management Center, UTM and
Ministry of Science, Technology and Innovation of Malaysia (MOSTI) through
National Science Fellowship scholarship (NSF).

References

1. M. Rashid and C. Jon, “Parallel iterative solution method for large sparse linear equation
systems,”University of Cambridge Comp. Lab, United Kingdom, no. 650, 2005.

2. J. M. George, “a new set of direct and iterative solvers for the tough2 family of codes,”
presented at the TOUGH workshop 95, Berkeley, 1995, p 293-298.

3. W. E. Louis, “Iterative vs. a directive method for solving fourth order elliptic difference
equations,” in proc. ACM national meeting, 1966, p 29-35.

4. Y. Saad and H.A. van der Vorst, “ Iterative solution of linear systems in the 20-th
century,” J. Comp. Appl. Math., 2000, vol. 123, pp. 1–33.

5. R. Barrett, M. Berry, T.F. Chan, J. Demmel, J.M. Donato, J. Dongarra, V. Eijkhout, R.
Pozo, C. Romine, and H. van der Vorst. Templates for the Solution of Linear Systems:
Building Blocks for Iterative Methods. Philadelphia: Society for Industrial and Applied
Mathematics, 1994.

6. H. Schlichting, Boundary layer theory. New York: McGraw-Hill, 1979, p 127-148.
7. H. B. Keller, A new difference scheme for parabolic problems. In: Hubbard, B. ed.

Numerical solutions of partial differential equations. New York: Academic Press, 1971, 2:
327-350.

8. H. B. Keller, and T. Cebeci, “A numerical methods for boundary layer flows, I: Two-
dimensional laminar flows,” in Proc. 2nd Int. Conf. on Numerical Methods in Fluid
Dynamics, New York: Springer-verlag, 1971.

9. H. B. Keller, and T. Cebeci, “Accurate numerical methods for boundary layer flows, II:
Two-dimensional turbulent flows,” AIAA Journal, 1972. Vol. 10, 1972, pp. 1193-1199.

10. T. Cebeci, A. Smith, Analysis of turbulent boundary layers. New York: Academic Press,
1974.

11. B. Wilkinson, M. Allen, Parallel programming: Techniques and applications using
networked workstations and parallel computers. New Jersey: Prentice hall, 1998.

12. A.G. Sifalakis, S.R. Fulton, E.P. Papadopouloua, Y.G. Saridakis. Direct and iterative
solution of the generalized Dirichlet_Neumann map for elliptic PDEs on square domains.
Journal of Computational and Applied Mathematics 227 (2009).171-184.

13. C. Bernardi, T. Chacón Rebollo, E. Chacón Vera, D. Franco Coronil. A posteriori error
analysis for two non-overlapping domain decomposition techniques. Applied Numerical
Mathematics 59 (2009) 1214–1236.

14. Chi-Ye Wu, Ting-Zhu Huang. Stability of block LU factorization for block tridiagonal
matrices. Computers and Mathematics with Applications 57 (2009) 339-347.

15. Gonglin Yuana, Xiwen Lu, Zengxin Weia. Conjugate gradient method with descent
direction for unconstrained optimization. Journal of Computational and Applied
Mathematics 233 (2009) 519-530.

16. Tong-Xiang Gua, Xian-Yu Zuo, Xing-Ping Liu, Pei-Lu Li. An improved parallel hybrid
bi-conjugate gradient method suitable for distributed parallel computing. Journal of
Computational and Applied Mathematics 226 (2009) 55-65.

17. Yan-Fei Jing, Ting-Zhu Huang. On a new iterative method for solving linear systems and
comparison results. Journal of Computational and Applied Mathematics 220 (2008) 74 – 84.

