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Abstract. In this paper, we present iterative schemes, specifically the iterative 
schemes: conjugate gradient, and Gauss-Seidel as well as direct schemes: LU 
factorization and Gauss elimination for solving boundary layer problem. The 
aim of this paper is to offer reasonable assessments and contrasts on behalf of 
the numerical experiments of these two schemes. The sequential and parallel 
programming is developed using a C programming language under Linux 
environment, while the parallel programming is running using the Parallel 
Virtual Machine (PVM) on a heterogeneous cluster systems. The analysis of the 
results are conducted in terms of numerical and parallel performance 
evaluations namely execution time, speedup, efficiency, effectiveness and 
temporal performance. The results prove that the iterative methods of conjugate 
gradient and Gauss-Seidel method are the alternatives scheme for solving the 
large scale computation. 
 

Keywords: Parallel, Keller-box, high performance computing, performance 
analysis. 

1   Introduction 

The numerical solution methods for linear systems of equations, bAx = , are 
broadly classified into two categories, direct methods, and iterative methods [1]. The 
most reliable and simplest solvers are based on direct methods, but the robustness of 
direct solvers comes at the expense of large storage requirements and execution times, 
while the iterative techniques exhibit problem-specific performance and lack the 
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generality, predictability and reliability of direct solvers.  Yet, these disadvantages are 
outweighed by their low computer memory requirements and their substantial speed 
especially in the solution of very large matrices [2]. However, direct methods have 
been recommended for solving large sparse linear systems when, among other 
reasons, the system is ill-conditioned [3].   

Direct methods obtain the exact solution in finitely many operations and are often 
preferred to iterative methods in real applications because of their robustness and 
predictable behavior. However, as the size of the systems to be solved increases, they 
often become almost impractical due to the phenomenon known as fill-in [1]. The fill-
in of a sparse matrix is a result of those entries which change from an initial value of 
zero to a nonzero value during the factorization phase.   
Although iterative methods for solving linear systems find their origins in the early 
nineteenth century especially by Gauss, the field has seen an explosion activity 
stimulated by demand due to extraordinary technological advances in engineering and 
sciences [4].  According to [5], the term ‘iterative methods’ refers to a wide range of 
techniques that use successive approximations to obtain more accurate solutions to a 
linear system at each step. Beginning with a given approximate solution, these 
methods modify the components of the approximation, until convergence is achieved. 
They do not guarantee a solution for all systems of equations. Within the context of 
the previous studies of  direct methods, there is no advantages. Direct method can be 
used as a preconditioner of iterative methods for symmetric definite or indefinite 
problems that provided the tolerance parameter is somewhat relaxed [17]. However, 
when they do yield a solution, they are usually less expensive than direct methods [1].  

2   Problem Statements 

In aerodynamics, the details of the flow within the boundary layer are important for 
many problems including the skin friction drag on an object, the heat transfer in high 
speed flight, and wing stall which is the condition when aircraft wings will suddenly 
lose lift at high angles to the flow.  The simplified Navier-Stokes equations, known as 
Prandtl's boundary layer equations are  
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with the boundary conditions 
 
x = 0, ),(:;0:0 txUuyuy =∞==== υ ,    (6) 
where the potential flow ),( txU  is to be considered known [6]. A suitable 

boundary layer flow must be prescribed over the whole x, y region under 



consideration for the instant t=0. In the case of steady flow, the system of equations is 
written as  
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Figure 1 shows a boundary layer along a flat plate at zero incidences. Let the 

leading edge of the plate be at 0=x , the plate being parallel to the x -axis and 
infinitely long downstream, Figure 1.  We shall consider steady flow with a free-
stream velocity, ∞U  which is parallel to the x -axis. The velocity of potential flow is 

constant in this case, and therefore, 0≡
dx
dp

 [6]. The boundary layer equations 7 to 8 

become 
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As velocity changes in the stream wise direction, velocity in the other directions 

will change as well. There is a small component of velocity at right angles to the 
surface which displacement the flow above it. The thickness of the boundary layer can 
be defined as the amount of this displacement.  

 
 

∞U

δ

 
Fig. 1. The boundary layer along a flat plate 



3   Numerical Direct and Iterative Methods 

Some numerical methods used in this research come from two categories which are 
direct and iterative methods. Solution using direct method involved LU Factorization 
and Gaussian Elimination. On the other hand, Conjugate Gradient and Gauss Seidel 
method represents the solution using iterative scheme. 

 

3.1   Direct Schemes 

 
LU factorization and Gauss Elimination are two numerical simulations of the direct 
methods under consideration for solving systems of linear equations.   
 

3.1.1 LU Factorization 

 
A block tridiagonal matrix is obtained after we applied the finite difference scheme 

and Newton’s method on the boundary layer equation (11), which is having square 
matrices blocks in the lower, main, and upper diagonal, where all other blocks is a 
zero matrices. It is basically a tridiagonal matrix but has submatrices in places of 
scalars. A block tridiagonal matrix in this case study has the form as follow: 

 
[ ][ ] [ ]A rδ =

       (11) 
 
To solve equation (11), we use LU factorization for decomposing A into a product 

of a lower triangular matrix, L and an upper triangular matrix, U as follows, 
 
[ ] [ ][ ]A L U=

       (12) 
 
The step in which jΓ , jα , and jW  are calculated is usually referred to as the 

forward sweep. Once the elements of W are found, equation (11) then gives the 
solution δ  in the so-called backward sweep. Once the elements of δ  are found, 
Newton’s method can be used to find the (i+1)th

  iteration. These calculations are 
repeated until some convergence criterion is satisfied and calculations are stopped 
when 1

)(
0 εδ <iv  where 1ε  is a small prescribed value. In this paper, the value of 1ε  

is 0.00005. 
 
[ ][ ] [ ]1 1 1W rα =

,        (13) 



3.1.2 Gaussian Elimination 

 
Objective of Gaussian elimination is to convert the general system of linear 

equations into a triangular system of equations [1]. The process of Gauss elimination 
has two parts. The first part is forward elimination reduces a given system to a 
triangular system. This is accomplished through the use of elementary row operations, 
which applies the characteristic of linear equations that any row can be replaced by a 
row that added to another row and multiplied by a constant. The second step uses 
back substitution to find the solution of the triangular system. 

3.2   Iterative Schemes 

Iterative schemes, on the other hand, do not modify matrix A. Rather, they involve 
the matrix only in the context of matrix-vector product operations. The term “iterative 
methods” refers to a wide range of techniques that use successive approximations to 
obtain more accurate solutions to a linear system at each step [5]. Beginning with a 
given approximate solution, these methods modify the components of the 
approximation, until convergence is achieved. They do not guarantee a solution for all 
systems of equations. However, when they do yield a solution, they are usually less 
expensive than direct methods. 
 

The conjugate gradient method (CG) is an algorithm for the numerical solution of 
particular systems of linear equations. As it is an iterative method, so it can be applied 
to sparse systems that are too large to be handled by direct methods. 
 

Another popular iterative scheme to solve a system of linear equation is Gauss 
Seidel. In this work, Gauss Seidel method is used to solve the problem sequentially. 
For parallel purpose, we applied other generation of Gauss Seidel namely red-black 
Gauss Seidel which is more efficient when implements into a parallel machine [12].  

4   Formulation of Parallel Algorithm 

The formulation of parallel direct and iterative methods is based on the domain 
decomposition technique.  where domain A is decompose into subdomains and being 
distributed to all processors. For the direct method, the subdomians are overlapping, 
so we used a pipeline configuration, but for iterative methods, the data dependencies 
are low, so the subdomain can be easily distributed to the processors [13]. 

4.1 Gauss Elimination 

The backward data distribution of Gauss elimination to the parallel processors was 
designed: the data is divided by rows block based on the upper triangular matrix (U). 
The P1 to Pp are the processes involved in the parallel implementation. As it is an 



upper matrix, the data on process Pp needs to be calculated first by P1, and then the 
results will be passes to the next processor, P2. This process will continue up to Pn for 
solving the large scale of the linear system. 

4.2 LU Factorization 

Parallel LU factorization is using the same technique as parallel Gauss elimination, 
but the computation is including the U and lower triangular (L) matrices respectively. 
The computational complexity is extremely expensive for solving  the backward and 
forward substitution of two linear systems. The calculation is started with L matrix 
then continues by U matrix [14].  

4.3Gauss Seidel Red-Black (GSRB) 

Gauss seidel red-black decompose domain Ω  to two subdomain on red grid R, 
RΩ and subdomain on black grid, B, BΩ . 

RΩ  is an approximate solution on odd grid 
and BΩ is an approximation solution on even grid. The computation is first done on 

RΩ and followed by computation on BΩ .The decomposition of domain Ω  to these 
two subdomain makes the computation on grid ith is independent and easy to be 
implemented on parallel computer system. 

4.4 Conjugate Gradient 

 
The implementation of parallel CG can be developing directly without much 
modification on sequential CG. The non-overlapping subdomains of CG make it easy 
to distribute the data equally among all processors [15]. The CG method used for 
solving symmetric positive definite linear systems [16]. 

5 Numerical Results 

 
Table 1 and 2 show numerical analysis on direct and iterative methods 

respectively. The analysis are in terms of execution time, mean square error (MSE), 
root mean square error (RMSE), number of iteration for iterative methods, and 
maximum error (Max. Err) for m =20,000size of matrix. 

 
From Table 1, we can see that execution time of Gauss elimination is less than LU 
factorization. This may caused by the computational complexity of LU is greater than 
Gauss elimination, as LU needs to calculate L and U matrices while Gauss 
elimination only involved U matrix, and so the waiting time is lower than LU method.  
There’s only a slightly different of MSE, RMSE and maximum error for both 



methods. This proved that the direct method is really accurate and the result is nearly 
to the exact solution. 

 
Table 1.  Numerical analysis of direct methods 

 
 

Method G. Elimination LU 
Execution time 
(μ  second) 

577067880 691048023 

MSE 3.54E-09 1.94E-09 
RMSE 1.25E-17 3.76E-17 
Max. Err 4.60E-7 5.20E-7 
   

 
 

The numerical analysis of iterative methods is shown in Table 2. From the table, we 
can see that CG is much better than GSRB. The number of iteration also shows that 
CG is performing better than GSRB in obtaining the approximation result. So we can 
say that CG is the best choice among other iterative methods to solve the problems 
with large size of matrix as it is also easy to implement to the parallel computers. 

 
Table 2.  Numerical analysis of iterative methods 

 
Method G. Elimination LU 
Execution time 
(μ  second) 

577067880 691048023 

Iteration 
MSE 

120 
5.43E-6 

56 
9.80E-8 

RMSE 2.33E-3 3.13E-4 
Max. Err 5.39E-3 5.23E-3 
   

6   Parallel Performance Evaluation 

The analysis of the parallel performance evaluations are conducted in terms of 
execution time, speedup, efficiency, effectiveness and temporal performance. The 
distributed memory of the heterogeneous cluster systems are supported by Pentium 
IV, dual core and quad core CPUs  for implementing the parallelism of a huge 
simulation and computational task. 

6.1 Software and Hardware 

 



The sequential and parallel programming is developed based on  a C programming 
language under Linux environment, while the parallel programming is running using 
the Parallel Virtual Machine (PVM) on a heterogeneous cluster systems. 

6.2  Execution Time 

The execution time is basically the CPU running time during the calculation of the 
program in micro second. The bigger size of matrices lead to higher calculation 
complexity that implies the longer time it takes to execute the process. Figure 3 shows 
the execution time for all methods discussed above. From the graph shows the 
iterative methods is better than direct methods in terms of execution time. 
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Fig. 3. The execution time vs number of 

processors 



6.3   Speedup 

Figure 4 shows the speedup and efficiency for parallel direct methods. Based on 
the graphs, the speedup is increased when the number of processor is increase. The 
gradient of speedup is linear on p<12, since of optimum load balancing and data 
distribution on all processors. For the iterative methods, conjugate gradient shows the 
great improvement on speedup compared to GSRB method. This proved that 
conjugate gradient is very suitable to be implemented on parallel computers and to 
solve large problems. 
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Fig. 4. The speedup vs number of processors 



6.4 Efficiency 

The efficiency of a parallel program is a measure of processor utilization. The 
efficiency graph (figure 5)  is incline when p>10 for iterative methods, where the 
processors need additional communication time to send and receive data, while idle 
time increase as the imbalance of the workload and also caused by the pipeline 
implementation on parallel algorithms of direct methods. 
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Fig. 5. The efficiency vs number of processors 

 

6.5 Effectiveness 

Figure 6 shows that effectiveness increase when the number of processors increases. 
The formula of the effectiveness depends on the speedup, when the speedup increases, 
the effectiveness will also increase. The graph shows effectiveness of parallel direct 
methods is dominant by Gauss elimination. For iterative methods, the effectiveness of 
CG is much better than GSRB. This proved that CG has a very good performance in 
solving a large sparse problem. 
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Fig. 6. The effectiveness vs number of processors 

6.6 Temporal Performance 

Temporal performance is a parameter to measure the performance of a parallel 
algorithm. The results in Figure 6 shows that the temporal performance of Gauss 
elimination is better than LU factorization and the iterative schemes are higher than 
the direct schemes. 
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Fig. 7. The temporal performance vs number of 

processors 



7  Conclusion 

In this work, we have presented the experimental results illustrating the 
parallel implementation of iterative and direct method using PVM programming 
environment on heterogeneous architecture. The contributions of this paper: in terms 
of the parallel performance evaluations,  the parallelization of iterative CG method is 
the alternative scheme and in term of numerical analysis, the parallelization of direct 
Gauss elimination method is the alternative scheme for solving the large-sparse 
matrices of the boundary layer problem. The combinations of the parallel direct and 
iterative methods for improving the performances results are the suggested directions 
for future research. 
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