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Abstract—This paper will discuss the solution of two-

dimensional partial differential equations (PDEs) using some 

parallel numerical methods namely Gauss Seidel and Red 

Black Gauss Seidel. The selected two-dimensional PDE to solve 

in this paper are of parabolic and elliptic type. Parallel Virtual 

Machine (PVM) is used in support of the communication 

among all microprocessors of Parallel Computing System. 

PVM is well known as a software system that enables a 

collection of heterogeneous computers to be used as coherent 

and flexible concurrent computational resource. The 

numerical results will be presented graphically and parallel 

performance measurement by Gauss Seidel and Red Gauss 

Seidel methods will be evaluated in terms of execution time, 

speedup, efficiency, effectiveness and temporal performance. 

Performance evaluations are critical as this paper aimed to 

fabricate an efficient Two-Dimensional PDE Solver (TDPDES). 

This new well-organized TDPDES technique will enhance the 

research and analysis procedure of many engineering and 

mathematic fields.
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I. INTRODUCTION 

It is abundantly clear that many important scientific 
problems are governed by partial differential equations 
according to [5-6]. The difficulty in obtaining exact solution 
arises from the governing partial differential equations and 
the complexities of the geometrical configuration of physical 
problems [7, 8, 9]. For example, imagine a metal rod 
insulated along its length with no heat can escape for its 
surface. If the temperature along the rod is not constant, then 
heat conduction takes place. In such situations, the numerical 
method is used to obtain the numerical solutions [10]. These 
partial differential equations may have boundary value 
problems as well as initial value problems. This study will 
discuss the two-dimensional partial differential equation 
solved using parallel Gauss-Seidel and Red Black Gauss-
Seidel Methods. First, the PDEs will be written in matrix 
form to ease the work. Then, parallel algorithm for all three 
types of the PDEs will be developed and run in parallel 
computing environment to provide the numerical solution. 
Finally, the speed of convergences of using the above 
numerical methods will be compared. In general, the 
transient particle diffusion or heat conduction is Partial 
Differential Equations (PDE) of the parabolic type and 

Laplace’s equation for temperature, diffusion, electrostatic 
conduction is elliptic and wave equation or transport 
equation is the PDE of hyperbolic type [5, 9, 6]. The 
parabolic partial differential equations are normally used in 
such fields like molecular diffusion, heat transfer, nuclear 
reactor analysis, and fluid flow [11, 12].  

Partial differential equations (PDEs) widely used as 
mathematical models for phenomena in all branches of 
engineering and science.  

A. Parabolic Equation 
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where a < 0, c ≥ 0 and 042 =− acb . The PDE is said 

to be parabolic if 0)det( =Z . The heat conduction 

equation and other diffusion equation are examples. The heat 

equation is ,
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κ κ is a constant. Initial-boundary 

conditions are used to give  

u (x, t) = g(x, t) for x∈ ∂ Ω, t >0 

u (x,0) =(x) for x∈Ω, 

where ux x = f (ux ,uy ,u, x, y) holds in Ω. 

B. Hyperbolic Equation 
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where 042 >− acb . The PDE is said to be hyperbolic 

if 0)det( <Z . The wave equation is an example of a 

hyperbolic partial differential equation. The wave equation is  
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 is a constant. Initial-boundary 
conditions are used to give  

u (x, y, t) = g(x, y, t) for x∈ ∂ Ω, t >0 

u (x, y, 0) = v0 (x, y) in Ω
ut (x, y, 0) = v1 (x, y) in Ω
where ux y = f (ux ,ut , x, y) holds in Ω. 
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C. Elliptic Equation 
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Where 042 >− acb . The PDE is said to be elliptic if Z is  

a positive definite matrix with 0)det( <Z . Laplace’s 

equation and Poisson’s equation are examples. The 

Laplace’s equation is 0
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. Boundary conditions 

are used to give the constraint u(x, y) on ∂ Ω,  

where ux x + ux y = f (ux ,uy ,u, x, y) 

D. Finite Difference Method  

Finite Difference Method is a classical and 
straightforward way to solve the partial difference equation 
[3, 4] numerically. It consists of transforming the partial 
derivatives in difference equations over a small interval and 
the continuous domain of the state variables by a network or 
mesh of discrete points. The partial differential equation is 
converted into a set of finite difference equations so that it 
can be solved subject to the appropriated boundary 
conditions. 

Assuming that u is function of the independent variables 
x and y, then divided the x-y plan in mesh points equal to x 
= h and y = k, 

Evaluate u at point P by: 

jip ujkihuu ,),( ==

The value of the second derivative at P could also be 

evaluated by: 
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II. TWO-DIMENSIONAL PDE SOLVER (TDPDES) 

A. Hyperbolic Partial Differential Equations  

Hyperbolic differential equations, includes the “wave 
equation” which is fundamental to the study of vibrating 
systems. It is instructive to outline the derivation of the 
simple wave equation in one dimension problem. 

The wave equation is given by the differential equation 
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Subject to the boundary conditions 

0,0),(),0( >== ttLutu

and the initial conditions 
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where  is a constant. 
To set up the finite-difference method, assume u = f (x) is 

a function of the independent variables x and t. Subdivide the 
x-plane into sets of equal rectangles if sides x = h and t = 

k. We introduce a time grid tn = n t for n = 0, 1, 2,.. and t 

is the time step size. We set p
n
(x) = p(x, tn) as the nth iterate 

of the pressure at the global point x. The time derivatives in 
(4) are discretized by centered second-order finite difference, 
which gives the semi-discrete scheme: 
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B. Two Dimensional Parabolic Equations 

A forward finite difference is used to approximate the 
time derivative. Consider the two-dimensional of parabolic 
equations 
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Applying the Crank Nicolson scheme to the two-
dimensional heat equation results in 
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This leads to the following finite difference equation 
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where ji ,Γ and jiL ,  are the generation and death rates, 

respectively. Under suitable regularity assumptions one can 

expand QPN ,, and R , use ji,,, V),()( ∆≈ jiji xtutN  and 

write the word equation above mathematically (Angelis and 
Preziosi, 2000) as: 
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with jijiji Vtyxt ,, /)(),,( ∆Γ=Γ  and where the 

indices (i, j) have been substituted with the dependence of u 
and of all coefficients on the space variable. Equivalently, 
one can  

write  
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where, in two dimensions, W = (P, R). The general 
advection-diffusion model (19) requires the specification of 
the drift, diffusion, proliferation, and death coefficient in the 

terms LQW ,,, Γ and in particular of their dependence of 

the state variables. Based on central finite difference method, 
the discretization is shown as follow:  
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C. Two Dimensional Elliptic Equation 

The two dimensional elliptic equation 0
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can be further implemented to solve the large scale 
mathematical problem.  Generally, finite-difference 
approximation to two dimensional elliptic equation is given 
by 
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By multiplying each side with                                                                 
2

h , we have 
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If we assume
2

2

k

h
=θ , then we will have the finite-

difference approximation equation as follows 
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For 10 ≤≤ θ
The discretization of the mathematical model based on 

the finite-difference approximation to equation (28) can be 
written as,  
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After applying the finite-difference approximation to 
equation (38) is given by  
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From equation (39), it becomes 
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Where ,x h y k∆ = ∆ = . If we bring the ,( )
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term to 

the right-hand side, it become ,( ) 0
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By multiplying each side with
2

h , equation (41) become 
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The exact solution to the discretized problem obeys the 

equation 
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This equation cannot be solved explicit for fixed 

,i j
r

because there are five unknowns involved.  Thus, if the n

th
 iterate is denoted 
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,

n

i jr
. 

III. PARALLEL COMPUTING

The classification of the parallel computer architecture 
can be divided into three categories: Flynn’s taxonomy, 
Quinn classification and Cheong classification. The PVM 
system supports the message passing, shared memory, and 
hybrid paradigms, thus allowing applications to use the most 
appropriate computing model, for the entire application or 
for individual sub-algorithms. Processing elements such as 
scalar machines, distributed-and shared-memory 
multiprocessors, vector supercomputers and special purpose 
graphics engines, permitted the use of the best suited 
computing resource for each component of an application. 
This versatility is valuable for several large and complex 
applications including global environmental modeling, fluid 
dynamics simulations, and weather prediction applications. 

PVM system is implemented on a hardware base which 
is consists of different machine architectures, including 
single CPU systems, vector machines, and multiprocessors. 
This computing element is interconnected by one or more 
networks, which may themselves be different like one 
implementation of PVM operates on Ethernet, Internet and a 
fiber optic network [9]. 

C, C++ and FORTRAN are all languages that can be 
used to write PVM codes. This project is done by using C 
languages by UNIX as an operating system. To execute an 
application, a user typically starts one copy on one task from 
a machine within the host pool. Task-to-task communication 
in PVM is done with message passing. Message passing is a 
set of tasks that use their own local memory during 
computation. Multiple tasks can reside on the same physical 
machine as well as across an arbitrary number of machines. 
Tasks exchange data through communications by sending 
and receiving messages. Data transfer usually requires 
cooperative operations to be performed by each process. For 
example, a send operation must have a matching receive 
operation. 

IV. PARALLEL PERFORMANCE EVALUATION

The performance of the parallel algorithm will be 
analyzed in terms of the time execution, speedup, efficiency, 
effectiveness and temporal performance. The measurements 
are defined as follows: 

Speedup: 
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1t = execution time for a single processor and 

pt = execution time using p parallel processors. 

Figure 1(a) shows that the execution time is decreasing 

with the increasing of the number of processors.  The 

reduction of execution time as number of processors 

increase can also be seen in solving parabolic and 

hyperbolic problem. Figure 1(b) shows that the speedup 

increases when the number of processors is added.  It is 

because the distributed memory hierarchy reduces the time 

consuming access to a cluster of workstations.  The 

efficiency of a parallel program is a measure of processor 

utilization.  Figure 1(c) shows that the efficiency decreases 

with the increasing of number of processors.  As known, 

efficiency is the ratio of speedup with number of processors.  

So, efficiency is a performance closely related to speedup.  

The effectiveness is escalating with the increasing of the 

number of processors.  The formula of the effectiveness is 

depending on the speedup, when the speedup increases, the 

effectiveness will also increase. 
Figure 1(e) shows that the temporal performance graph is 

proportional to the number of processors increase.  This is 
because the execution time is decreasing versus the number 
of processors. It can be conclude that, from the aspect of 
execution time, speedup, efficiency, effectiveness and 
temporal performance shows the performance of parallel 
algorithm is improved by the increasing of the number of 
processors.  Communication and execution times is always 
affecting the performance of parallel computing.  The Red 
Black Gauss Seidel which is effective is found to be well 
suited for parallel implementation on PVM where data 
decomposition is run synchronously and concurrently at 
every time level. The PVM system has been used for 
applications such as molecular dynamics simulations, 
superconductivity studies, distributed fractal computations, 
matrix algorithms, and in the classroom as the basis for 
teaching concurrent computing.

V. CONCLUSION

Numerical techniques in solving scientific and 

engineering problems are growing importance, and the 

subject has become an essential part of the training of 

applied mathematicians, engineers and scientists. The 

reason is numerical methods can provide the solution while 

the ordinary analytical methods fail [1]. Numerical methods 

have almost unlimited breadth of application. Other reason 

for lively interest in numerical procedures is their 

interrelation with digital computers [2]. Besides, parallel 

computing is a good platform to solve a large scale problem 

especially the numerical problem. This is proven through 

the successful implementation in solving elliptic, parabolic 

and hyperbolic problem. The outcomes of parallel 

performance measurements shows that parallel computing is 

time saving comparatively with the sequential computing as 
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well as other programming. Thus, the migration from 

sequential to parallel is worthwhile as it can reduce the 

execution time while maintaining computation accuracy. 
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Figure 1. Parallel Performance Evaluation: (a)Execution Time, (b) Speedup, (c) Efficiency, (d) Effectiveness, (e) Temporal Performance 
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