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ABSTRACT 

 

 

 

 

The main objective of this study was to investigate and compare the mechanical 

properties and processability of single-filler and hybrid poly(vinyl chloride) (PVC) 

composites. Calcium carbonate (CaCO3) was used in this study to improve the impact 

strength of PVC while talc was used to improve stiffness. Filler was added into PVC at a 

constant loading level of 30phr. SM90 showed the most optimum properties in terms of 

impact strength and flexural modulus among all grades of CaCO3 selected for hybrid 

study. Tests specimens were prepared by using dry blending, two roll milling and 

compression moulding processes. Flexural, impact and tensile tests were then performed 

to determine and compare the effect of fillers on mechanical properties of PVC 

composites. Talc filled PVC composite showed the highest flexural modulus but the 

lowest impact strength. The impact strength of hybrid PVC composites gradually 

increased with increasing SM90 content, but the flexural modulus showed an opposite 

behaviour. The flexural strength and impact strength were the highest among the hybrids 

when the talc/SM90 weight ratio was 20:10. The distribution and dispersion of the fillers 

in PVC matrix were observed by using SEM. The well dispersion and interfacial 

adhesion of SM90 and talc particles in PVC matrix had contributed and helped in 

improving the stiffness and the impact strength of PVC composite. The fusion time of 

hybrid talc/SM90 filled PVC composite gradually increased as the talc content was 

gradually replaced by SM90. However, the hybrid (10phr talc: 20phr SM90) filled PVC 

composite showed the longest fusion time among all PVC composites. TGA, DSC and 

HDT tests were also carried out to investigate the thermal properties of PVC composites. 

The incorporation of talc and CaCO3 were found to improve the thermal stability and 

rigidity of PVC composites. 
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ABSTRAK  

 

 

 

 

Tujuan utama kajian ini adalah untuk mengkaji dan membandingkan sifat-sifat 

mekanikal dan kebolehprosesan komposit PVC dengan pengisian pengisi tunggal 

(talkum atau CaCO3) dan pengisi hibrid talkum/CaCO3. Kalsium karbonat (CaCO3) dan 

talkum dipilih sebagai pengisi dalam kajian ini adalah disebabkan sifat kedua-dua 

pengisi ini berkebolehan untuk meningkatkan kekakuan dan kekuatan hentaman 

komposit PVC. SM90 dipilih untuk kajian hibrid PVC komposit disebabkan ia 

merupakan gred CaCO3 yang memberikan keputusan yang paling optima dalam 

kekuatan hentaman dan kekakuan untuk komposit PVC. Sampel-sampel untuk kajian ini 

disediakan melalui pencampuran kering, penyemperitan berskru kembar dan pengacuan 

mampatan. Ujian-ujian lenturan, hentaman dan regangan dijalankan untuk mengkaji dan 

membandingkan sifat-sifat mekanikal untuk komposit PVC. Komposit talkum/PVC 

memberikan modulus lenturan yang paling tinggi dengan kekuatan hentaman yang 

paling rendah. Komposit PVC dengan pengisi hibrid talkum/SM90 menunjukkan 

kekuatan hentaman meningkat secara perlahan-lahan dengan peningkatan kandungan 

SM90 dalam komposit. Walaubagaimanapun, modulus lenturan semakin menurun 

dengan penggantian kandungan talkum dengan SM90 secara perlahan-lahan. Komposit 

PVC hibrid yang diisi dengan 10phr talkum: 20phr SM90 pula didapati memberikan 

modulus lenturan dan kekuatan hentaman yang paling optima berbanding dengan semua 

hibrid komposit yang lain. Masa gabungan didapati semakin bertambah apabila talkum 

diganti secara berdikit-dikit dengan SM90. Walaubagaimanapun, PVC komposit diisi 

dengan (10phr talc: 20phr SM90) didapati mempunyai masa gabungan yang paling 

panjang di kalangan semua komposit hibrid. Ujian-ujian seperti TGA, DSC dan HDT 

juga dijalankan untuk mengkaji sifat-sifat terma komposit PVC. Daripada keputusan 

ujian-ujian ini, pengisian talkum dan CaCO3 didapati boleh memperbaiki kestabilan 

terma dan kekerasan komposit PVC.  
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CHAPTER 1 

 

 

 

 

INTRODUCTION 

 

 

 

 

1.1 Background of Poly(vinyl chloride) (PVC) 

 

 

Poly(vinyl chloride), (PVC) is one of the largest volume commodity plastics 

produced in the world and is expected to continue with a good high growth rate. The 

earliest commercial applications of PVC utilized the flexible plasticized form (Owen, 

1984). The major objective of earliest PVC commercial applications was to find 

synthetic substitutes for rubber, and partly also because of the greater ease of processing 

plasticized compositions. It started to gain commercial importance when the problems 

caused by poor thermal stability were overcome by development of additives (Butters, 

1988). PVC has played an important role in the development of the plastics industry for 

the past forty years. PVC found its first industrial applications just before the Second 

World War started. PVC is a rigid plastic in un-plasticized state, but, in the presence of 

plasticizers, PVC is a flexible plastic.  

 

PVC is used in a wide range of applications because of its combined properties 

of high modulus, ease of fabrication, low flammability and low cost. PVC is easy to 

degrade when exposed to environmental attack and suitable researches and programs is 

ongoing to develop the cost-effective ultra-violet stabilizers. Despite on its commercial 

maturity, there are many research and development programs under way to increase the 

understanding of the properties of PVC and improve the PVC’s properties in 

applications. 
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The pristine PVC can easily degrade with increasing of the processing 

temperature. For this reason, the entire PVC industry is heavily dependent on the 

formulation technology which transforms the otherwise intractable material into a 

myriad of useful substances (Meister, 2002). The applications of PVC compounds are 

numerous and the formulation highly dependent from very flexible wire coatings to 

rigid, glass fiber reinforced and high modulus composites. The rigid pipe and conduit is 

the single largest application in the UK and Western Europe as whole. According to 

Owen (1984), the earliest utilizations of PVC in pressure pipe for potable water was 

small in small diameters, but it is common now to extrude pipe for exacting duty in 

diameters up to 600mm.   

 

 

Many studies of fillers such as talc (Leong et al., 2005; Zhou et al., 2005; 

Sancaktar and Walker, 2004), CaCO3 (Wu et al., 2004; Teixeira et al., 2005), clay (Zhou 

et al., 2005) , mica, natural fibres (Jiang et al., 2003; Abu Bakar, 2006) have been 

carried out to improve mechanical properties of PVC and reduce resins cost. The main 

target in the development of PVC compound by using fillers is to achieve a good 

combination of properties and processability at a moderate cost. 

 

 

Talc and calcium carbonate are used as filler in plastics. Talc is an important 

reinforcing extender for plastics, particularly in polypropylene. Thermoplastic polymers 

are produced and consumed in large quantities. In Malaysia, Industrial Resins Malaysia 

(IRM) and Malayan-Electron-Chemical industry (MECI) are the only two manufacturers 

of PVC resins in Malaysia. They supply about 70% to 80% of the total requirement of 

PVC resin in Malaysia. The rest 20% to 30% of the total requirement of PVC resin in 

Malaysia is imported from foreign suppliers. The grades of the PVC imported are 

different from the resins that manufactured locally.  

 

 

Generally, the local fabricators of PVC products have four options in the 

procurement of PVC compounds, and these options are (Yee, 2001): 
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• Purchase the supply of the PVC resins from IRM or MECI. 

• Import the PVC resins directly from foreign suppliers. 

• Obtain from other local PVC compounders which are themselves end-products 

manufacturers. 

• In-house manufacturing.  

 

 

Grades of the PVC resins normally used in the country are the PVC resins with 

the K value of 60, 61, 65 and 66. In Malaysia, the K-66 resin is supplied by IRM under 

the trade code of MH-66 and the K-65 resin is supplied by MECI under the trade code of 

HP-65.  

 

However, these materials are not used alone and usually compounded with 

mineral fillers. Although PVC is a major commercial thermoplastic, it processability and 

thermal stability are inferior to other commodity plastics such as polyethylene and 

polystyrene. Compounding PVC with inorganic fillers such as calcium carbonate can 

improve these properties. Besides, the mechanical properties of these composites are 

strongly related to the fillers ratio. Therefore, the nano-size fillers have attracted more 

attention (Xie et al., 2004). A test result of study conducted by Yee (2001), shown that 

the finer particles size of calcium carbonate is more effective in impact strength 

retention for impact-modified unplasticized PVC. The impact strength can also be 

improved by using the surface treated calcium carbonate for better dispersion and 

adhesion purpose in the PVC matrix.  

 

 

A study conducted by Leong et al. (2003), shown that the talc/calcium carbonate 

filled polypropylene hybrid composites have fared extremely well in weathering 

conditions due to excellent retention of mechanical properties. Chen et al. (2004) 

claimed that various nano-scale fillers have been reported to enhance mechanical and 

thermal properties of polymers, such as toughness, stiffness, and heat resistance. These 

fillers exhibit good reinforcing effects on many polymeric matrixes due to their large 

aspect ratio. However, this kind of filler with a high aspect ratio does not obviously 
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improve the toughness and sometimes even decreases it. The low aspect ratio fillers with 

large surface area could result a strong interfacial interaction between fillers and 

polymeric matrixes.  

 

 

 

 

1.2 Problem Statement  

 

 

In development of commodity thermoplastics it is important to achieve a good 

balance of mechanical properties and processability. Previous studies have shown that 

the addition of calcium carbonate and talc improved the stiffness of unplasticized-PVC 

and the finer particles size of calcium carbonate is more effective in impact strength. 

Talc increases the flexural modulus or stiffness of a rigid PVC formulation, but this 

increase in stiffness is usually accompanied by a severe decrease in impact strength. 

CaCO3 is effective in improving impact strength of PVC without decreases the flexural 

modulus of PVC. Previous studies also shown that surface treated calcium carbonate 

improves impact strength for better dispersion and adhesion purpose in un-plasticized 

PVC. However, no studies have yet been reported on the effect of hybrid talc/CaCO3 on 

mechanical and processability of PVC.  It is expected the use of hybrid CaCO3/talc will 

result in PVC composites with balance in both impact strength and stiffness.  
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1.3 Objective of the Study 

 

 

The overall objective of this study is to investigate the effect CaCO3 content on 

mechanical properties, processability and thermal degradation of PVC hybrid 

Talc/CaCO3 composites. 

 

 

The overall objective is sub-divided into: 

• To investigate the effect of different types and size of CaCO3 on mechanical 

properties and processability of PVC.  

• To investigate the effect of talc on mechanical properties and processability of PVC.  

• To investigate the effect of different ratio of talc/CaCO3 on mechanical properties 

and processability of hybrid talc/CaCO3 PVC composites. 

 

 

 

 

1.4 Scopes of the Study 

 

 

1. The sample preparation involved three stages, the dry blending, the two roll 

milling and the compression moulding.   

 

2. The PVC blend formulations used in this research are based on the commercial 

PVC window frames formulations with some modifications. 

 

3. The different grade and particles size of calcium carbonate used in this research 

are SP-FG (uncoated ground calcium carbonate with 1µm in particles size), SP-

FG-C (coated ground calcium carbonate with 1µm in particles size), SM90 

(surface treated ground calcium carbonate with 0.9µm in particles size), Precarb 

100 or PC100 (precipitated calcium carbonate with 1µm in particles size) and 

Nano-precipitated calcium carbonate. 
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4. The materials used in this research are suspension homopolymer Polyvinyl 

chloride (PVC) with solution viscosity K-value 66, tin stabilizer (T190), calcium 

stearate (Sak-CS-P), stearic acid (Kortocid PH10), acrylic polymer (Kane Ace PA-

20), titanium oxide (TR92) and talc with mean particles diameter of 6.3µm.  

 

 

 

 

1.5 Significant of study  

 

 

Based on literature review, no study has been reported on the use of talc/CaCO3 

as hybrid fillers in PVC matrix. Many studies (Chen, et al., 2006; Sun, et al., 2006; 

Wiebking, 2006 and Xie, et al., 2001) only involved in the investigation of the 

mechanical properties of single filler of CaCO3 or talc filled PVC composites. Many 

researchers focused on the mechanical, thermal, fusion properties of CaCO3 filled PVC 

composites compared to talc-filled PVC composite.  

 

 

Generally, the incorporation of inorganic particles such as talc and CaCO3 into 

PVC matrix not only can improve the stiffness and toughness of PVC composite, but 

also can reduce the cost of composite. According to Wiebking (2006) and Xie, et al. 

(2001), talc can be used to enhance the stiffness and strength of PVC, whereas CaCO3 

can be used to increase the impact strength of PVC without reduce the stiffness. 

However, the addition of talc in PVC composite could decrease the impact strength of 

PVC. Previously, the impact modifier was used by Weibking (2006) to increase the 

impact strength of talc filled PVC composite. However, the use of impact modifier 

significantly reduced the stiffness of PVC. CaCO3 is suggested to use in this research to 

overcome this problem. This research is to develop a PVC compounding formulation 

which has good balance on mechanical properties, thermal characteristics and 

processability of PVC. 
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CHAPTER 2 

 

 

 

 

LITERATURE REVIEW 

 

 

 

 

2.1 Poly(vinyl chloride) 

 

 

2.1.1 Suspension Polymerization of Vinyl Chloride  

 

 

The PVC resin used in this research is the suspension homopolymer PVC with 

solution viscosity k-value 66, MH66. The PVC with the grade of K-value 66 is a 

medium molecular weight resins for general purpose, rigid and flexible application. The 

properties of PVC are as shown in Table 2.1. Suspension polymerization is referred to 

polymerization in an aqueous system or water with a monomer as a dispersed phase and 

resulting in a polymer as a dispersed solid phase. The suspension polymerization is 

carried out by suspending the polymer as droplets with the average sizes are in between 

0.0001cm to 1cm in diameter in continuous phase (Mishra and Yagci, 2005). Yamamoto 

et al. (1994) reported that PVC with various molecular weights has been prepared by 

suspension polymerization at 35-70
o
C and the tensile properties such as tensile modulus, 

tensile strength and elongation at break of PVC samples are dependent on the molecular 

weight. The suspension polymerization of vinyl chloride is dominated in the market due 

to technological and economic advantages (Nass et al., 1986).  
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Table 2.1: Properties of Poly(vinyl chloride) Resin MH-66 (Mishra and Yagci, 2005). 

Appearance White Powder  

Degree of Polymerization 1000±50 

K-Value  66 

Specific Gravity at 23
o
C 1.4 

Volatile Matter, % Max 0.5 

Foreign Matter, % Max 15 

Bulk Density (g/cc) 0.5±0.05 

Percentage of Particle Size 0.3 

 

 

 

 

2.1.2 Morphology of Poly(vinyl chloride) 

 

 

The morphology of PVC is responsible for the physical properties of the 

polymer. The morphology of PVC depends on many factors, including on the ways of 

manufacturing or producing PVC resins (Yee, 2001). The PVC resins or grains are 

normally prepared by commercial processes are known to consist of irregularly shaped 

and porous granuls with their average grain size is between 90 and 200µm in diameter.  

 

 

The morphology of a polymer has a significant effect on the impact behavior of 

the material. The orientation and the organization of fillers particles can be observed to 

indicate the interaction between filler particles and the PVC matrix. The distribution of 

filler in the PVC matrix also can be observed. Since the use of filler increased the impact 

strength of PVC composites, the morphology observation is very important in 

investigating the effects of fillers such as CaCO3 in the PVC matrix due to the 

toughening effect of PVC matrix. As an example, a study conducted by Chen et al 

(2003), the cavities were found on the fractured surface of the nano-CaCO3 filled 

PVC/Blendex blend composites and were occupied by the CaCO3 particles. The 

cavitation happens during the samples being impacted. This cavitation could absorb 
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large amounts of energy and leading to the improvement of impact strength of the 

composites.  

 

 

 

 

2.1.3 Fusion of Poly(vinyl chloride) 

 

 

The fusion study was conducted in this research to measure the processability of 

the PVC composites. The fusion behavior and characteristics were studied by observing 

the changes of the torque and temperature with time. The fusion process is highly 

dependent on both shear and thermal history of the polymer. According to Chen et al. 

(1995b), to achieve good mechanical properties, grain boundaries must be eliminated 

and the microparticles must be altered and compacted together. The fusion behavior of 

grains is governed by the processing method and also by the additives added, which are 

normally present at the grains surfaces. The distribution of the additives on the PVC 

powder is been suggested to influence the grain fusion (Yee, 2001). 

 

 

Many researches and development have been conducted to investigate and 

understand the fusion mechanisms of PVC compounds (Chen et al., 1995d; Abu Bakar 

et al., 2005; Cunha Lapa et al., 2002). However, most of these studies are concentrated 

on investigating the effect of lubricants and impact modifiers on the fusion of neat PVC 

compounds. Lubrication is one of the most important factors that can influence the 

fusion of PVC compound during processing. The fusion characteristics of PVC 

compound are highly dependent to the composition of lubricants. Chen et al., (1995d) 

reported that the use of lubricants such as calcium stearate and oxidized polyethylene 

(OPE) in PVC compound had significantly increased the fusion time. They also carried 

out an investigation on the effect of chlorinated polyethylene (CPE) which is commonly 

used as an impact modifier in PVC. However, they also reported that the fusion time of 

PVC/OPE/CPE compounds was the shortest compared to PVC/CPE and PVC/OPE 

compounds. This might be caused by the 0.3 phr OPE and 5 phr CPE interacted and 

formed a powerful and viscous material which acted as a glue that allowed the PVC 
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resins particles to fuse together easily. They also reported that the fusion time of 

PVC/OPE compounds was the longest. This could be reasoned that more thermal energy 

was needed to be absorbed by PVC/OPE compounds in order to fuse the PVC resin 

particles together easily. Thus, the fusion temperatures of PVC/OPE compounds were 

the highest and resulted in decreasing the melt viscosity of samples in Haake torque 

rheometer. So, the fusion torques of PVC/OPE compounds were the lowest.  

 

 

Chen et al. (2001) reported that the fusion percolation threshold (FPT) of rigid 

PVC compounds were strongly dependent on the processing conditions and also the 

formulations of these PVC compounds. They concluded that higher processing 

temperature results a lower FPT and also shorter fusion time. They also suggested that a 

higher concentration of CPE could promote the easy fusion of PVC resin particles. The 

FPT of PVC/CPE compounds decreased as the concentration of chlorinated 

polyethylene (CPE) increased. They also found that the interaction between calcium 

stearate and a higher concentration of OPE in PVC/OPE compounds could fuse the PVC 

resin particles easily in the beginning process of fusion.  

 

 

Chen et al. (1995d) found that the fusion characteristics of PVC blends which 

were prepared at low starting temperature and low rotor speed did not give apparent 

fusion peaks. The fusion characteristics of PVC blends which prepared at high or 

medium starting temperature and high or medium rotor speeds is shown in Table 2.2.  
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Table 2.2: Fusion Characteristics of PVC Blends at Temperature of 190
o
C and rotor 

speed of 100rpm (Chen et al., 1995d). 

 PVC PVC/OPE PVC/CPE PVC/CPE/ 

OPE 

Fusion 

Temperature (
o
C) 

189.0 198.0 193.5 189.0 

Fusion Time (min) 

 

0.80 1.30 1.05 0.70 

Fusion Torque      

(g m) 

2946 2468 2645 2724 

 

 

 

 

• Mechanisms of Fusion  

 

 

There are two types of fusion mechanisms, which are comminution mechanism 

and CDFE mechanism. In this research study, the mechanism involves is comminution 

mechanism. According to Wickson (1993), the breakdown or the comminution 

mechanism applies only high-shear equipment such as Banbury mixers (lab and plant 

scale) and laboratory Brabander mixers. In this research study, the fusion behavior was 

conducted by using Haake Torque Rheometer.  

 

 

 

 

• Assessment of Fusion Level 

 

 

In this research, the level of fusion is an important factor to assess or determine 

the mechanical strength and fracture behavior of the samples. The level of fusion can be 

studied or observed either by monitoring the level of progression of breakdown or by 

noting the state of the development of a continuous molecular network through SEM 

examination.  
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In this research, the stiffness can also be used to determine the level of fusion. 

Wickson (1993) explained that the mechanical properties associated with stiffness 

increase monotonically with increasing of stiffness. These mechanical properties 

associated with brittle or ductile transition behavior showed a maximum versus the level 

of fusion. 60% fusion gives the best balance of properties.  

 

 

In this research, the thermal analysis such as DSC analysis can be related to 

fusion study in PVC composites. Gilbert and Vyvode (1981) have reported a thermal 

analysis technique that can be related to fusion in PVC. They found that an endothermic 

peak developed in compounds was a function of prior heat history. The endothermic 

peak showed up on the second heating which about the annealing temperature. The 

thermograms could thus be related to the previous processing temperatures and thereby 

can also be related to the fusion of the compounds (Wickson, 1993).  

 

 

 

 

2.1.4 Consumption, Application and Issue of Poly(vinyl chloride) 

 

 

PVC has been manufactured commercially for past 50 years. In 1985, it is the 

second largest volume thermoplastics manufactured in the world (Wickson, 1993). 

According to Nass et al. (1986), the total PVC resin production in 1983 was around 37.5 

billion pounds worldwide and the international consumption was 25.5 billion pounds. 

PVC has a current global consumption of approximately 20 million tones per annum. 

Yao (2007) reported that the China’s PVC sector continued to develop rapidly in 2006. 

PVC production capacity was 12.84 million tons per year, an increase of 31% over 2005. 

He also reported that output of PVC was 8.238 million tons in year 2006, an increase of 

26.9% over 2005. 
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Now days, the industries and consumers are looked for products, which will give 

long service with minimum maintenance, low labour cost and giving the user time for 

other activities. PVC with suitable additive systems will give long and safe service in 

actual application for many years.  

 

 

According to Owen (1984), the extrusion of rigid sections other than pipes, 

covers a multiple of the products, but the most important are all concerned with the 

building construction. The application in building construction include external 

cladding, window frames and sills, patio doors, architraves, skirting boards and ranch 

fencing. The application cladding of houses with hollow or foamed sections in UK, 

resembling painted weather boards, but maintaining their attractive appearance without 

the need for costly decoration and maintenance. The single application for PVC profiles 

in West Germany is the construction of window frames, which has consumed about 

100000tones/annum in recent years.    

 

 

The insulation and sheathing of cables constituted the first important use for 

plasticized PVC. The PVC is not suitable for very high voltage cables but successfully 

used for power transmission at intermediate voltage and conduit for electrical. It has 

excellent fire retardant properties, give a safer working environment and the properties 

of low electrical conductivity.  

 

 

The application of rigid pipe and conduit is the single largest application in UK 

and Western Europe (Owen, 1984). The building and construction sector (piping, 

guttering, window profiles and wall plates) makes the broadest use of PVC (Mulder and 

Knot, 2001). They also reported that the other applications of PVC are flooring and wall 

coverings, electrical cables, consumption goods, packaging, cars (bumpers and 

interiors), tubes and medical applications such as blood bags.  
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The PVC paste or plastisols are the polymer produced in the form of very fine 

but dense particles, which have the property of interacting with a plasticizer at ambient 

temperature to form a stable dispersion of much higher viscosity compared to plasticizer 

alone (Owen, 1984).  

 

 

 

 

2.2 Additives 

 

PVC is known of its poor thermal stability and high sensitivity toward 

environmental attacks. Because of its poor heat stability, it cannot be processed without 

additives.   

 

 

 

 

2.2.1 Processing Aids 

 

 

In the past, PVC was considered as worthless plastics because the required 

processing temperature was too close to the temperature where the degradation took 

place rapidly. The processing aids are added with the specific intention of changing the 

fusion behaviour of rigid PVC compounds. The processing aids melt more readily than 

PVC and cause the PVC to become a viscous mix of processing aid and melt PVC 

particles is formed at low temperatures. Since this occurs at lower temperatures than 

would be the case for PVC alone, the melt viscosity is high due to long chains of 

processing aid. The long chain of the processing aid not only increases the viscosity of 

these melt, also causing a buildup heat from the processing shear. This flow is not just 

particle slippage but involves a melt flow component. Butters (1982) also reported that 

the essential fusion occurs earlier than would be the case in the absence of processing 

aids. The first function is to promote the PVC powder compound into melts that can be 

readily processed and the second function is to alter the melt rheology of the PVC 

compound.  
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As rigid PVC grew, clear applications were developed where good dispersion of 

the processing aid was an important property in minimizing gel-type defects. More 

sophisticated processing aids were developed which consisting of two-stage core-shell 

acrylic compositions. These core-shell structures and compositions improved the 

dispersion of the processing aids in clear compounds with little change in the other 

desirable properties of the processing aid (Wickson, 1993). 

 

 

 

 

2.2.2 Lubricants 

 

 

According to Butters (1980), lubricants are often loosely divided into so-called 

internal which affect the material to material friction and external which affect material 

friction with the wall of the processing equipment. Internal lubricants are incorporated 

into the mass and they disrupt the intermolecular forces among the polymer chains, thus 

reducing the melt viscosity. If the lubricant is noticeable at the surface, or appears to 

have modified surface properties, this lubricant is thought to be external. In other words, 

external lubricants prevent the polymers from sticking to the metallic surfaces of 

processing equipments and reduce the surface coefficient of friction. If the observations 

are contradictory, it may class both ways. Dick (1987) also reported that combinations of 

internal and external lubricants are used to obtain an optimum between shear and 

conductive heating of the compound.  

 

 

The processing of rigid PVC would be impossible without lubricants. Lubricants 

are often added only to certain grades according to the processing method required or 

the desired surface effects. Mostly, the lubricants are used in rigid PVC to help reduce 

processing temperature and prevent thermal degradation during processing. Gachter et 

al. (1993) also quoted that without lubricants, heat will be produced by the polymers 

intermolecular friction and polymer molecular-surface friction during processing The 
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lubricants presently used in PVC industry are fatty acids, fatty acid amides, metallic 

soaps, calcium stearate, zink stearate and stearic acids. 

 

 

 

 

2.2.3 Stabilizers 

 

 

Poly(vinyl chloride) (PVC) is very well known for its poor and low thermal 

stability. Stabilizers are added to PVC for protection against thermal degradation at high 

processing temperature. PVC is damaged by dehydrochlorination, autoxidation and 

mechanochemical chain scission at elevated temperatures during processing. These 

degradations must be minimized as far as possible by adding stabilizers. Dick (1987) 

mentioned that the dehydrochlorination of PVC not only decreases the physical 

properties of PVC, but also can cause a change in colour because of the conjugated 

unsaturation which absorbs lights at different wavelengths. There are many classes and 

grades of stabilizer used in commercial depend on the types of application.  

 

 

The grade of tin stabilizer used in this research is Thermolite T190. The 

following are some commonly used classes of stabilizers used today (Gatchter et al., 

1993).  

 

 

1. Organotin Stabilizers 

2. Metal Carboxylate Stabilizers 

3. Lead Stabilizers 

4. Other Metal-Containing Stabilizers 

5. Metal-Free Stabilizers 

6. Costabilizer 
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2.2.4 Fillers 

 

 

Fillers are added to the polymers to increase the polymer bulk, reduce costs and 

improve the properties of the polymers. Reasonable quantities of fillers can produce 

specific improvements in certain mechanical or physical properties. These fillers can 

slightly modify the tensile strength, hardness, rigidity, viscosity and colour of the 

plastics. The most common fillers used in PVC compounding are carbonates, clay, 

silicate and talc. Filler particles come in a variety of shapes and the shape of the particle 

is determined by the crystal structure of the mineral. One method of the shape 

measurement is the aspect ratio or L/D ratio, which is the value of the largest dimension 

of the filler particles divided by the smallest dimension of the filler particles.  

 

 

PVC fillers can be classified into two categories, which are extenders fillers and 

reinforcing fillers. Practically, although all of the fillers exhibit some functional 

property, this classification is tied to the primary reason for using filler. The stiffness 

and modulus of elasticity are increased to some extent by all fillers even by the spherical 

calcium carbonate or glass spheres. Tensile strength can only be appreciably improved 

by reinforcing fillers. Gachter et al. (1993) also noted that the disadvantages of the 

reinforcing fillers are mainly attributed to the generally anisotropic or direction effect of 

the reinforcements.  

 

 

Gatchter et al. (1993) also mentioned that the extenders fillers can result the 

following changes in the properties of thermoplastics: 

• Increase in density, 

• Increase in modulus of elasticity, as well as in compressive and flexural strength 

(stiffening), 

• Low shrinkage, 

• Increase in hardness and improve the surface quality, 

• Increase in heat deflection temperature, 

• Less temperature dependence of mechanical and physical properties, 
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• Cost reduction. 

 

 

Elias (1997) and Martin-Martinez (2005) reported the most important factors that 

determine the effect of the filler on the properties of the filled polymer as followed:  

• Particle shape, 

• Particle size distribution curve and the top cut, 

• Surface energy or surface tension, 

• Surface coating. 

 

 

In this research study, CaCO3 and talc are used as fillers to achieve balance 

properties in stiffness and impact strength of PVC composites. Calcium carbonates used 

to reduce cost and provided little effect in strength improvement. Calcium carbonates 

have a broad particles size range. Some precipitated calcium carbonates have a particle 

size of less than 0.1 micron (Yee, 2001). Xie et al. (2004) investigated the effect of 

nano-size calcium carbonate in rheological and mechanical properties of PVC 

compounds. They found that the optimal properties of nano-CaCO3 were achieved at 

5%wt. PVC is a major resin that used calcium carbonate as filler.  

 

 

 

 

2.2.4.1 Calcium Carbonate 

 

 

Meister (2002) quoted that the carbonate fillers cover a broad range of materials 

from ground limestone to highly refined calcium carbonates. Calcium carbonate also 

well-known fillers for plastics because of their excellent combination of low cost, the 

ability to be used in high loading without stiffening the PVC and high brightness. 

Calcium carbonate used to reduce cost and provided little effect in strength 

improvement. The aspect ratio of calcium carbonate particles approach more of a 

spheroidal shape and is considered as an extender filler rather than reinforcing filler.  
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2.2.4.2 Talc  

 

 

Talc is a natural hydrated magnesium silicate with the formula 3MgO.4SiO2.H2O 

and is also the softest mineral on the mohs scale about 1. Talc is more expensive than 

most grades of calcium carbonates and generally poorer in colour. It is also much higher 

in oil absorption or poorer packing than all the costly precipitated grades of calcium 

carbonate. Talc can be use at low concentrations to increase flexural and tensile modulus 

of rigid PVC, because of its very low packing fraction. The effect of talc and CaCO3 on 

flexural and tensile properties of PVC is shown in Table 2.3 and these data were 

developed by Wickson (1993). These fillers are 4 micron average equivalent spherical 

diameter.  

 

 

The use of talc typically results in a decrease in low-temperature impact strength. 

When this presents a problem, it is necessary to increase the content of the impact 

modifier. Wickson (1993) also quoted that talc also can adversely affect thermal stability 

which may require an increase of stabilizer. The influence of the filler is not only 

dependent on the degree of the filling but on the fineness of grind and the chemical 

nature of the talc grades concerned. Gachter et al., (1993) also explained that the fine 

particle types of talc show pronounced nucleating effects in partially crystalline 

polymers such as polypropylene. 
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Table 2.3: Effect of Talc and CaCO3 on Flexural and Tensile Properties of Rigid PVC 

(Wickson, 1993). 

 

Parameter 

Filler 

None CaCO3 Talc 

Flexural modulus,10
5
 psi 5.2 7.6 10.7 

Tensile modulus,10
5
 psi 4.4 6.7 8.0 

Tensile yield strength, 10
3
 psi 8.2 6.3 7.9 

Tensile elongation at yield, % 4.6 4.1 3.8 

 

 

 

 

2.3 Reinforcement of PVC 

 

 

2.3.1 Calcium Carbonate Filler as an Impact Modifier for unplasticized-PVC 

 

 

Inorganic fillers have not been effective as impact modifiers for PVC. The notch 

or defect sensitivity of PVC and high is normally required in un-plasticized polyvinyl 

chloride have precluded the use of fillers as impact modifiers. The recent development 

has produced finer particles size calcium carbonate that used as an impact modifier has 

shown the effectiveness result in un-plasticized polyvinyl chloride.  

 

 

Yee (2001) reported that the main point to performance is the complete 

dispersion of the filler in the polymer melt. The fine particles size and the coating assist 

in minimizing increase in melt viscosity and processing aid in dispersion, so that there is 

uniform stress distribution on impact that can minimize the localization of stresses that 

form cracks.  
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2.3.2 PVC composites reinforced by CaCO3 with different particle sizes and 

surface treatments.  

 

 

A research had been done by Sun et al. (2005) to investigate the effects of 

particles size and surface treatment of CaCO3 particles on the microstructure and 

mechanical properties of PVC composites filled CaCO3. The tensile and impact strength 

of CaCO3/PVC greatly increased with the decreasing of CaCO3 particles size. The 

decreasing of CaCO3 particles size attributed to increase the interfacial contact area and 

enhance interfacial adhesion between CaCO3 particles and PVC matrix. Sun et al. 

(2005), quoted that when the CaCO3 particles are dispersed in the PVC matrix, the 

particles act as the concentration of stress which leads to the formation of cracks in the 

PVC matrix. The cracks would be stopped effectively when the cracks propagate to the 

surface of CaCO3 particles. If a large amount of cracks are created in the composites, 

which absorb the impact energy, the toughness of the composites would be improved. 

However, if the interfacial adhesion between the particles and matrix is too weak, the 

micron-cracks would propagate along the interface between the matrix and the nano-

CaCO3 particles and the capability of inorganic particles to terminate the crack 

propagation would be weakened.  

 

 

Besides, Sun et al. (2005) also quoted that if the nano-CaCO3 particles disperse 

unevenly in the PVC matrix, severe aggregates will occur in the composites filled with 

nano-CaCO3 particles. This agglomeration reduces the effective amount of nano-

particles which would absorb the impact energy, hence reduces the toughness of the 

composites.  The nano-particles had a more significant toughening effect on PVC matrix 

than the micron in size CaCO3 particles. Sun et al. (2005) also found that the titanium-

treated nano-CaCO3/PVC composites had superior tensile and impact strength compared 

to the untreated or sodium-stearate-treated CaCO3/PVC composites. The impact strength 

of the titanium-treated nano-CaCO3/PVC composites was reported three times higher 

than the pure PVC materials.  
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Generally, the interfacial adhesion plays a very important role in improving the 

tensile strength of the composites. The tensile strength of composites is influenced by 

the filler fraction and the interfacial adhesion between particles and matrix. Sun et al. 

(2005) also reported that with the addition of the nano-CaCO3 particles, the cross-section 

area of composites to bear load decreased, and only a small amount of could be 

transferred from the matrix to inorganic particles if a weak interfacial adhesion existed 

between the matrix and particles. Thus, the tensile strength of the nano-CaCO3/PVC 

composites decreased with increasing content of nano-CaCO3 particles. Sun et al. (2005) 

reported that the nano-CaCO3 treated with titanate could significantly increase the 

tensile strength of PVC composites by improving the interfacial adhesion. They also 

found that the composite filled untreated nano-CaCO3 particles had the poorest results 

and relatively poor interfacial adhesion.  

 

 

A study had also been carried out by Chen et al. (2003), to investigate the effects 

of nano-scale CaCO3 particles on the mechanical properties ductile polymer matrices. 

The impact strength, flexural modulus and Vicat softening temperature of PVC and 

PVC/Blendex blend were significantly enhanced after addition of 0-15phr nano-CaCO3. 

In this research, Chen et al. (2003) proved that the nano-CaCO3 had a better toughening 

effect on PVC/Blendex matrix than on the PVC matrix.  

 

 

Xie et al. (2004) reported in their study that the mechanical properties of the 

PVC/CaCO3 nano-composites indicate that CaCO3 nano-particles stiffen and toughen 

the PVC. At the loading level of 5wt% nano-particles CaCO3, the Young’s modulus, 

tensile yield strength, elongation at break and Charpy notched impact energy were 

obtained the optimal properties. According to the result of detailed examinations of 

failure mechanisms of impact and tensile specimens, they found that CaCO3 nano-

particles acted as stress concentrators leading to interface debonding or voiding and 

matrix deformation. These mechanisms lead to the impact toughening of the nano-

composites.  
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Chen et al. (2006) had conducted a study to investigate the effects of micron-

scale and nano-scale CaCO3 on the fusion, thermal, and mechanical characterization of 

PVC/CaCO3 composites. They found that the fusion time, fusion temperature, and 

fusion percolation threshold (FPT) of rigid PVC/CaCO3 composites increase with an 

increase in the addition of micro-scale or nano-scale CaCO3. The fusion torque of rigid 

PVC/CaCO3 composites decreases with an increase in the addition of micro-scale or 

nano-scale CaCO3. They also found that first thermal degradation onset temperature 

(Tonset) of PVC/CaCO3 is 7.5
o
C lower than PVC. In mechanical testing results for 

PVC/micron CaCO3 composites with 5-15phr micron CaCO3 and PVC/nano-CaCO3 

composites with 5-20phr nano-CaCO3 were better than PVC.  

 

 

Wu et al. (2004) had carried out an investigation to specific the effects of 

chlorinated polyethylene in nano-CaCO3 composites of PVC on mechanical properties, 

morphology and rheology. A moderate toughening effect was achieved for the nano-

composites and the elongation at break and Young’s modulus also been increased. The 

TEM study showed that the nano-CaCO3 particles were uniformly dispersed in the PVC 

matrix and a few nano-particles of agglomeration were also found. The toughening 

effect of the CaCO3 particles on PVC could be attributed to the cavitation of the PVC 

matrix, which consumed tremendous fracture energy. The incorporation of CPE into the 

nano-CaCO3 composites can improve the notched Izod impact strength of the 

composites.  

 

 

According to these studies, the nano-particles have a more significant toughening 

effect on PVC matrix than the micron in size CaCO3 particles. From the SEM 

examination in previous studies, the CaCO3 nano-particles or micron in size acted as 

stress concentrators leading to cavitation, interface debonding or voiding and matrix 

deformation. These mechanisms lead to the impact toughening of the nano-composites.  
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2.3.3 PVC Composites Reinforced by Talc Filler 

 

 

Flexural modulus or also known as stiffness is an important physical property in 

many rigid PVC applications. A major area of rigid PVC applications is building 

products, such as window frames, siding and fencing. 

 

 

Wiebking (1996) found that talc can stiffen and strengthen rigid PVC with trade-

off in impact strength. He also found that the trade-off in impact strength became less as 

the particles size of talc decreased. If the shape of talc particles is unchanged, talc still 

can remain the ability to increase stiffness although the particles size of talc is reduced. 

The ability of talc to increase stiffness depends on the shape of particles, not the size.  

The incorporation of talc in PVC matrix can effectively resist on bending during applied 

flexural stress. From the study, it is possible to increase the impact strength without 

reducing stiffness by simultaneous addition of impact modifier and ultrafine talc. The 

use of impact modifier can impart the toughness of PVC compound, while the talc 

recovers the stiffness that would be lost if the impact modifier was used alone.   

 

 

Xie et al. (2001) investigated the performance of talc in PVC by coating the talc 

surface with polymethyl methacrylate (PMMA) by the in-situ polymerization. The 

objective of the research was to improve the compatibility between the fillers and 

polymer matrix to reach an optimum result in the mechanical and other physical 

properties. The monomer layer of the polymer coated on the fillers particles reduces 

particles surface energy as well as promotes dispersion of the particles and interfacial 

adhesion. The in-situ polymerization of methyl methacrylate (MMA) on the surface of 

the micron-sized talc was performed by using the batch and semicontinuous elmusion 

process. The result discovered by Xie et al. (2001) was the PMMA covered on the 

surface of talc could improve the mechanical properties of the PVC matrix composites. 

From this research, they also found that the smaller the size of filler is the more effective 

it is in improving the toughness of the PVC composite.  
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Wiebking (2006) had been carried out a research to increase the flexural modulus 

of filled PVC with the acceptable value in impact strength. In another study of Wiebking 

(2006) showed that the addition of talc can significantly increase the flexural modulus of 

a rigid PVC compound. This increase will occur at elevated temperatures up to the 

temperature at which the resin begins to soften. He also discovered that the addition of 

PMMA increased the flexural modulus at the temperatures slightly above the softening 

point of unmodified compound. Wiebking (2006) also found that the increase in flexural 

modulus was lower in precipitated calcium carbonate or PCC (low aspect ratio) filled 

PVC composite compared to talc (high aspect ratio) filled PVC composite. 

 

 

In the same study of Weibking (2006), he also reported that the use of talc and 

PMMA can lower the impact strength of a rigid PVC compound. The impact strength of 

PVC compound can be increased by the addition of relatively high levels of acrylic 

impact modifier. The addition of fine PCC can also improve the impact strength of the 

PVC compound. The acrylic impact modifier lowers the flexural modulus of PVC 

compound while the fine PCC does not lower the flexural modulus of PVC compounds. 

In rigid PVC compounds formulation, it is covering a wide range of impact-stiffness 

balance can be formulated by varying the levels of talc, PCC and impact modifier in a 

formulation. The addition of talc to increase stiffness of PVC compound is very cost 

effective, even the impact modifier level has to be increased to maintain impact strength. 

PMMA, a polymeric additive is effective in increasing the softening point of the PVC 

compound. Talc is added to a formulation with PMMA to achieve the required stiffness 

with lower levels of additive. Good understanding in combining the impact modifier, 

polymeric additives, talc and fine PCC can play an excellent role in increasing the 

elevated temperature performance of a rigid compound.  
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2.3.4 PVC Composites Reinforced by Other types of Fillers 

 

 

Chen et al. (2006) had investigated the influence of the amount of carbon black 

on the yield strength, tensile strength and Young’s modulus of PVC/carbon black 

composites, respectively. They found that the yield strength, tensile strength and the 

Young’s modulus were improved as the amount of carbon black was increased. This was 

because the addition of carbon black can increase the rigidity of PVC/carbon black 

composite and thus increase the mechanical properties such as the yield strength, tensile 

strength and Young’s modulus.  

 

 

The notched impact strength, tensile yield stress and tensile strength of nano-

SiO2/PVC composites with different surface treatments and various weight ratios were 

investigated by Sun et al. (2006). It is noted that the impact strength of pure PVC 

material was 7.0kJ/m
2
. They found that the incorporation of UTS (untreated nano-SiO2) 

had no toughening the PVC composites. However, the addition of DDS 

(dimethyldichlorosilane or DMSC treated nano-SiO2) and KHS (γ-methylacryloxypropyl 

trimethoxy silane treated nano-SiO2) to PVC composite significantly increased the 

impact strength and reaches 9.9kJ/m
2
 at weight ratio of 4/100. They also found that the 

treated nano-SiO2 increased the tensile strength, while the untreated nano-SiO2 particles 

reduced the tensile strength of the PVC composite. This could be explained by the 

introduction of inorganic particles into PVC matrix would reduce the tensile yield stress 

of composites with increasing the content of nano-SiO2 particles.  

 

 

Sun et al. (2006) also quoted that the tensile yield stress of particulate filled 

polymer is mainly affected by the content and effective interfacial interaction, which 

including the effect of interfacial adhesion, particles size, aggregation and dispersion of 

inorganic particles in polymer matrix. The loading stress could not be effectively 

transferred from the matrix to particles and the tensile yield stress of composites 

decreased with increasing particles content. They also found that the KHS and DDS had 

better dispersion in PVC matrix than UTS for their hydrophobic surface and the 
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interface could transfer more stress from PVC matrix to inorganic, thus the PVC 

composites filled with KHS and DDS had higher tensile yield stress than the PVC 

composite filled with UTS.  

 

 

The mechanical properties of PVC/Na
+
-MMT and PVC/O-MMT 

nanocomposites with MMT loading varying from 0 to 5wt% were performed by Chen et 

al. (2005). They found that the mechanical properties of PVC/Na
+
-MMT and PVC/O-

MMT nanocomposites with 1-5phr of MMT were better than the unfilled PVC 

composite. They also found that the incorporation of Na
+
-MMT and O-MMT into PVC 

matrix could enhance the mechanical properties of PVC. They also reported that with 

3phr MMT content, the tensile strength, yield strength and elongation at break could be 

increased up to 16, 16 and 128% for PVC/Na
+
-MMT nanocomposite and up to 29, 32 

and 121% for the PVC/O-MMT nanocomposite, respectively. They explained that the 

intercalated structure in PVC/Na
+
-MMT and the partially intercalated and partially 

exfoliated structures in PVC/O-MMT enhanced the mechanical properties of PVC/MMT 

nanocomposite.  

 

 

Partially intercalated and disordered PVC/Na
+
-MMT nanocomposites and 

partially intercalated and partially exfoliated PVC/organic MMT nanocomposites were 

obtained via a melt blending process by Wan et al. (2003).The stiffness and impact 

strength of these nanocomposites were found to improve simultaneously compared to 

pristine PVC, within treatment of MMT within 0.5-3wt%. They also noted that Na
+
-

MMT content was above 5wt%, the PVC/Na
+
-MMT nanocomposites became optically 

opaque but still retain good mechanical properties. For the partially intercalated and 

partially exfoliated PVC/organic MMT nanocomposite, the processing stability 

deteriorated and PVC degraded above 5wt%. They also reported that the glass relaxation 

transition of these nanocomposites shifted a little higher temperature compared to 

pristine PVC. 
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2.3.5 The use of Talc and CaCO3 as reinforcing fillers in other polymer. 

 

 

Švehlová and Polouček (1994) had carried out an investigation on mechanical 

properties of talc/PP composite as concentration of talc up 40wt%. They reported that 

Young’s modulus of talc filled PP showed a linear increase with talc concentration up to 

double the value of unfilled polymer. They also found that yield stress and Charpy notch 

toughness decreased with increasing talc content below matrix level at the highest filler 

content. However, the composite ultimate tensile elongation and tensile impact strength 

decreased sharply at the lowest filler concentration. The tensile impact strength also 

showed a slow linear dependence with increasing content and agglomerates of talc 

particles.  

 

 

Mechanical behaviour of neat polypropylene, 40wt% talc-filled PP and 5wt% 

silicate-clay filled PP nanocomposite were investigated and evaluated by Zhou et al. 

(2005). They found that the filling of 40wt% of talc particles in PP could increase the 

modulus and decomposition temperature, but decrease the yield strength and fatigue 

strength and has no effect on glass transition temperature and melt temperature. The 

addition of 5wt% of nano-clay could improve both modulus and yield strength by 90% 

and 5%, respectively. They also found that silicate clay also can increase the 

decomposition temperature, but has no effect on glass transition temperature and melt 

temperature. 

 

 

Denac et al. (2004) had investigated and examined the structure-property 

relationships of isotactic polypropylene (iPP/styrenic block copolymer blends filled with 

talc by optical and scanning electron microscopy, wide-angle X-ray diffraction and 

tensile and impact strength measurement. The composites were analyzed as a function of 

poly(styrene-b-ethylene-co-propylene) diblock copolymer (SEP) and the poly(styrene-b-

butadiene-b-styrene) triblock copolymer (SBS) content in the range from 0 to 20vol% as 

elastomeric components and with 12vol% of aminosilane surface-treated talc as a filler. 

They found that talc crystal incorporated in the iPP matrix accommodated mostly 
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parallel to the surface of the samples and strongly affected the crystallization process of 

the iPP matrix. However, they also found that SBS block copolymer disoriented plane-

parallel talc crystals more significantly than the SEP block copolymer. They also 

reported that the changes in supermolecular structure of the studied blends and 

composites reflected the mechanical properties. The much significantly lower modulus 

values for iPP/SBS/talc composites than for the iPP/SEP/talc composites could be 

explained by the higher disorientation degree of encapsulated talc crystals.  

 

 

Denac et al. (2005) studied the mechanical properties of isotactic 

polypropylene/styrene rubber block copolymer blends (iPP/SRBC) as well as the 

iPP/talc/SRBC composites with 12vol% of aminosilane surface treated talc. They 

reported that elongation at yield of the iPP/talc/SEBS-g-MA composites and impact 

strength of the iPP/talc/SEBS composites showed a synergistic effect at high elastomer 

content of 20vol%. Higher molecular weight of thicker SEBS layers around highly 

oriented talc crystals and higher miscibility of SEBS than SEBS-g-MA with iPP chains 

seem to contribute to enormous impact strength of the iPP/talc/SEBS composites.  

 

 

2.4 Reviews on Processability Studies of Filled PVC Composites. 

 

 

2.4.1 Fusion Characteristics of CaCO3 filled PVC Composites.  

 

 

Chen et al. (2006) studied the fusion properties (fusion time, fusion torque and 

fusion temperature) of PVC/ micron-CaCO3 and PVC/nano-CaCO3 by using a Haake 

torque rheometer at 170
o
C and 60rpm for a blending time of 5 minutes. They reported 

that the fusion time of PVC/micron-CaCO3 and PVC/nano-CaCO3 were longer than the 

fusion time of PVC (without any addition of CaCO3). The increase in fusion time of 

PVC/nano-CaCO3 and PVC/micron-CaCO3 was caused by the existence of fatty acid on 

the surface of CaCO3 filler. The fatty acid on the surface of CaCO3 acted like an external 

lubricant that can lengthen the fusion time of PVC. Chen et al. (2006) reported that at 

CaCO3 content less than or equal to 10phr, the fusion time of PVC/CaCO3 composites 
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were found similar to the fusion time of PVC/nano-CaCO3 composites. As the CaCO3 

increased to above 10phr, the fusion time of PVC/nano-CaCO3 composites became 

significantly longer than the fusion time of PVC/ micron-CaCO3 composites. The fatty 

acid on the surface of CaCO3 acted like an external lubricant during the PVC 

compounding. The high amount of the fatty acid in the PVC compound caused the PVC 

molecule not to fuse together at the temperature of 170
o
C and 60rpm in a blending time 

of 5 min. This was due to the nano-CaCO3 had more surface area than micron-CaCO3. 

Higher surface area of nano-CaCO3 generated more fatty acid.  

 

 

Chen et al. (2006) also reported that the increasing in CaCO3 also increased the 

fusion percolation threshold (FPT) of PVC/micron-CaCO3 and PVC/nano-CaCO3 

composites as shown in Table 2.4. The PVC/micron-CaCO3 and PVC/nano-CaCO3 

composites showed higher fusion percolation threshold (FPT) value than the PVC 

compound without any addition of CaCO3. The FPT of the PVC/nano-CaCO3 composite 

was higher than the PVC/micron-CaCO3 composite for the same controlled weight. The 

increasing in the fusion time implied that more thermal energy was required to be 

absorbed to fuse PVC particles together. The FPT was increased as the fusion time was 

increased. They also found that with an increase in the addition of micron-CaCO3 or 

nano-CaCO3 content also increased the fusion temperature of PVC/CaCO3 composites. 

This resulted from the fact that longer fusion time needed more thermal energy to fuse 

the PVC particles together. The thermal energy was proportional to the fusion 

temperature. The fusion torque was reduced by an increase in the addition of micron-

CaCO3 and nano-CaCO3. This was because of the increasing in fusion temperature had 

reduced the melt viscosity of the PVC compound.  
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Table 2.4: Fusion Properties (e.g. Fusion Time, Fusion Torque, Fusion Temperature and 

Fusion Percolation Threshold) of PVC/micron-CaCO3 and PVC/nano-CaCO3 

composites (Chen et al., 2006). 

Sample CaCO3 

Content 

(phr) 

Fusion time 

(min) 

Fusion  

Torque 

(Nm) 

Fusion 

Temperature 

(
o
C) 

FPT (Nm) 

PVC 0 0.490 41.10 155.5 15.40 

PVC/ 

micron-

CaCO3 

5 0.545 37.90 157.0 15.65 

10 0.560 35.90 157.0 16.75 

15 0.725 32.65 158.5 18.55 

20 0.855 32.30 161.5 19.90 

25 1.205 30.40 165.5 23.25 

PVC/nano-

CaCO3 

5 0.510 40.95 156.5 16.30 

10 0.580 40.30 156.5 21.10 

15 1.775 34.50 165.0 29.25 

20 3.690 32.10 168.5 29.10 

25 No fusion occurred 

 

 

 

 

2.4.2 Fusion Characteristics of Rigid PVC Composites Filled with Natural Fibres 

 

 

Currently, the wood-plastic composites have emerged as an important family of 

material engineering. Matuana and Kim (2007) had investigated the effects of wood 

flour contents, woods species (softwood and hardwood) and particles size on the fusion 

characteristics (such as fusion time, temperature, torque and energy) of rigid PVC/wood-

flour composites in a rheometer. Matuana and Kim (2007) found that the surface quality 

of PVC/wood-flour composites was strongly dependent on the wood species used 

(softwood or hardwood). They also found that the presence of poor surface quality was 

caused by the lack of monitoring and poor control of the fusion of PVC compounds. 

They results showed that with an increase in charge weight can cause a drastic decrease 
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in fusion time, fusion temperature and energy. However, it also can cause an increase in 

maximum fusion torque.  

 

 

Matuana and Kim (2007) also found that the addition of wood flour into PVC 

matrix increased the fusion time, irrespective of wood species and the fusion time also 

increased as the amount of wood flour in the composites increased. The incorporation of 

wood flour into PVC resin also caused a significant increase in fusion temperature and 

fusion energy. Thus, it was also leading to increase fusion torque. They explained that 

the increase in fusion time was because of the higher heat capacity of wood which 

needed higher amount of energy to increase the temperature compound and fuse the 

compound together. The heat capacity of dried wood at processing temperature of 180
o
C 

(~1.86J/gK) is greater than the heat capacity of neat PVC (0.9J/gK). They concluded that 

the addition of wood flour into PVC matrix delayed the resin particles to breakdown due 

to the higher heat capacity of wood.  

 

 

The effects of EFB filler on processability of unmodified and acrylic impact 

modified PVC-U was investigated by Abu Bakar et al. (2005a). They reported that the 

incorporation of EFB filler decreased the fusion time of unmodified PVC-U composites. 

However, they also found that the fusion time remained comparatively constant with 

further increase in EFB to 40phr. They explained that the decrease of fusion time was 

due to EFB filler containing the oil palm residues and this oil caused the filler to migrate 

out onto the EFB filler surface and accelerated by shearing actions of mixer blades and 

frictional heat during the mixing process. They also reported that the fusion times 

increased with the filler content (more than 20phr) for the acrylic impact modified 

samples. However, these fusion times were still lower than the unmodified samples. 

They explained that the increase of EFB filler content might hinder the acrylic from 

functioning as a processing aid effectively. They also found that the PMMA polymer 

which is a processing aid also became less effective with increasing EFB filler content. 

The end torque value is an indication of EFB filler reduced the melt viscosity of PVC-U 

compound.  
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A processability study was conducted by Hassan and Sivaneswaran (2005) to 

investigate the behaviour of RHA (rice hush ash) filled ABS (Acrylonitrile Butadiene 

Styrene) modified PVC-U by using Brabender Torque Rheometer. Their results showed 

that the fusion time decreased upon the incorporation of 10phr RHA. However, with 

further RHA loading, the fusion time started to increase. They explained that the 

increase in RHA loading could hinder the processing aid from functioning effective to 

promote fusion. They also noted that the other reason for the increase in fusion time is 

the tendency of filler agglomeration increases with filler loading. This might increase the 

separation between PVC resin particles and result a decrease in the heat transfer 

throughout the PVC compound. They also found that the incorporation of RHA filler 

reduced the end torque of PVC-U compound. Their results also showed that the PVC 

compound treated with coupling agent also increased the fusion time.  

 

 

 

 

2.4.3 Fusion Characteristics of PVC Composites filled with other types of Fillers 

 

 

Influence of the carbon black on the fusion torque of PVC/Carbon Black (CB) 

composites melted in a Haake Torque Rheometer at a temperature of 170
o
C with a rotor 

speed of 60rpm and a blending time of 5 minutes was investigated by Chen et al. (2006). 

They discovered that the fusion torque of PVC/CB composite was increased as the 

amount of CB was increased. This was because the CB particles increased the friction in 

blending system and resulted increase of the fusion torque when the unfused PVC/CB 

compound reached a void-free state in the mixer and started to melt at the interface 

between the compacted material and the hot metal surface. They also found that the FPT 

of PVC/CB composite deceased when the amount of CB increased. They explained that 

the CB particles can promote the friction in the system, increase the transfer of heat and 

shear throughout the PVC grains and then decrease the FPT of PVC/CB composite. 

They also found that the fusion time of PVC/CB composite was decreased as the amount 

of CB increased. The decrease in fusion time was caused by the promotion of friction in 
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the system and increased the heat and shear transfer throughout the PVC grains, thus the 

fusion process of PVC/CB can occur more quickly.  

 

 

Sun et al. (2006) studied the processability of nano-SiO2 particles with different 

surface treatments filled PVC by melted in the Haake Torque Rheometer at the 

processing temperature of 170
o
C with a rotor speed of 60rpm. They found that the 

equilibrium torques of all nano-SiO2/PVC binary composite were much higher than the 

pure PVC material. They also discovered that the equilibrium torque of PVC composites 

filled with UTS (untreated nano-SiO2) was higher than the composites filled with DDS 

(dimethyldichlorosilane (DMCS) treated nano-SiO2). The composites filled with KHS 

(γ-methylacryloxypropyl trimethoxy silane treated nano-SiO2) showed the lowest 

equilibrium torque. They explained that increase in equilibrium torque of inorganic 

particles filled polymer usually caused by the adhesion of the polymer to filler and the 

aggregation of filler. They also found that with the decreasing of particles size, the 

probability of collision and friction among the inorganic particles increases, which leads 

to the improvement of equilibrium torque and viscosity. As the inorganic nanoparticles 

were introduced, the aggregation of nanoparticles occurred severely and improved the 

probability of the collision and fraction rapidly.  

 

 

 

 

2.5 Reviews on Thermal Properties of PVC Composites 

 

 

As mentioned in the processability studies, the increasing of fusion time, fusion 

percolation threshold (FPT) and fusion temperature of PVC/CaCO3 composites were 

resulted by the existence of fatty acid on the surface of CaCO3 filler. The existence of 

fatty acid on the fillers surface such as CaCO3 surface would lengthen the fusion time of 

the PVC composite. The fatty acid acted like an external lubricant that could increase the 

fusion time, and the increase in fusion time would require more thermal energy to fuse 

the PVC particles together. Thus, it would increase the fusion temperature. To 

investigate the total fatty acid content on the surface of the micron- CaCO3, nano-CaCO3 
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and talc fillers, TGA was used in this research to analysis the contents of the CaCO3 or 

talc filler and also the content all filled PVC composites. Chen et al. (2006) found that 

the thermal degradation temperature of micron-CaCO3 and nano-CaCO3 were about 

260
0
C and the contents of fatty acid on the surface of micron-CaCO3 and nano-CaCO3 

were 1.2 and 4 wt%. They also reported that the micron-CaCO3 and nano-CaCO3 were 

degraded into calcium oxide and carbon dioxide at the temperature about 710
o
C.  

 

 

The TGA results of Chen et al. (2006) showed the effect of the addition of 

CaCO3 on Tonset of the rigid PVC/micron-CaCO3 and PVC/CaCO3 composites. The Tonset 

of the PVC/micron-CaCO3 composite was about 7.5
o
C lower than the PVC compound 

without any addition of CaCO3. This was due to the fusion level and the entanglement 

degree of PVC molecules were inhibited by the existence of micron-particles. The Tonset 

of the PVC/micron-CaCO3 did not significantly vary with the addition of CaCO3. The 

CaCO3 particles size was more important than the addition of CaCO3 content on Tonset of 

PVC/CaCO3 composites. For a controlled or fixed weight of CaCO3 content, the total 

surface area contact between the nano-CaCO3 particles and PVC matrix could be more 

than the total surface area contact between the micron-CaCO3 particles and PVC matrix. 

Thus, the PVC matrix was protected from the heat and the Tonset of PVC/nano-CaCO3 

was increased nearly 30% by the addition of 10phr nano-CaCO3. From the conclusion of 

the study carried out by Chen et al. (2006), there were two main factors that can affect 

the Tonset of the PVC/CaCO3, which were the particles size of CaCO3 and the addition 

content of CaCO3. The particles size was significantly dominated the Tonset of the 

PVC/CaCO3 composite and the Tonset of the PVC/nano-CaCO3 composite was at least 

10
0
C higher than the Tonset of the PVC/micron-CaCO3 composite. 

 

 

It was noted that talc has been labeled as a strong nucleating agent by Leong et 

al. (2004b) and this can be measured by using DSC. They also reported that the talc, 

CaCO3 and kaolin have nucleating effect on PP matrix. They also found that the talc is 

the strongest nucleating agent while kaolin is the weakest. The composite is expected to 

obtain a higher modulus, dimensional stability and strength with an increase in the 

crystallinity of polymer matrix.  
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2.6 Reviews on Hybrid Fillers in Polymers Composites 

 

 

2.6.1 Hybrid CaCO3/Talc in Polypropylene 

 

 

A research was carried out by Leong et al. (2004a) to investigate the mechanical 

and thermal properties of talc/CaCO3 filled polypropylene hybrid composites. They 

found that most of the hybrid composites maintained certain properties, depended on the 

type of filler that more dominant and the individual filler itself on the properties of PP. 

They also found that the talc dominant hybrid composites have higher flexural and 

tensile modulus and modulus, whereas the CaCO3 dominant hybrid composites are more 

deformable and tougher.  

 

 

A synergistic hybridization effect was successfully achieved when the 

talc/CaCO3 weight ratio in the PP hybrid was 15:15. In this weight ratio, the flexural 

strength and impact strength were the highest compared to other weight ratio of 

talc/CaCO3 (Leong et al., 2004a). The influence of talc as the main nucleating agent, the 

hybrid fillers showed the significant improvements in terms of the nucleating ability, and 

this contributed to the increase in or retention of the mechanical properties of the hybrid 

composites.  

 

 

A research was carried out by Leong et al. (2005) to investigate the effects of 

filler treatments on the mechanical, flow, thermal and morphological properties of 

hybrid talc/CaCO3 polypropylene composites. The treatment of stearic acid improved 

the filler dispersion of the composites and thus increased the MFI. This form of 

treatment reduces filler-matrix interactions and results decreases in composite strength 

and ductility. The silane treatment increases both the filler matrix and filler-filler 

interactions and these interactions can hinder the polymer melt flow. However, the 
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strength of composites treated with silane was either the same or lower than the 

untreated composites, despite the improvement in filler-matrix interaction. Leong et al. 

(2005) reported that the titanate treatments also increased the elongation at break and 

MFI of all the composites and can be attributed to chain scission of the polymer matrix. 

The titanate-treated hybrid talc/CaCO3 polypropylene composite with the filler ratio of 

15:15 had superb impact strength, overshadowing the superiority of CaCO3-filled PP 

which in its untreated form was thought to have the best impact characteristics of all.  

 

 

Kim et al. (2004) was carried out a study research to investigate the effects of 

stearic acids coated talc, CaCO3 and mixed talc/CaCO3 particles on the rheological 

properties of polypropylene compounds. The stearic acids lower the interfacial force 

between the filler surface and the resin matrix and followed by a favorable processing. 

At very low shear stresses, the viscosity of the uncoated talc compounds was higher than 

the uncoated CaCO3 compounds. At very high shear stresses, the uncoated talc 

compounds became lower than the uncoated CaCO3 compounds. Stearic acid treated 

calcium carbonate particles significantly reduced the shear or dynamic viscosity. 

However, the talc compound did not exhibit the considerable reduction. This is implying 

that stearic acid is more effective on calcium carbonate filled compound than talc 

compounds. The viscosity of talc compound is the highest, followed by the viscosity of 

talc/CaCO3 compound and the viscosity of CaCO3 compound is the lowest.  

 

 

 

 

2.6.2 Hybrid Talc/CaCO3 in Polystyrene 

 

 

An experimental study carried out by Kim and White (1999) to investigate the 

rheological properties of talc, calcium carbonate and mixed talc and calcium carbonate 

of polystyrene (PS). In this experimental study, the shear viscosity over a very wide 

range of shear rates in capillary, cone-plate and sandwich rheometers were investigated. 

The unaxial extensional flow characteristics were measured by a uniaxial elongational 

rheometer based on floating samples on a silicone oil bath. In this study, the compounds 
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were found to absorb silicone oil. The mixed particles compounds exhibit a steady shear 

viscosity. The shear viscosity of the mixed talc and calcium carbonate is generally 

higher than the calcium carbonate compounds, but lower than the talc compounds. The 

20 v% calcium carbonate and 20v% talc compound were found to have yield value in 

elongational flow.  

 

 

 

 

2.6.3 Hybrid Wood Flour/Glass Fiber Filled PVC Composites 

 

 

Jiang et al. (2003) added glass short fibers into poly(vinyl chloride)/wood-flour 

composites as reinforcement agents and investigated the effects of adding glass short 

fibers on the mechanical properties of PVC/wood flour composites. They found that the 

impact strength of PVC/wood flour/glass short fibers hybrid composites could 

significantly increased without losing the flexural properties by adding type L glass 

fibers. They also found that there was no improvement in impact strength by using type 

S glass fiber. Jiang et al. (2003) also reported that the impact strength of hybrid 

composites increased along with the increase of the type L glass fiber proportion in 

fillers at 50% PVC content level. The main failure mode of impact fracture surface of 

hybrid composites are wood particles and glass fiber pullout. However, they also found 

that the interfacial debonding was the dominant fracture mode at higher loading filler 

concentrations. The significant improvement in impact strength of hybrid composites 

was attributed to the formation of the three dimensional network glass fiber architecture 

between type L glass fibers and wood flour. 
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2.6.4 Hybrid Talc/Kaolin in Polypropylene Composite 

 

 

Abu Bakar et al. (2007) carried out an investigation on the mechanical, flow and 

morphological properties of hybrid talc/kaolin filled polypropylene composites. They 

found that most of the hybrid composites showed a significant decrease in flow, tensile, 

flexural and impact properties compared to the single filler filled PP composites. 

However, they also found that a hybridization effect was achieved for PPT20K10 hybrid 

composites through the synergistic coalescence of positive characteristics from 20wt% 

of talc and 10wt% of kaolin of PPT20K10 hybrid composites. The T20K10 filled PP 

hybrid composite showed a more balance and comparable results in stiffness and 

strength compared to the other hybrid composites. They also reported that an 

aggregation of fillers was clearly seen in the PP matrix when the 10wt% of talc was 

replaced with kaolin, which contributed to the reduction in the mechanical properties of 

hybrid composites.  

 

 

 

 

2.7 Impact Modified Unplasticized-PVC  

 

 

Hassan and Haworth (2006) in his research on the influence of temperature to the 

impact properties of acrylate rubber-modified PVC has shown that all the acrylate 

rubber-toughened PVC blends have successfully shifted the ductile-brittle transition 

points to lower temperature. However, the impact modifiers were also found to differ in 

their efficiency to shift the ductile to brittle transition.  

 

 

Yee (2001) used different sizes and types of calcium carbonate fillers were used 

to determine the most optimum formulation in terms of mechanical properties of 

modified UPVC and cost. He found that the impact-modified PVC with 20phr of 0.8µm 

precipitated calcium carbonate was the most optimum formulation based on the criteria.  
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The effects of EFB on the mechanical and thermal properties of unplasticized 

PVC have been investigated by Abu Bakar et al. (2005b). The flexural modulus 

increased with increasing of EFB fibre content in the PVC composites. The increasing in 

EFB fibre content also caused a slight increase in Tg. Abu Bakar et al. (2005b) reported 

that the restriction of segmental mobility of the polymer chains in the fibres vicinity 

contributed to the increase in the flexural modulus and Tg. This restriction of chains 

failed to improve the HDT. The agglomeration of fibres and their poor distribution in 

PVC matrix are the main reasons that the impact and flexural strength decreased with 

increasing of fibre contents.  

 

 

In another study of Abu Bakar (2006) on the effect of oil palm fruit bunch-filled 

impact modified UPVC found that the use of EFB fibre contributed to the enhancement 

of stiffness, but decreased the ductility and flexural strength of the PVC-U composites. 

His results also have shown that the addition of acrylic and CPE impact modifier 

improved the toughness but reduced the flexural properties of EFB-filled composites.  

 

 

The processability study of ABS impact modified PVC-U composites was 

conducted by Hassan and Sivaneswaran (2005) to investigate the effect of rice husk ash 

(RHA) fillers and coupling agents by using Brabender torque. In this study, the RHA 

loading increased the fusion time and the torque decreased with RHA loading in the 

ABS impact modified PVC. The PVC compound treated with coupling agent, LICA 12 

also increased with the fusion time.  

 

 

 

 

2.8 Summary for Literature Reviews 

 

 

From all these previous studies, the effects of talc, CaCO3 and talc/CaCO3 have 

been studied to define the problem statement of this research study. According to 

Wiebking (2006), talc can improve the stiffness but decrease the impact strength of 

PVC. Previously, the impact modifiers were used together with talc to improve the 
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impact strength. However, the use of impact modifiers can reduce the stiffness of PVC 

and not really cost effective. According to the previous studies on CaCO3 filled PVC 

composites, CaCO3 can increase the impact strength of the impact strength of PVC 

without any reduction of stiffness. The CaCO3 is the most suitable filler to be used 

together with talc in the hybrid study to achieve the optimum result in the flexural 

properties and impact strength.  

 

 

According to the previous studies in hybrid polymer, the hybrid talc/CaCO3 

polypropylene composite was successfully achieved a synergistic hybridization effect 

with the ratio of talc/CaCO3 at 15:15. The finer particles size of fillers and surface 

treated fillers can give the better results in improving the stiffness and impact strength. 

From the previous studies above, the heat deflection temperature of composite is mainly 

influenced by the rigidity of composite. Increase in the rigidity of PVC composites could 

lead to increase the heat deflection temperature of composites.  

 

 

From the reviews on processability studies, the incorporation of fillers, especially 

CaCO3 could significantly increase the fusion time of PVC compound. The presence of 

fatty acid on the surface of CaCO3 particles acted like external lubricant that can prolong 

the fusion time of PVC. Besides, the increase in fusion time of filled polymer is usually 

caused and influenced by the structure and shape of filler particles, specific surface area 

of filler, the interfacial adhesion of the polymer to the filler and the aggregation of filler 

particles (Sun et al., 2006). The longer fusion time needed more thermal energy to fuse 

PVC particles together.  
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CHAPTER 3 

 

 

 

 

EXPERIMENTAL 

 

 

 

 

3.1 Materials  

 

 

PVC used in this study is suspension PVC with K-value 66 supplied by Industrial 

Resin Malaysia Sdn. Bhd. (IRM Sdn. Bhd.). The properties for suspension 

homopolymer (MH-66) are presented in Figure 2.1. 

 

 

Five different grades of CaCO3 with specifications as shown in Table 3.1 were 

used as fillers in this research. They are SP-FG (Ground untreated CaCO3 with 1.4µm in 

particles size), SP-FG-C (Ground treated CaCO3 with 1.4µm in particles size), SM90 

(Ground untreated CaCO3 with 0.98µm in particles size), PC100 (Precipitated CaCO3 

with 1µm in particles size) and NPCC (Nano-precipitated CaCO3). The SP-FG, SP-FG-

C and SM90 were supplied by Sun Mineral (M) Sdn. Bhd. while PC100 was supplied by 

Shaeferhonaik (M) Sdn. Bhd. The NPCC was provided by NanoMaterials Technology 

(NMT) Pte Ltd.  

 

 

Talc with the specification as shown in Table 3.2 also used as filler in this study. 

Talc was supplied by Chung Chemical Sdn. Bhd. 
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Several additives used in this study were tin stabilizer (T190), calcium stearate 

(Sak-CS-P), stearic acids (Kortocid PH10), acrylic polymer (Kane Ace PA-20) and 

titanium dioxide (Tioxide TR92). These additives were supplied by Industrial Resins 

Malaysia Sdn. Bhd. A summary of all the materials used in this research is shown in 

Table 3.3. 

 

 

 

 

Table 3.1: Specification of calcium carbonate used. 

Specification SP-FG SP-FG-C SM90 Precarb 100 

Description Uncoated 

ground CaCO3 

or GCC 

Coated GCC Uncoated 

GCC 

Uncoated 

precipitated 

CaCO3 

Diameter at 50%, µm 1.7 1.7 0.98 1 

Diameter at 98%, µm 2.98 8.0 6.7 - 

Density, g/cm
3 

 

2.7 2.7 2.7 - 

Specific surface, 

cm
2
/g 

24640.56 ≈8600 

 

≈8600 - 

 

 

 

 

Table 3.2: Specification of talc filler used. 

Density, g/cm
3
 2.79 

Hardness, Moh’s scale 1 

Mean particles diameter , µm 6.3 
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Table 3.3: Summary of materials used. 

Materials  Types/Trade 

name 

Supplier  Description 

1. Polymer 

Poly(vinyl chloride) MH-66 Industrial Resins 

(M) Sdn. Bhd. 

- K-value of 66 

- powder form 

- white colour 

2. Additives  

a. Calcium Carbonate i. SP-FG Sun Minerals Sdn. 

Bhd. 

Untreated GCC 

 ii. SP-FG-C Treated GCC 

 iii. SM90 Untreated GCC 

 iv. Precarb 100 Schaeferhonaik (M) 

Sdn.Bhd. 

Untreated 

Precipitated CaCO3 

 v.  NPCC-201 NanoMaterials 

Technology (NMT) 

Ptd Ltd, Singapore. 

Treated Precipitated 

CaCO3 

b. Talc  - Chung Sdn Bhd- Untreated Talc 

c. Tin Stabilizer Thermolite 190 IRM Sdn. Bhd. -Octyltin thioester 

-Liquid form 

d. Internal Lubricant 

 

Sak-CS-P IRM Sdn. Bhd. -Calcium Stearate 

e. External Lubricant  Kortacid PH10 IRM Sdn. Bhd. -Stearic Acids  

d. Processing Aid   Kane Ace PA-20 IRM Sdn. Bhd. -acrylic polymer 

g. Pigment Tioxide TR92 IRM Sdn. Bhd. -Titanium Dioxide 
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3.2 PVC Blend Formulations 

 

 

The PVC blend formulations used in this research were based on the commercial 

PVC window frames formulations with some modifications. The PVC blend 

formulations were shown in Tables 3.4 to 3.6. The contents of the fillers were varied 

according to the commercial loading level. Table 3.4 was used to find out the type of 

CaCO3 that gives the highest impact strength and flexural modulus. Table 3.5 was used 

to find out the talc/CaCO3 ratio that gives the most optimal properties in impact strength 

and flexural modulus.  
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Table 3.4: PVC Blend Formulation 1. 

Ingredient Compound Formulations, parts 

 

Types of fillers SP-FG  

30 

SP-FG-C 

30 

SM90 

30 

PC100 

30 

Talc  

30 

Polyvinyl chloride, PVC  

(Resin) 

 

 

100 

 

100 

 

100 

 

100 

 

100 

Tin Stabilizer  

(Stabilizer) 

 

 

2 

 

2 

 

2 

 

2 

 

2 

Calcium Stearate  

(Internal Lubricant) 

 

 

0.5 

 

0.5 

 

0.5 

 

0.5 

 

0.5 

Stearic Acid 

(External Lubricant)  

 

 

0.6 

 

0.6 

 

0.6 

 

0.6 

 

0.6 

Titanium Dioxide, TiO2  

(Pigment) 

 

 

4 

 

4 

 

4 

 

4 

 

4 

Acrylic Polymer 

(Processing Aids) 

 

 

1.5 

 

1.5 

 

1.5 

 

1.5 

 

1.5 
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Table 3.5: PVC Blend Formulation 2 

Ingredient Compound Formulations, parts 

Polyvinyl chloride, PVC  

(Resin) 

 

 

100 

 

100 

 

100 

 

100 

 

100 

 

100 

 

100 

Filler Talc 

 

 

 

0 

 

5 

 

10 

 

15 

 

20 

 

25 

 

30 

Calcium Carbonate 

(SM90) 

 

 

30 

 

25 

 

20 

 

15 

 

10 

 

5 

 

0 

Tin Stabilizer  

(Stabilizer) 

 

 

2 

 

2 

 

2 

 

2 

 

2 

 

2 

 

2 

Calcium Stearate  

(Internal Lubricant) 

 

 

0.5 

 

0.5 

 

0.5 

 

0.5 

 

0.5 

 

0.5 

 

0.5 

Stearic Acid 

(External Lubricant)  

 

 

0.6 

 

0.6 

 

0.6 

 

0.6 

 

0.6 

 

0.6 

 

0.6 

Titanium Dioxide, TiO2  

(Pigment) 

 

 

4 

 

4 

 

4 

 

4 

 

4 

 

4 

 

4 

Acrylic Polymer 

(Processing Aids) 

 

 

1.5 

 

1.5 

 

1.5 

 

1.5 

 

1.5 

 

1.5 

 

1.5 
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3.3 Methodology 

 

 

3.3.1 Preparation of Hybrid Talc/Calcium Carbonate Filled PVC 

 

 

Preparation process of talc/calcium carbonate filled PVC sample involved the 

dry blending, followed by two roll milling and lastly compression molding.  

 

 

 

 

3.3.1.1 Dry Blending  

 

 

The PVC resin and additives were blended by using a high speed laboratory 

mixer to homogenize the formulation. Dry blend of the PVC compound consisted of 

dispersing as uniformly as possible the powdered ingredients. The mixing time of the 

dry blending process was 5 minutes with the rotor speed of mixing was 50rpm.  

 

 

 

 

3.3.1.2 Two Roll Milling  

 

 

After dry blending of the PVC compound formulations, the dry blends of the 

PVC powder and additives were melted and sheeted on a two roll mill machine (as 

shown in Figure 3.1) under the operating conditions as shown in Table 3.7. The milling 

was continued for 5 minutes after the fusion of PVC.  
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Table 3.6: The Operating Conditions of Two Roll Milling 

Material Quantity, g 217.2±50 

Roll Time, minutes 5 to 7 

The temperature of the front roll, 
o
C 180±5 

The temperature of the back roll, 
o
C 180±5 

 

 

 

 

 

Figure 3.1: The two milling machine used in melting the PVC dry blends. 
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3.3.1.3 Compression Molding 

 

 

The sheets of compounded samples were cut to two rectangular sizes with the 

parameter of 12.40cm x 1.2cm and 6.2cm x 1.2cm. The samples with the parameters of 

12.40cm x 1.2cm were used to prepare the samples of flexural testing and the samples 

with the size parameter of 6.2cm x 1.2cm were used to prepare the samples for Izod 

impact testing. Two moulds are specially designed and fabricated for compression 

molding of samples. The first plate mould was used to prepare the flexural testing 

samples, as shown in Figure 3.2. The second plate mould was used to prepare the 

samples that used in notched impact test, as shown in Figure 3.3. The hot press process 

was firstly preheating the samples at 190
o
C for 8 minutes, followed by compressing at 

the same temperature for another 8 minutes and lastly cooling down to the room 

temperature under pressure. The moulded samples were removed from the mould and 

then cut the test shape specimen.  

 

 

 

 

 

Figure 3.2: The plate mould used to prepare the Izod impact testing samples. 
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Figure 3.3: The plate mould used to prepare the samples of flexural testing. 

 

 

 

 

 
Figure 3.4: The hot press machine for compression moulding samples for flexural, Izod 

impact and tensile tests.  
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3.3.2 Izod Impact Test 

 

 

The notch Izod impact strength was measured under the ASTM D256-93 

standard test method. The specimens of Izod impact were notched with a 45
o
C angle and 

2.5mm depth with an Automatic Notcher Machine as shown in Figure 3.5. The Izod tests 

were carried out at room temperature. The purpose of this testing was to determine the 

pendulum impact resistance of notched specimen of plastic. The thickness, of each 

sample was determined and the impact strength reported was the average of ten 

specimens.  

 

 

 

 

 

Figure 3.5: The Automatic Notched Machine used to notch the specimens for Izod 

impact test.  
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3.3.3 Flexural Test  

 

 

The flexural test was conducted according to the ASTM D790-86 standard test 

method by using the Instron machine model 5567. The samples were tested at crosshead 

speed of 3mm/min and the support span for the flexural testing is 50mm. The results of 

flexural strength and flexural modulus were the average of ten specimens.  

 

 

 

 

3.3.4 Tensile Test 

 

 

The tensile test was carried out by using the Instron machine model 5567 under 

the ASTM D 638. The samples were tested under a crosshead speed of 5mm/min. The 

results of tensile strength and Young’s modulus were the average of eight specimens. 

 

 

 

 

3.3.5 Scanning Electron Microscopy Analysis 

 

 

The morphologies of the fracture surface of all samples were observed in a JEOL 

model JSM-6301F SEM. The samples were immersed into liquid nitrogen for 45 

minutes. The samples were brittle after immersion of liquid nitrogen, and could be easily 

fractured by using a spanner. The fractured surface samples were cut to a smaller portion 

to mount on the copper stub. The samples were then coated with a thin layer of gold 

before scanning electron microscopy (SEM) examination.  
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3.3.6 Thermogravimetric Analysis  

 

 

A Perkin Elmer-TGA 7 was the thermogravimetric analyzer was used to analysis 

the thermal characteristics of the samples. The samples were firstly placed in an open 

platinum sample pan. After that, the samples were scanned from temperature 50
o
C to 

700
o
C at a heating rate of 10

o
C/min under a nitrogen environment. The thermal 

degradation onset temperature and the thermal degradation weight loss of samples were 

recorded and analyzed.  

 

 

 

 

3.3.7 Processability Study 

 

 

The processability of the dry blended sample was studied by determining the 

fusion characteristics. The dry blended sample was placed in the mixing chamber of a 

Haake Torque Rheometer through a loading chute. After the dry blended sample had 

been loaded, a 5kg weight-piston was immediately inserted in place. Then, this piston 

was pressed gently to force all dry blended samples completely into the mixing chamber 

to achieve the best reproducibility and comparability of the test result. The dry blended 

samples were melted and mixed at a constant rotor speed of 45rpm and at mixer 

temperature of 180
o
C.  

 

 

 

 

3.3.8 Heat Deflection Temperature Test 

 

 

The heat deflection temperature test was carried out by using Toyo-Seiki HDT S-

3 tester under the ASTM D 648. The standard dimension of the samples used in this 

testing was 125 x 13 x 3mm
3
. The samples were immersed into a heated bath of silicone 

oil under the flexural load of 1.2kg. The heating rate was set at 2±0.2
o
C/min. The 
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temperature of the silicone oil was measured when the deflection of samples reached 

0.250mm. The measured temperature was recorded as the deflection temperature under 

flexural load of the test sample. The heat deflection temperature values reported in this 

test were the average of three specimens. 

 

 

 

 

3.3.8 Determination of Density 

 

 

The densities of the samples were determined according to the ASTM D 792 

water displacement method (method A) with the following equation:  

 

ρ = [W1/ (W1-W2)] ρw  

 

Where W1 and W2 are the sample weights in air and water, respectively, and ρw 

is the density of water.  

 

The sample weights in air and in water were determined by using Mettler Toledo 

Analytical Balance Model Ax201glass pyknometer. The theoretical density of PVC 

composites, ρc was calculated using the following equation:  

 

ρc = 1/{(Wf /ρf)+(WPVC /ρPVC)+(Wadditives /ρadditives)} 

 

Where, Wf, WPVC and Wadditives are weight fractions of filler, PVC resin and 

additives in composites, respectively. ρf, ρPVC and ρadditives refer to the density of 

filler, PVC resin and additives, respectively. 
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CHAPTER 4 

 

 

 

 

RESULTS AND DISCUSSION 

 

 

 

 

4.1 Mechanical Properties 

 

 

4.1.1 Effect of Different Types of Fillers and Particles Size 

 

 

4.1.1.1 Flexural Strength 

 

 

Figure 4.1 illustrates the effect of fillers on the flexural strength of PVC 

composites. It can be seen that the incorporation of all types of fillers into PVC 

composites decreased the flexural strength of PVC composites. It is interesting to note 

that the flexural strength of talc filled PVC composite was significantly higher than all 

CaCO3 filled PVC composites. The reduction for the talc filled composites was only 4 

%, whereas the reduction for the CaCO3 filled composites ranges between 10 to 20 

%.  The high aspect ratio of talc particles in PVC composite was the factor that 

contributed to the relatively high flexural strength of the talc filled composite compared 

to the CaCO3 filled composites. It is widely reported that the aspect ratio of talc was 

much higher than the aspect ratio of CaCO3 (Leong et al.，2004a and 

Wiebking，2006).  The average aspect ratio of talc particles was measured and found to 

have an average value of 8 as shown in Section 4.2. This revealed that the aspect ratio of 

talc was much higher than CaCO3. Talc is a reinforcing filler because of its platy nature 

with high aspect ratio and able to orient to the polymer flow during processing. 

Although talc particles have higher aspect ratio than CaCO3, the talc particles are small 
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and short enough and would not be easily breakdown into shorter particles like short 

fiber during processing. The high aspect ratio of talc increases the wettability of the filler 

by the PVC matrix, thus increasing the interaction between the filler and matrix. The 

increased filler-matrix interaction also enables higher stress to be transferred from the 

matrix to the filler during external loading. The reason for the relatively lower flexural 

strength of CaCO3 filled PVC composite is the lower aspect ratio of CaCO3 hence poor 

interaction between the filler and PVC matrix. In addition to that, formation of cavities 

could be another possible reason for poor flexural strength.  

  

 

Leong et al. (2004a) also reported that the flexural strength of CaCO3 filled PP 

composites was lower than the unfilled PP which is consistent with the present study. 

However the talc filled PP was slightly higher than the unfilled PP. The PC100 filled 

PVC composite showed the highest flexural strength among all CaCO3 filled PVC 

composite. PC100 is a precipitated CaCO3 with fine particles and a very narrow particles 

size distribution in comparison to ground CaCO3. This shows that uniformity in filler 

size is important to produce strong PVC composites.  It is also noted that SP-FG-C filled 

PVC composite has a higher flexural strength values than SP-FG filled composites. This 

maybe due to the surface coating of SP-FG-C reduces particle-particle interaction and 

this leads to better particle dispersion in PVC matrix. 
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Figure 4.1: Effect of different types of fillers on flexural strength of PVC composites. 

 

 

 

 

4.1.1.2 Flexural Modulus 

 

 

Figure 4.2 shows that the incorporation of talc and all types of CaCO3 improved 

the flexural modulus of the PVC composite. The flexural modulus of talc filled PVC 

composite was significantly higher than all types of CaCO3 filled PVC composites. The 

SM90 filled PVC composite showed the highest flexural modulus among all types of 

CaCO3. The flexural modulus results were similar to the study reported by Wiebking 

(2006). He reported that talc can both stiffen and strengthen rigid PVC. However, he 

also found that CaCO3 is not as effective as talc in increasing the flexural modulus of 

PVC composite. This could be explained by the aspect ratio of talc particles was much 

higher than the aspect ratio of CaCO3 particles. According to Abu Bakar et al. (2007) 

and Leong et al. (2004b), the higher enhancement in stiffness observed in platy talc 

could be attributed to the high aspect ratio and particles orientation of talc particles in 

PVC matrix. The talc particles were oriented parallel to each other in PVC matrix (as 
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mentioned in Section 4.2 on SEM study) and the orientation of talc particles was the 

result of the high aspect ratio of talc particles and the motion of talc in a viscous melt 

during two roll milling. The platy talc particles in PVC matrix improved the flexural 

modulus of PVC composite by resist the bending during the application of stress in 

flexural tests.  

 

 

It is also interesting to note that the difference between flexural modulus of SP-

FG and SP-FG-C filled PVC composites were very small. However, the flexural 

modulus of SP-FG-C filled PVC composite also showed a very high standard deviation 

compared to all CaCO3 filled PVC composites. This might be caused by the flexural 

samples of SP-FG-C filled PVC were not properly melted and molded during 

compression moulding. Some of these samples still remained the compounded sheets 

structure, thus created a big variation during performing the flexural test. The SP-FG-C 

filled PVC composite could be considered to have high flexural modulus. This also 

indicates that the surface coating of SP-FG-C particles could effectively improve the 

flexural modulus of PVC composite. According to Wu et al. (2004), the PVC 

composites gave higher performance in stiffness with the addition of CaCO3, which 

could be attributable to the improvement of rigidity of PVC composites. From Figure 

4.2, the addition of all CaCO3 into PVC matrix evidently increased the flexural modulus 

except NPCC filled PVC composite. The poor flexural modulus result of NPCC filled 

PVC composite might be attributed to agglomeration of NPCC in PVC matrix, which 

could reduce the resistance on bending (as shown in Figure 4.17). 
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Figure 4.2: Effect of different types of fillers on flexural modulus of PVC composites.  

 

 

 

 

4.1.1.3 Impact Strength 

 

 

Figure 4.3 shows the impact strength of the unfilled PVC composite and PVC 

composites filled with different types of fillers. The incorporation of CaCO3 (especially 

SM90 and PC100) significantly improved the impact strength of PVC composite. The 

SM90 filled PVC composite showed the highest impact strength among all filled PVC 

composites. This was due to SM90 having the finest particles size (0.98µm) compared to 

other types of CaCO3. The particles size of filler was the main factor in increasing 

impact strength. Sun et al. (2005) reported that the finer particles size of CaCO3 could 

result a great increase in the specific area of filler particles, which lead to increase the 

interfacial contact area between the filler and PVC matrix. Wu et al. (2004) reported that 

the micron CaCO3 can resist the propagation of the crack, so the primary crack had to 

bend between the neighboring particles. The finer particles of SM90 led to more 
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particles in PVC matrix which can resist the propagation of the crack. Besides, the good 

interfacial adhesion between CaCO3 particles and PVC matrix also can prevent cracks 

from propagating along the interface between the matrix and the CaCO3 particles. The 

capability of SM90 to terminate the crack propagation would be improved. The SM90 

filled PVC composite was found to have higher standard deviation compared to the 

others filled PVC composites. This was attributed to the skin formed during the molding 

of the specimens, which could withstand the impact stress applied to the specimens. 

 

 

The PC100 filled PVC composite showed the second highest impact strength. 

This was because of the PC100 had narrower particles size distribution which led to 

better adhesion with the PVC matrix and resulting in a more effective crack propagation 

resistance (Sun et al., 2005). The impact strength of SP-FG-C filled PVC composite was 

slightly higher than impact strength of SP-FG filled PVC composite. This shows that the 

surface coating of SP-FG-C improved the interfacial adhesion between the particles and 

PVC matrix. The particles size of SP-FG and SP-FG-C are bigger than PC100 and 

SM90, they had fewer effective particles that can prevent the cracks propagating. 

 

 

The NPCC filled PVC composite showed the lowest impact strength among the 

CaCO3 filled PVC composites. Sun et al. (2005) reported that the nano-CaCO3 was 

better than micron-CaCO3 in improving impact strength of PVC.  However, present 

study shows that the impact strength result of NPCC filled PVC composites is poorer 

than micron-size CaCO3 filled PVC. Wu et al. (2004) explained that the nano-sized 

CaCO3 might not be as effective as micron-sized CaCO3 as in resisting the crack 

propagation. According to Sun et al. (2005), the nano-CaCO3 filler particles dispersed 

into the PVC matrix acted as the concentration of stress which led to cracks formation in 

the PVC matrix. When the cracks propagated to the surface of particles, the cracks could 

be effectively stopped by the particles. If large amount of cracks are created in the PVC 

matrix, these cracks could absorb the impact energy and thus improved the toughness of 

the PVC composites. However, Wu et al. (2004) reported that the toughening effect of 

nano-CaCO3 particles on PVC could be contributed to another mechanism. According to 

this mechanism, the nano-CaCO3 could act as stress concentration sites, which could 
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promote cavitation at the particles-PVC matrix boundaries during loading. The 

cavitation could release the plastic constraints and trigger mass plastic deformation of 

the matrix, leading to the enhancement of impact strength of nano-CaCO3 filled PVC 

composites.  

 

 

The weakening effect on the impact strength of PVC composites by formation of 

NPCC agglomerates in this study might be caused by the unevenly dispersion of NPCC 

in the PVC matrix (refer to Figure 4.17 in Section 4.2). The particles of NPCC dispersed 

unevenly in the PVC matrix and led to the occurrence of severe NPCC aggregates in the 

PVC matrix. The agglomeration of NPCC reduced the effective number of nano-

particles which would absorb the impact strength (Sun et al., 2005). Because of the weak 

interfacial adhesion between NPCC particles or aggregates and PVC matrix, the cracks 

would propagate along the interface between the matrix and the NPCC particles. Thus, 

the ability of NPCC to terminate the crack propagation would be weakened. 

 

The talc filled PVC composite showed the lowest impact strength of PVC 

composite. This is consistent with previous study by Wiebking (2006) reported that talc 

can produce poor impact performance to a rigid PVC formulation. For talc filled PVC 

composite, the high aspect ratio of talc particles caused the talc particles to be orientated 

parallel with each others throughout the PVC composite. The high aspect ratio and the 

orientation of talc particles increase the resistance of the local plastic deformation of 

PVC matrix, thus making the polymer matrix become more brittle as discussed by Abu 

Bakar, et al. (2007) in their study. They also mentioned that the crack propagation in talc 

filled composite is very fast because of the talc filled composite is lacking the ability to 

absorb the impact energy through plastic deformation.  
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Figure 4.3: Effect of different types of fillers on impact strength of PVC composites.  

 

 

 

 

4.1.2  Overall Discussion on flexural modulus and impact strength  

 

 

The selection of the types of CaCO3 for the hybrid fillers study was based upon 

the type of CaCO3 which can give the optimum properties in terms of impact strength 

and flexural modulus.  From Figure 4.4, talc filled PVC composite showed higher 

flexural modulus but lower impact strength compared to all CaCO3 filled PVC 

composites. Talc filler was selected to the hybrid study due to its ability that can highly 

increase the flexural modulus of PVC composite. However, the addition of talc filler 

also can lower the impact strength of PVC composite. To overcome this problem, the 

types of CaCO3 which can provide the PVC composite with the optimum properties in 

both impact strength and flexural modulus was selected to the hybrid study. SM90 was 

selected for the hybrid study due to its highest impact strength and flexural modulus 

compared to all types of CaCO3 as shown in Figure 4.4. 
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Figure 4.4: Comparison between the flexural modulus and impact strength of PVC 

composites filled with different types of fillers. 

 

 

 

 

4.1.3 Effect of Hybrid Talc/SM90 Fillers 

 

 

4.1.3.1 Flexural Strength 

 

 

As discussed in Section 4.1.2, SM90 was selected for the hybrid fillers study 

because it gave the most optimum property in terms of impact strength and flexural 

modulus. For the hybrid fillers study, the total filler content was kept constant at 30phr 

with SM90 gradually replacing the talc. From Figure 4.5, the 30phr talc filled PVC 



 65

composite showed the highest flexural strength and gradually decreased with increasing 

SM90 content. The reason for talc filled PVC composite having the highest flexural 

strength was the high aspect ratio of talc particles as previously mentioned. Besides the 

low aspect ratio, the other reason for the decrease of flexural strength with increasing 

SM90 content is the formation of cavities in SM90 filled PVC (refer to Sections 4.2 and 

4.5). The formation of cavities around SM90 particles reduced the wettability of SM90 

by the matrix, thus decreased the SM90-matrix interaction. The decreased SM90-matrix 

interaction also reduced the stress to be transferred from matrix to the SM90 particles 

during external loading.  
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Figure 4.5: Effect of different Talc/SM90 ratio on flexural strength of the hybrid 

Talc/SM90 filled PVC composites.   
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4.1.3.2 Flexural Modulus 

 

 

From Figure 4.6, the flexural modulus of talc filled PVC composite exhibited 

maximum value when the content of talc was 30phr. According to Wiebking (2006), the 

flexural modulus of PVC composite increased as the level of talc increased. From these 

results, they concluded that the addition of talc is a cost effective method of increasing 

stiffness of PVC. 

 

 

According to Figure 4.6, the flexural modulus of hybrid composites decreased 

gradually with the increase of SM90 content. This could be attributed by the higher 

aspect ratio of talc particles than the SM90 particles. The effectiveness of talc filler in 

improving the flexural modulus of PVC composite was contributed by the high aspect 

ratio of talc particles as mentioned earlier. The SM90 filled PVC composite had a slight 

or little improvement effect on the flexural modulus when compared to the talc filled 

PVC composite. This was because the SM90 filler had a relatively low particles aspect 

ratio when compared to the aspect ratio of talc filler. As the 20phr talc was replaced by 

20phr SM90 (hybrid 10phr talc: 20phr SM90 filled PVC composite), a synergistic 

hybridization was reached which gave a higher flexural modulus than the hybrid (20phr 

talc: 10phr SM90) and (15phr talc: 15phr SM90) filled PVC composites. This might be 

caused by the good distribution and orientation of talc and SM90 particles in PVC 

matrix and reduced the formation of cavities in PVC matrix as discussed in Section 4.5 

(determination of densities). The formation of cavities can reduce the wettability of the 

fillers by PVC matrix, thus reduced the interaction between filler and PVC matrix. The 

poor filler-PVC matrix interaction also reduced the stress to be transferred from the 

matrix to the filler during external stress applied. The % cavities of hybrid (10phr Talc: 

20phr SM90) filled PVC was 2.1%, which was lower than hybrid 20phr Talc: 10phr 

SM90 (3.2%) and hybrid 15phr Talc: 15phr SM90 filled PVC composites (2.5%). The 

reduction of cavities led to improve the flexural modulus of PVC and this was one of the 

reasons the hybrid 10phr Talc: 20phr SM90 filled PVC showed higher flexural modulus 

than hybrid (20phr Talc: 10phr SM90) and hybrid (15phr: 15phr SM90) filled PVC 
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composites. The 30phr SM90 filled PVC composite gave the lowest flexural modulus 

compared to 30phr talc filled composite and the hybrids composites.  
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Figure 4.6: Effect of different Talc/SM90 ratio on flexural modulus of the hybrid 

Talc/SM90 filled PVC composites. 

 

 

 

 

4.1.3.3 Impact Strength 

 

 

From Figure 4.7, as the talc content was slowly replaced by increasing content of 

SM90, the impact strength had increased gradually as expected. According to Wu, et al. 

(2004) and Leong et al. (2003), the CaCO3 filler played a dominant role in improving 

the impact properties of hybrid composites. In this study, the impact strength was 

dramatically influenced by the replacement of talc content with SM90. The SM90 filler 
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had played an important role in improving impact strength of PVC composite as 

discussed in earlier study, thus all hybrids composites showed better result in impact 

strength than the 30phr talc filled PVC composites.  

 

 

As discussed earlier, both the aspect ratio and the anisotropic particles 

orientation of talc particles were the main factor that contributed to decrease the impact 

strength of PVC composite. The replacement of talc content with increasing SM90 

content led to increase the cavities formation and the effective SM90 particles that can 

resist the crack propagation as mentioned in earlier study. The presence of SM90 

particles in PVC matrix could stop the propagation of crack.  

 

 

From Figure 4.7, the impact strength of hybrid (5phrTalc: 25phr SM90) filled 

PVC composite and 30phr SM90 filled PVC composite showed a very high standard 

deviation compared to all hybrid PVC composites. This might be caused by the samples 

of hybrid (5T: 25S) and 30phr SM90 filled PVC composites were not totally melted and 

molded during compression moulding and these samples still maintained the 

compounded sheets structure. The improperly melted samples could not resist the impact 

energy well as the properly melted and prepared samples. This situation could create a 

big variation between the impact strength values of same types of samples. As discussed 

before, the high standard deviation of these samples also can be attributed to the formed 

of skin on the surface of specimens during the molding of samples. 
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Figure 4.7: Effect of different Talc/SM90 ratio on impact strength of the hybrid 

Talc/SM90 filled PVC composites.  

 

 

 

 

4.1.3.4 Tensile Strength 

 

 

Figure 4.8 illustrates the tensile strength of PVC composites filled with single 

filler of talc or SM90 and hybrid fillers with different ratio of talc/SM90. It can be seen 

that the tensile strength of PVC composites were found to decrease gradually with 

increasing SM90 content to replace talc. The tensile strength of unfilled PVC composite 

was the highest among all filled PVC composites. Sun et al. (2005) reported that the 

tensile strength of composites is influenced by filler fraction and the interfacial adhesion 

between particles and matrix. So, the replacement of talc by SM90 increased the amount 

of voids and weakened the interfacial adhesion between PVC matrix and filler. The 
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weak and poor interfacial adhesion between the PVC matrix and filler had reduced a 

large amount of stress that could be transferred from the PVC matrix to fillers particles 

as reported by Sun et al. (2005). Sun et al. (2005) found that the interfacial adhesion 

plays a crucial role in improving the tensile strength of the composites. They also 

explained that the better interfacial adhesion between the filler particles and matrix, the 

larger the stress that can be transferred to inorganic particles from the matrix, which 

leads to higher tensile strength.  

 

 

The results of tensile strength in this study were found similar to tensile strength 

results of Leong et al. (2006), where they also reported that replacement of talc with 

CaCO3 decreased the tensile strength of polypropylene composites. This could be 

attributed to the formation of cavities around CaCO3 particles, which these cavities 

could have detrimental effects on the tensile strength of PP composites. However, the 

increment in tensile strength of talc filled PVC composite was minimal. This might be 

due to the platy nature of talc and possesses the ability to orient to the PVC flow during 

processing. The platy talc filler had high aspect ratio and this increased the wettability of 

the filler by the matrix, thus creating fewer voids and increasing the interaction between 

the filler matrix.  
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Figure 4.8: Effect of different Talc/SM90 ratio on tensile strength of the hybrid 

Talc/SM90 filled PVC composites.  

 

 

 

 

4.1.3.5 Young’s Modulus 

 

 

Figure 4.9 shows the effects of different talc/SM90 loading on the Young’s 

modulus of hybrid talc/SM90 filled PVC composites. Obviously from Figure 4.9, the 

Young’s modulus of hybrid PVC composites gradually decreased with an increasing 

replacement of talc by SM90. However, all filled PVC composites were found to have 

higher Young’s modulus than the unfilled PVC composite. The filled PVC composites 

had higher Young’s modulus than the unfilled PVC composite might be caused by the 

rigidity of the fillers and also the filler particles orientation, as mentioned by Leong et al. 
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(2004a). Wu et al. (2004) and Leong et al (2004a) reported that the use of fillers such as 

CaCO3 and talc could effectively increase the rigidity of PVC composites.  

 

 

The trend of Young’s modulus results in this study was found similar to the 

results of a study carried out by Leong et al. (2004a). The results of Leong et al. (2004a) 

showed that with an increase in the CaCO3 content to replace talc, the tensile modulus of 

PP composites gradually decreased.  
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Figure 4.9: Effect of different Talc/SM90 ratio on Young’s Modulus of the hybrid 

talc/SM90 filled PVC composites. 
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4.1.4 Overall Discussion on flexural and impact properties of Hybrid Talc/SM90 

filled PVC composites 

 

 

In building construction application, the flexural properties and impact strength 

are more important than tensile properties. From Figures 4.10 and 4.11, most of the 

hybrids composites maintained certain properties based on the types of filler that was 

more dominant and the influence of the filler itself on the properties of PVC. The SM90 

dominant composites showed higher impact strength than talc dominant hybrids 

composites. The talc dominant hybrids composites gave higher flexural properties 

(flexural strength and modulus) than SM90 dominant hybrids composites. From the 

results in flexural modulus and impact strength, the hybrid (10phr talc: 20phr SM90) 

filled PVC composite posed the optimum properties in impact strength, flexural 

properties when compared with the other ratio of hybrid talc/SM90 filled PVC 

composites.  
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Figure 4.10: Comparison between the flexural modulus and impact strength of hybrid 

Talc/SM90 filled PVC composites filled with different ratio of Talc/SM90. 
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Figure 4.11: Comparison between the flexural modulus and flexural strength of hybrid 

Talc/SM90 filled PVC composites with different ratio of Talc/SM90. 

 

 

 

 

4.2 Morphologies Observation of Different Types of Fillers 

 

 

Figures 4.12 to 4.18 illustrate the SEM micrographs of an unfilled PVC 

composite and PVC composites filled with different types of fillers. From Figure 4.12, 

unfilled PVC composite was found to contain some small particles which were evenly 

dispersed in the PVC matrix. The particle sizes of these small particles were smaller than 

0.5micron and believed to be the unfused particles of the PVC resin as reported by Chen 

et al. (1995a) in their study. The PVC resin powder did not melt and fuse fully during 

milling and compounding. The presence of voids was also observed at the interface 

between the unfused PVC particles and PVC matrix.  
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Figure 4.12: SEM photograph of the unfilled PVC composite at 5000X. 

 

 

 

 

Figure 4.13 demonstrates the SP-FG particles were well dispersed in the PVC 

matrix. The particles size distribution of SP-FG was found to be broader than SM90, 

PC100 and NPCC. Obviously, the presence of voids also found at the interface between 

the SP-FG and PVC matrix. From Figures 4.1, 4.2 and 4.3, the SP-FG filled PVC 

composite was found to have poor results in both flexural properties (flexural modulus 

and strength) and impact strength. However, the use of SP-FG filler still improved the 

flexural modulus and impact strength of PVC composite. Sun et al. (2003) reported that 

the effect of filler on the flexural properties and impact strength were strongly dependent 

on the presence of voids, particles size distribution, microstructure and aggregate size. 

The poor interfacial adhesion between SP-FG particles and PVC matrix was believed to 

be the main reason that contributed to the presence of voids at the filler-matrix interface 

as observed in Figure 4.13. The broader particles size distribution of SP-FG filler also 

led to reduce the interfacial contact area between the SP-FG particles and PVC matrix, 

thus reducing the mechanical properties.  

 

Unfused PVC 
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From Figure 4.14, the presence of voids or cavities and SP-FG-C particles in 

PVC matrix could be obviously seen. The SP-FG-C particles were found in the PVC 

matrix with bigger particles compared to unfused PVC and the presence of cavities also 

could be observed in Figure 4.14. These cavities were believed to be occupied by the 

particles of SP-FG-C before the sample was being fractured. The particles of SP-FG-C 

also found to have broader particles size distribution than SM90, PC100 and NPCC. The 

broader particles size distribution of SP-FG-C and larger particles size of SP-FG-C 

particles meant that the effective amount of SP-FG-C particles to stop cracks 

propagation in PVC matrix was smaller than SM90 and PC100 filled PVC composites. 

This was one of the reasons that SP-FG-C filled PVC composite showed lower impact 

strength than SM90 and PC100 filled PVC composite. The presence of voids at the 

interface between SP-FG-C particles and PVC matrix was found to be smaller than the 

voids in the PVC matrix of SP-FG filled composite as mentioned in Section 4.5 

(determination of densities). This shows that the surface coating of SP-FG-C filler can 

improve the interface adhesion between SP-FG-C particles and PVC matrix compared to 

SP-FG filler. The flexural modulus and impact strength of the SP-FG-C filled PVC 

composite was nearly similar to the SP-FG filled PVC composite. However, in 

considering the higher standard deviation of the flexural properties (flexural strength and 

modulus) and impact strength, SP-FG-C filled PVC composite could be considered to 

have better mechanical properties than SP-FG filled PVC composite. This also shows 

that better interface adhesion between the particles of filler and PVC matrix also can 

significantly improve the mechanical properties of PVC composite.  
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Figure 4.13: SEM photograph of 30phr SP-FG filled PVC composite at 5000X. 

 

 

 

 

 

Figure 4.14: SEM photograph of 30phr SP-FG-C filled PVC composite at 5000X. 
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Figure 4.15 illustrates the presence of voids and SM90 particles in PVC matrix. 

The cavities or voids in PVC matrix were found less than the other CaCO3 filled PVC 

composites as measured and discussed in Section 4.5 (Determination of densities). From 

Figure 4.15, the SM90 particles were evenly and well dispersed in the PVC matrix. The 

SM90 filler had a smaller particles size and narrower distribution size than SP-FG and 

SP-FG-C. The smaller particles size of SM90 filler had led to better surface interfacial 

adhesion between the particles and the PVC matrix by reducing the cavities. The smaller 

particles size and narrower particles size distribution of SM90 had increased the 

effective amount of SM90 particles in PVC matrix, which can effectively stop the 

propagation of cracks in PVC matrix. The strong interfacial adhesion between SM90 

particles and PVC matrix can also help to prevent the crack to propagate along the 

interface between the PVC matrix and SM90 particles as mentioned by Sun et al. (2005) 

in their study. The finer particles size of SM90 filler and good interfacial adhesion 

between SM90 and PVC matrix were the main reasons that contributed to the highest 

impact strength and flexural modulus among all types of CaCO3 filled PVC composites. 

 

 

From Figure 4.16, the PC100 was found to have smaller particles size and 

narrower particles size distribution than SM90. However, the voids in the PVC matrix 

were estimated through Section 4.5 (Determination of densities) and found higher than 

SM90 filled PVC composite. Figure 4.16 illustrates that the particles of PC100 filler 

were unevenly dispersed and distributed in the PVC matrix and had a poor dispersion 

and interfacial adhesion compared to SM90. The poor dispersion of PC100 particles had 

caused the agglomeration of PC100 particles in the PVC matrix with some of the 

aggregate sizes were reached up to 1.5 micron. The agglomeration of PC100 particles 

was also clearly observed in Figure 4.16. The agglomeration of PC100 particles in PVC 

matrix promoted the existence of voids cavities within the particles and PVC matrix. 

The higher amount of voids or cavities had led to a reduction in the interfacial contact 

area between the PC100 particles and PVC matrix and the resistance of cracks to 

propagate along the interface between PC100 particles or aggregates and PVC matrix 
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would be weakened. Thus, it was slightly reduced the effectiveness of PC100 in 

improving the impact strength. 

 

 

 

Figure 4.15: SEM photograph of 30phr SM90 filled PVC composite at 5000X. 
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Figure 4.16: SEM photograph of 30phr PC100 filled PVC composite at 5000X. 

 

 

 

 

From Figure 4.17, the NPCC particles were poorly dispersed in PVC matrix and 

revealed the poorest interfacial adhesion between NPCC and PVC matrix compared to 

others CaCO3 filled PVC composites (Figures 4.13 to 4.16). The poor dispersion of 

NPCC particles in the PVC matrix was the main cause to the agglomeration of NPCC 

particles. Obviously from Figure 4.17, the NPCC particles were found to be severely 

aggregated and agglomerated in the PVC matrix. Some of the NPCC agglomerated were 

found to reach up to 1 micron. The agglomeration of NPCC had contributed to the 

presence of cavities in PVC matrix. These cavities or voids were found to be occupied 

by the NPCC particles or aggregates and PVC matrix. As discussed earlier, poor 

dispersion of NPCC particles in PVC matrix can promote the agglomeration of NPCC. 

The NPCC particles that can act as stress concentration sites also became fewer, which 

theses particles can play an important role in resisting impact stress. The total amount of 

effective particles that could act as stress concentration sites also had been reduced and 

thus decreased the impact strength as previously mentioned in Section 4.1.1.3 (impact 

strength). Thus, the poor interfacial adhesion between NPCC particles and PVC matrix 
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was the main caused the NPCC filled PVC composite to have the lowest impact strength 

compared to all CaCO3 filled PVC composite. 

 

 

From Figure 4.18, the talc particles could be observed in the platelike structure 

with high aspect ratio. The talc particles were found to disperse and distribute evenly in 

the PVC matrix. The talc particles were orientated in parallel to each other in PVC 

matrix. The average aspect ratio (L/D) of talc particles was measured and estimated to 

be nearly 8. This shows that the talc particles have higher particle aspect ratio than all 

CaCO3. The talc filled PVC composite showed the lowest impact strength among all 

filled PVC composites. The high aspect ratio and the orientation of talc in PVC matrix 

increased the resistance of local plastic deformation of the PVC matrix, which can 

reduce the ability to absorb impact energy through plastics deformation.  

 

 

However, the talc filled PVC composite showed the highest flexural strength and 

flexural modulus compared to all filled PVC composites. This may be attributed to the 

ability of the talc particles in PVC matrix to resist bending during the application of 

flexural stress. Both the aspect ratio and particles orientation played an important role in 

improving the flexural modulus of PVC composite. The appearance of voids also could 

be seen in the PVC matrix in Figure 4.18. The lower experimental density of talc filled 

PVC composite (as determined in Section 4.5) shows that the presence of voids in talc 

filled PVC composite was more than others filled PVC composites.  
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Figure 4.17: SEM photograph of 30phr NPCC filled PVC composite at 5000X. 

 

 

 

 

 

Figure 4.18: SEM photograph of 30phr talc filled PVC composite at 5000X. 
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4.3 Thermal Properties  

 

 

Thermal properties of PVC composite were investigated by conducting heat 

deflection temperature (HDT) and thermogravimetry analysis (TGA). 

 

 

 

 

4.3.1 Heat Deflection Temperature (HDT)  

 

 

4.3.1.1 Effect of Different Types of Fillers and Particles Size 

 

 

Figure 4.19 reveals the heat deflection temperature (HDT) of PVC composites 

filled with different types of fillers. It can be seen that the heat deflection of unfilled 

PVC composite was 68.3
o
C which is consistent to the heat deflection temperature value 

of unfilled PVC composite reported by Abu Bakar (2006). The talc filled PVC 

composite had the highest heat deflection temperature value of 71.5
o
C. Apparently, the 

addition of talc into PVC matrix had significantly increased the heat deflection 

temperature. The heat deflection temperature of SP-FG-C and SP-FG filled PVC 

composites were the second and the third highest compared to all filled PVC 

composites. The SM90 and PC100 filled PVC composites gave the fourth and fifth 

highest HDT values. However, the heat deflection temperatures of SM90 and PC100 

filled PVC composites were very close until the difference between the heat deflection 

temperature value could be negligible. The NPCC filled PVC composite had the lowest 

heat deflection temperature value among all filled PVC composites.  

 

 

From Figure 4.20, the addition of talc and different types of CaCO3 had 

improved the heat deflection temperature of PVC composite. According Yuan et al. 

(2003), the heat deflection temperature of polymers could be improved by the 

incorporation of fillers. From the results in mechanical properties, the addition of talc 

and different types of CaCO3 had improved the flexural modulus or stiffness of PVC 

composite. The improvement in stiffness or flexural modulus had increased the rigidity 
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of PVC composite. Abu Bakar (2006) also reported that the flexural modulus and 

strength of PVC composites could be increased as the rigidity of PVC composite 

increased. The increase in rigidity of PVC composite contributed to the improvement in 

heat deflection temperature of PVC composite.  

 

 

The improvement in heat deflection temperature of all filled PVC composites 

had supported that the incorporation of fillers (talc and all types of CaCO3) can increase 

the flexural modulus of PVC composites. The talc filled PVC composite showed the 

highest heat deflection temperature value consistent with its highest flexural modulus. 

Although the SM90 and PC100 filled PVC composites gave higher flexural modulus 

than the other types of CaCO3 filled PVC composites, the heat deflection temperature 

values were still lower than 30phr SP-FG and 30phr SP-FG-C filled PVC composites. 

The high impact strength of SM90 and PC100 were also contributed to the improvement 

in ductility of PVC composites. This was the main reason that the heat deflection 

temperature values of SM90 and PC100 filled PVC composites were lower the SP-FG 

and SP-FG-C filled PVC composites even they imparted higher flexural modulus.  
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Figure 4.19: The heat deflection temperature of PVC composites filled with different 

types of fillers. 

 

 

 

 

4.3.1.2 Effect of Hybrid Talc/SM90 Fillers 

 

 

Figure 4.20 reveals the heat deflection temperature of hybrid talc/SM90 filled 

PVC composites with different ratio of talc/SM90. The heat deflection temperature of 

hybrid talc/SM90 filled PVC composites gradually decreased with increasing of SM90 

content to replace talc. From the results of flexural modulus and impact strength, the 

30phr talc filled PVC composite had the highest flexural modulus and the 30phr SM90 

filled PVC composite showed the highest impact strength. As mentioned earlier, the 

rigidity of PVC composite had contributed to the increase in heat deflection temperature. 

The highest flexural modulus of 30phr talc filled PVC composite had increased the 

rigidity of PVC composite, thus the heat deflection temperature of 30phr talc filled PVC 
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had also been increased. The replacement of 5phr talc with 5phr SM90 content had 

slightly decreased the heat deflection temperature of PVC composite. With further 

replacement of talc content with SM90, the heat deflection temperature of the hybrid 

PVC composites decreased insignificantly and these decreases were too small and could 

be negligible.  

 

 

Obviously from the results of mechanical properties, the replacement of talc 

content with SM90 significantly reduced the flexural modulus of hybrid PVC composite. 

The decrease in flexural modulus would lead to a reduction in the rigidity of PVC 

composite. Thus, the heat deflection temperature value also decreased as the rigidity of 

hybrid PVC composites decreased. Abu Bakar (2006) also quoted that the rigidity 

played an important role in improving the heat deflection temperature value.  
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Figure 4.20: The heat deflection temperature of hybrid Talc/SM90 filled PVC 

composites with different ratio of talc/SM90. 
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4.3.2 Thermogravimetry Analysis (TGA) 

 

 

Thermogravimetry analysis (TGA) were carried out to estimate and investigate 

the thermal stability of PVC composite and the influence of fillers (all types of CaCO3 

and talc) on thermal stability of PVC composite.  

 

 

 

 

4.3.2.1 Effect of Different Types of Fillers and Particles Size 

 

 

The TGA curves for unfilled PVC and PVC composites, which carried out in an 

atmosphere of nitrogen at the rate of 10
o
C/min. Figure 4.21, TGA curve for unfilled 

PVC reveals that the degradation of PVC composite followed a two step process. The 

first step of degradation falls in the range of 230
o
C to 380

o
C while the second step 

occurs in the range of 400
o
C to 550

o
C. According to Figures 4.22 to 4.27, the TGA 

curves of all PVC composites filled with single filler (all types of CaCO3 and talc) show 

that the degradation and decomposition of PVC composites also occurred in two 

significant steps of degradation. The first step of degradation was within the range of 

280
o
C to 300

o
C and mainly due to the HCl-elimination reaction of PVC and formation 

of a polyenes structure. The second step of degradation was in the range of 450
o
C to 

470
o
C and attributed to the thermal degradation of carbon chain of PVC that produced 

flammables volatiles. This result whereby the degradation and decomposition of PVC 

composites occurred in two significant steps is consistent with previous studies such as 

Chen et al. (2006), Abu Bakar (2006) and Sivalingam and Madras (2004).  
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Figure 4.21: TGA curve for unfilled PVC composite.  

 

 

 

Figure 4.22: TGA curve of 30phr SP-FG filled PVC composite. 
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Figure 4.23: TGA curve of 30phr SP-FG-C filled PVC composite.  

 

 

 

 
Figure 4.24: TGA curve of 30phr SM90 filled PVC composite. 
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Figure 4.25: TGA curve of 30phr PC100 filled PVC composite. 

 

 

 

 

Figure 4.26: TGA curve of 30phr NPCC filled PVC composite. 
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Figure 4.27: TGA curve of 30phr Talc filled PVC composite.  

 

 

 

 

�     Range of degradation temperature and Thermal degradation onset 

temperature  

 

 

Tables 4.1 and 4.2 show the range of degradation temperature and thermal 

degradation onset temperature at the first stage and second stage of unfilled PVC and 

PVC composites filled with different types of fillers. Obviously from Table 4.1, the 

incorporation of fillers (all types of CaCO3 and talc) significantly improved the thermal 

stability of PVC composite by increasing the range of degradation temperature and 

thermal degradation onset temperature of PVC composite. The increase in the ranges of 

decomposition temperature and thermal degradation onset temperatures of PVC 

composites showed that the addition of CaCO3 and talc can improve the thermal stability 

of PVC composite. Chen (2003) mentioned that an improvement in thermal stability 

would mean an increase of thermal degradation onset temperature and the range of 

decomposition temperature for the composites.  
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The presence of CaCO3 and talc improved the thermal stability of PVC 

composites considerably. Talc was the best in improving the thermal stability of PVC 

composites as shown by the largest increase in the range of decomposition temperature 

and Tonset of talc filled PVC composite. The SP-FG, SP-FG-C, SM90 and PC100 filled 

PVC composites also showed a significant increase in first thermal degradation onset 

temperatures (Tonset 1) and ranges of decomposition temperature, (∆T1). The increase in 

first thermal degradation onset temperature (Tonset 1) and range of decomposition 

temperature, (∆T1) implied that the addition of CaCO3 (except NPCC) and talc could 

delay the HCl-elimination reaction of PVC composites.  

 

 

However, the NPCC filled PVC composite had a lower thermal degradation 

temperature than all filled PVC composite. The increase in range of decomposition 

temperature was also small compared to all filled PVC composites. The NPCC filled 

PVC composite showed the poorest thermal stability among all filled PVC composites. 

The present of large voids content in NPCC filled PVC composite was believed to be the 

main reason for lower thermal stability. The SP-FG, SM90 and talc filled PVC 

composites showed a great increase in Tonset 2 while the SP-FG, PC100 and NPCC filled 

PVC composites showed an insignificant results in Tonset 2. 
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Table 4.1: The ranges of decomposition temperatures of PVC composites filled with 

different types of fillers. 

 

Types of filler  

First Step of 

Degradation 

Second Step of 

Degradation 

Range of decomposition 

temperature (∆T1), 
o
C 

Range of decomposition 

temperature, (∆T2), 
o
C 

SP-FG 

 

250-400 420-580 

SP-FG-C 

 

250-400 410-560 

SM90 

 

250-410 410-580 

PC100 

 

240-400 400-570 

NPCC 

 

230-400 410-550 

Talc 

 

260-420 430-590 

Unfilled PVC 

 

230-390 400-500 
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Table 4.2: The Tonset  of the unfilled PVC and PVC Composites filled with different 

types of fillers. 

Types of 

Fillers 

Grades of Fillers Thermal Degradation 

Onset Temperature 

(Tonset 1), 
o
C 

Thermal Degradation 

Onset Temperature 

(Tonset 2), 
o
C 

SP-FG 1.4µm, treated 

Ground CaCO3 

298 457 

SP-FG-C 1.4µm, untreated 

Ground CaCO3 

290 442 

SM90 0.98µm, untreated 

Ground CaCO3 

297 456 

PC100 1µm, Precipitated 

CaCO3 

294 442 

NPCC 40nm, treated 

NPCC 

283 448 

Talc 6.3µm in mean 

particles diameter  

304 463 

Without 

Filler 

- 276 445 

 

 

 

 

�      Percentages of Weight Loss at 300
0
C 

 

 

As mentioned earlier, the talc filled PVC composite showed the best thermal 

stability compared to all filled PVC composites. From Figure 4.28, the addition of fillers 

also can reduce the percentage of weight loss of PVC composites at the temperature of 

300
o
C. Among all filled PVC composites, the talc and SM90 filled PVC showed the 

lowest %weight loss at 300
o
C. The lower %weight loss at 300

o
C was attributed to the 

addition of filler in PVC matrix, which decreased the amount of PVC for each blending 

at a constant controlled sample weight as discussed by Chen et al. (2006). The addition 
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of filler into PVC significantly reduced the weight fraction of PVC resin for each 

blending. 
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Figure 4.28: The weight loss percentage of PVC composites filled with different types 

of fillers. 
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� Temperature at 5% weight loss (T5%) 

 

 

Figure 4.29 illustrates the temperatures at 5% weight loss (T5%) of an unfilled 

PVC and PVC composites filled with different types of fillers. According to Figure 4.29, 

the temperature at 5% weight loss (T5%) of PVC composites were shifted to higher 

temperature with the incorporation of talc and all types of CaCO3. The thermal stability 

of PVC composite was improved considerably with the incorporation of talc and all 

types of CaCO3. According to Abu Bakar (2006) and Yuan et al. (2003), the 

improvement on thermal stability of polymer composites also could be indicated by the 

increase in temperature at 5% weight loss (T5%). 

 

 

From Figure 4.29, the incorporation of NPCC into PVC composite only 

increased the T5% of PVC composite by 3.3
o
C and gave the smallest increase on T5% 

among all types of fillers. The SP-FG-C incorporated PVC composite also showed a 

small increase of 5.5
o
C on T5%. However, the incorporation of SP-FG, SM90 and PC100 

into PVC composites had greatly increased the T5% of PVC composite by 11.6
o
C, 13.2

o
C 

and 12.3
o
C, respectively. The SP-FG, SM90 and PC100 could significantly result in 

better improvement effect on thermal stability of PVC composites than SP-FG-C and 

NPCC. The SM90 incorporated PVC composite showed the highest increase in T5% 

compared to other CaCO3 filled PVC composites. The addition of SM90 can improve 

the thermal stability by delaying the HCl-elimination reaction of PVC.  

 

 

The talc incorporated PVC composite showed the highest increase in T5%, 

compared to all types of fillers. The incorporation of talc highly increased the T5% from 

282.4
o
C to 302.9

o
C with an increase of 20.5

o
C. As mentioned by Yuan et al. (2003), the 

highest value of T5% indicated that the addition of talc into PVC matrix could result the 

highest improvement on thermal stability of PVC composite. The addition of talc in 

PVC matrix can effectively delay the HCl-elimination reaction of PVC and increase the 

T5% of PVC composite, thus improve the thermal stability of PVC. 
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Figure 4.29: Effect of different types of fillers on the temperatures at 5% weight loss 

(T5%) of PVC composites. 

 

 

 

 

4.3.2.2 Effect of Hybrid Talc/SM90 Fillers 

 

 

Figure 4.30 illustrates the TGA curves for SM90 and talc fillers, in an 

atmosphere of nitrogen at the rate of 10
o
C/min. It can be seen that the degradation of 

SM90 and talc filler only occurred only after 600
o
C. The addition of SM90 and talc in 

PVC matrix would not promote the degradation of PVC composites at the temperature 

lower than 600
o
C.  
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Figure 4.30: TGA curves for unfilled PVC, SM90 and talc fillers in an atmosphere of 

nitrogen at the rate of 10
o
C/min. 

 

 

 

 

� Ranges of degradation temperature and thermal degradation onset 

temperature 

 

 

Table 4.3 reveals that the ∆TH1 and ∆TH2 (ranges of decomposition temperature 

of first and second stages degradation) of hybrid talc/SM90 filled PVC composites were 

slightly increased with increasing talc content. From Table 4.3, the talc filler gave better 

result in improving the thermal stability of PVC composite compared to SM90 and all 

hybrids talc/SM90 filled PVC composites. This might be due to the talc filler had higher 

decomposition temperature than SM90 (CaCO3) filler. However, the increases in the 

ranges of decomposition temperature of hybrid talc/SM90 filled PVC composites were 

very small.  
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Table 4.4 illustrates the first thermal degradation onset temperature (Tonset H1) and 

the second degradation onset temperature (Tonset H2) increased with the increasing of talc 

content. However, these increases in Tonset H1 and Tonset H2 were very small. The 

replacement of SM90 by talc showed an insignificant increase in thermal degradation 

onset temperatures of hybrid talc/SM90 filled PVC composites. This was because both 

fillers of talc and SM90 have higher degradation onset temperature compared to PVC 

composites and also can significantly increase the Tonset of PVC composites, 

respectively. The replacement of SM90 by talc showed an insignificant effect on thermal 

stability of hybrid PVC composites. 

 

 

 

 

Table 4.3: The ranges of decomposition temperature of Hybrid Talc/SM90 filled PVC 

composites with different ratio of talc/SM90. 

 

The ratio of Talc/SM90, 

phr 

First Step of Degradation Second Step of 

Degradation 

Range of decomposition 

temperature (∆TH1), 
o
C 

Range of decomposition 

temperature (∆TH2), 
o
C 

30T: 0S 260-420 430-600 

25T: 5S 260-430 430-600 

20T: 10S 260-420 430-590 

15T: 15S 250-410 430-560 

10T: 20S 250-410 420-560 

5T: 25S 250-410 420-580 

0T: 30S 250-410 410-580 

Unfilled PVC 230-390 400-550 
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Table 4.4: The Tonset  of Hybrid Talc/SM90 filled PVC Composites with different ratios  

of Talc/SM90. 

The ratio of Talc/SM90  Thermal degradation onset 

temperature (Tonset H1), 
o
C 

Thermal degradation onset 

temperature (Tonset H2), 
o
C 

30T: 0S 304 463 

25T: 5S 304 461 

20T: 10S 304 459 

15T: 15S 303 457 

10T: 20S 302 456 

5T: 25S 301 455 

0T: 30S 297 456 

Unfilled PVC 276 445 

 

 

 

 

� Weight Loss percentage at 300
o
C 

 

 

As explained in Section 4.3.2.1, talc filled PVC composite showed the best 

thermal stability compared to all CaCO3 filled PVC composites. From Figure 4.31, the 

weight loss percentage at 300
o
C of talc filled PVC composite was found to be the lowest 

with the value of 4.6%. According to Figure 4.32, talc filler started to degrade at the 

temperature higher than SM90 as mentioned earlier. The weight loss percentage at 

300
o
C of PVC composites slightly increased with increasing SM90 content. However, 

these increases were very small and insignificant. The replacement of talc filler with 

SM90 could slightly decrease the thermal stability of PVC composite. From this result, 

talc was proved to have better thermal stability than SM90.  
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Figure 4.31: The weight loss percentage at 300
o
C of hybrid Talc/SM90 filled PVC 

composites filled with different ratio of talc/SM90 fillers. 

 

 

 

 

• Temperature at 5% weight loss (T5%) 

 

 

Figure 4.32 demonstrates the effect of increasing SM90 content to replace talc in 

PVC composite on temperatures at 5% weight loss (T5%) of PVC composites. From 

Figure 4.32, the temperatures at 5% weight loss (T5%) of PVC composites were slightly 

decreased from 302.9
o
C to 295.6

o
C with the talc content was gradually replaced by 

SM90. However, these decrease in T5% of hybrid PVC composites were small especially 

at ratios of (15phr Talc: 15phr SM90), (10phr Talc: 20phr SM90) and (5phr Talc: 25phr 

SM90) and could be considered as insignificant. As discussed earlier, the incorporation 

of talc into PVC composite showed better result in improving the thermal stability than 

SM90 filled PVC composite. From Table 4.6, talc filler showed the T5% of 961
o
C while 
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the SM90-CaCO3 filler gave the T5% of 667
o
C. This indicated that the talc and SM90 

fillers have high thermal stability compared to unfilled PVC composite. Obviously, the 

T5% of talc was much higher than the T5% of SM90. This showed that the incorporation 

of talc into PVC composite could impart a higher thermal stability than SM90.  
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Figure 4.32: Variation of temperature at 5% weight loss (T5%) with the increasing SM90 

content to replace talc. 

 

 

Table 4.5: Temperatures at 5% weight loss (T5%) of unfilled PVC composite, talc and 

SM90 fillers. 

The types of filler Temperatures at 5% weight loss (T5%), 
o
C 

SM90 667 

Talc 961 
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4.4 Processability Studies of Hybrid Talc/SM90 Filled PVC Composites 

 

 

4.4.1 Fusion Characteristics of PVC Composite in General  

 

 

Figure 4.33 illustrates a typical fusion curve of an unfilled PVC compound 

melted in a Haake torque rheometer at a starting temperature of 180
o
C with a rotor speed 

of 45rpm and a blending time of 5 minutes. From the fusion curve in Figure 4.33, the 

first point, L stands for the sample loading. The second point, B is generated because of 

the balance between sample loading and the driving force of free material flow. Then, 

the torque starts to increase and reaches the third point, F. The third point, F is generated 

due to compaction and onset of fusion.  

 

 

At point F, the material reaches a void free state and starts to melt at the interface 

between the compacted material and the hot surface of metal. If the sample is melted and 

fused in the mixer for a long time, the temperature of sample slightly increases due to 

some thermal energy is absorbed by the sample. The increase in temperature results in 

decreasing the melt viscosity of sample. Therefore, the torque slowly decreases and 

increases the blending time of sample. The blending time of sample is defined as the 

period of time between the point, L and the stopping point (Chen et al., 2006a). The 

fusion time is defined as the period of time between the point L and the fusion point F. 

The fusion percolation threshold (FPT) is defined as the torque variation between the 

point B and the fusion point F.  
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Figure 4.33: Typical fusion curve of an unfilled PVC compound which melted in a 

Haake Torque Rheometer at a temperature of 180
0
C with a rotor speed of 45rpm and a 

blending time of 5minutes. 

 

 

 

 

4.4.2 Fusion Time 

 

 

4.4.2.1 Effect of Talc and SM90 fillers  

 

 

Figure 4.34 illustrates the fusion time of unfilled PVC and PVC composites filled 

with single filler of talc and SM90 (CaCO3), which were melted and fused at processing 

temperature of 180
o
C with a rotor speed of 45rpm in a Haake Torque Rheometer for a 

blending time of 5 minutes.  

 

 

 

 

L 

F 

B 

FPT: Fusion Percolation Threshold 

Fusion Time 
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From Figure 4.34, the unfilled PVC composite showed the shortest fusion time 

among all filled PVC composites. The addition of fillers such as talc and SM90 

significantly increased the fusion time of PVC composite. The addition of 30phr SM90 

into PVC compound had greatly lengthen the fusion time nearly 6 times longer than the 

fusion time of the unfilled PVC composite and also 3 times longer than the fusion time 

of 30phr talc filled PVC composite. The increase in fusion time of talc filled PVC 

composite might be caused by the platlike structure, low specific surface area and poor 

adhesion property of talc particles in PVC matrix which PVC resin particles could not be 

fused together easily. However, the great increase in fusion time of SM90 filled PVC 

composite might be caused by the presence of fatty acid on the surface of SM90 which 

acted like an external lubricant during PVC compounding (Chen et al., 2006a). 

According to Chen et al. (2006), the thermal degradation temperature for the fatty acid 

on the surface of micron-CaCO3 and nano-CaCO3 are about 260
o
C. Similarly from 

Figure 4.36, a small decrease in weight % of SM90 was observed to be occurred at the 

temperature range of 230
o
C to 290

o
C. The content that degraded at this temperature 

range was believed to be the fatty acid on the surface of SM90. The content of fatty acid 

on the surface of SM90 is about 0.2wt%.  
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Figure 4.34: Effect of the talc and SM90 on fusion time of rigid PVC composites, 

respectively.  
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Figure 4.35: The degradation temperature range of fatty acid on SM90-CaCO3 filler. 

 

 

 

 

4.4.2.2 Effect of Hybrid Talc/SM90 Fillers 

 

 

Figure 4.36 shows the effect of increasing SM90 content to replace talc content 

in PVC matrix on fusion time of the hybrid talc/SM90 filled PVC composites. The 

replacement of talc content with SM90 showed greater increase in fusion time than 

30phr talc filled PVC composite. As talc slowly replaced by SM90, the presence of fatty 

acid generated on the surface of SM90 also increased. Increase in SM90 content resulted 

in more fatty acid generated in PVC composite. The presence of fatty acid on the surface 

of SM90 which can act like an external lubricant during PVC compounding and increase 

the fusion time as discussed earlier. The increase in the fatty acid amount caused the 

PVC molecules could not be fused together easily as the unfilled PVC composite. Chen 

The degradation 

temperature range of fatty 

acid on SM90 surface 
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et al. (2006a) explained that the existence of fatty acid on the surface of CaCO3 

functioned like an external lubricant that can lengthen the fusion time of PVC.  

 

 

The hybrid (10phr talc + 20phr SM90) filled PVC composite showed the longest 

fusion time among all hybrid talc/SM90 filled PVC composites. This might be caused by 

the combination of the high amount of fatty acid present on the surface of SM90 

particles and the different particles shape of talc and SM90 particles in PVC matrix. The 

uneven in shape of talc and SM90 particles caused the PVC molecules very hard and 

difficult to be fused together, thus increased the fusion time of PVC compound. 
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Figure 4.36: Effect of different ratio of Talc/SM90 on fusion time of the hybrid 

talc/SM90 filled PVC composites. 
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4.4.3 Fusion Torque  

 

 

4.4.3.1 Effect of Talc and SM90 fillers 

 

 

Figure 4.37 demonstrates the effect of talc and SM90 (CaCO3) on fusion torque 

of rigid PVC composites. It can be seen that the unfilled PVC composite posed the 

highest fusion torque among all filled PVC composites. Obviously, the fusion torque of 

PVC composite was reduced by the incorporation of fillers, either talc or SM90. 

According to Chen et al. (2006a) in his study, the fusion torque was reduced by the 

incorporation of micron-CaCO3 or nano-CaCO3. The fusion torque of PVC composite 

was gradually reduced as the addition amount of micron-CaCO3 or nano-CaCO3 slowly 

increased. Chen et al. (2006) explained that this was because the fusion temperature 

increased when the addition of micron-CaCO3 or nano-CaCO3 was increased. Increasing 

in fusion temperature led to a reduction in melt viscosity of PVC compound. Thus, the 

fusion torque needed to maintain at 60rpm in his research was decreased as the fusion 

temperature increased. 

 

 

Similar to the explanation of Chen et al. (2006), the addition of talc and SM90 

into PVC matrix also can increase the fusion temperature of PVC compound, 

irrespective of talc and SM90. The increase in fusion temperature can reduce the melt 

viscosity of PVC compound and the fusion torque needed to maintain at rotor speed of 

45rpm also significantly decreased. From Figure 4.37, the fusion torque of 30phr SM90 

filled PVC composite obtained lower value than 30phr talc filled PVC composite. The 

incorporation of 30phr talc into PVC matrix showed a small reduction in fusion torque 

compared to 30phr SM90 filled PVC composites. According to Chen et al. (2001), the 

transfer of heat and shear throughout the PVC grains was increased with the addition of 

talc and SM90 fillers. The heat and shear transfer could increase the fusion temperature 

and reduce the melt viscosity of PVC compound. Thus, the fusion torque needed to 

maintain at 45rpm also decreased.  
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The presence of fatty acid on the surface of SM90 acted like an external lubricant 

which can promote the slippage between PVC and SM90 molecules. More occurrence of 

slippage between the PVC and SM90 particles significantly led to generate more friction 

energy and increased the heat and shear transfer throughout the PVC grains. For talc 

filled PVC composite, the platelike structure and poor surface adhesion of talc particles 

and the orientation of talc particles in PVC matrix were the main factors that promoted 

to generate friction energy between PVC molecules and talc particles.  

 

 

However, the limited slip between the particles of PVC and talc and the PVC 

particles and hot metal surface did not generate more friction energy than SM90 filled 

PVC composite. The heat and shear transfer throughout PVC grains in talc filled PVC 

was much lower than SM90 filled PVC. As mentioned before, the lower heat and shear 

transfer led to a small increase in fusion temperature of talc filled PVC. The melt 

viscosity of talc filled PVC compound was higher than SM90 filled PVC compound. 

Thus, the fusion torque of talc filled PVC that needed to maintain the rotor speed at 

45rpm was also higher than SM90 filled PVC.  
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Figure 4.37: Effect of the talc and SM90 fillers on the fusion torques of rigid PVC 

composites, respectively. 

 

 

 

 

4.4.3.2 Effect of Hybrid Talc/SM90 Fillers  

 

 

Figure 4.39 shows the change in fusion torque of PVC composite varying with 

the different ratio of talc/SM90. The fusion torque of 30phr SM90 filled PVC composite 

obtained the lowest value among all hybrid talc/SM90 and 30phr talc filled PVC 

composites. The incorporation of 30phr talc into PVC matrix showed the smallest 

reduction in fusion torque among all hybrid talc/SM90 and 30phr SM90 filled PVC 

composites. From Figure 4.39, the fusion torque of PVC composite was slightly 

decreased as the talc content gradually replaced with SM90. But, the fusion torque of all 

hybrid talc/SM90 filled PVC composite was still higher than the 30phr SM90 filled PVC 

composite. 30phr SM90 filled PVC contained the highest SM90 amount compared to all 

hybrid PVC compound. The increase in SM90 content can result more fatty acid 
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generated on surface of SM90 particles. The existence of fatty acid on SM90 surface can 

act like an external lubricant and reduce the friction between PVC and SM90 particles as 

discussed earlier. Thus, the fusion torque needed to maintain at a rotor speed of 45rpm 

also decreased. However, with further increasing of SM90 content used to replace talc 

content, the change in fusion torque of PVC composite became very small and 

insignificant until could be negligible. 
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Figure 4.38: Effect of different ratio of Talc/SM90 on fusion torques of the hybrid 

talc/SM90 filled PVC composites. 
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4.4.4 Fusion Percolation Threshold (FPT)  

 

 

4.4.4.1 Effect of Talc and SM90 fillers 

 

 

Figure 4.39 shows the effect of talc and SM90 (CaCO3) fillers on fusion 

percolation threshold (FPT) of PVC composites. The processing temperature and torque 

were fixed at 180
o
C and 45rpm for a blending time of 5 minutes. From Figure 4.40, talc 

filled PVC and SM90 filled PVC composites showed a longer fusion time and FPT than 

the unfilled PVC composite. The FPT of PVC composite was sharply increased almost 

3.5 times compared to the unfilled PVC composite by the addition of 30phr talc. The 

increase in FPT of 30phr SM90 filled PVC composite was nearly 2 times lower than the 

30phr talc filled PVC composite. Obviously, the addition of talc or SM90 apparently 

increased the FPT of PVC composite.  

 

 

As mentioned before, the addition of fillers, either talc or SM90 can significantly 

increase the fusion time of PVC composites. Chen et al. (2006a) explained that the 

lengthening of fusion time resulted in increasing the FPT of PVC composite. Increasing 

in the fusion time implied that more thermal energy is required to be absorbed to fuse 

PVC molecules and filler particles together. If the thermal energy was not enough to 

pass the FPT, the PVC compounds could not be fused. The incorporation of 30phr SM90 

into PVC composite highly increased the FPT up to 1.6 times of the FPT of the unfilled 

PVC composite. The indicated that the 30phr SM90 filled PVC compound needed to 

absorb more thermal energy for passing the FPT, so the SM90 filled PVC compound 

could be fused together. However, the FPT of 30phr talc filled PVC composite was 

almost 2 times higher than the FPT of 30phr SM90 filled PVC composite. This implied 

that the 30phr talc filled PVC compound needed to absorb nearly 2 times of thermal 

energy that required by 30phr SM90 filled PVC compound to pass the high FPT. The 

dry blend of 30phr Talc filled PVC was harder to reach the starting point of melt and 

fuse together compared to 30phr SM90 filled PVC at the same temperature. The 30phr 

talc filled PVC needed more time than 30phr SM90 filled PVC to reach the melt and 
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fuse starting point. The high FPT of PVC dry blend might cause some of the dry blend 

had degraded during milling before it starting to melt and fuse together.  
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Figure 4.39: Effect of the talc and SM90 fillers on fusion percolation threshold (FPT) of 

PVC composites.  

 

 

 

 

4.4.4.2 Effect of Hybrid Talc/SM90 Fillers 

 

 

Figure 4.40 illustrates the effect of different ratio of talc/SM90 on the fusion 

percolation threshold of PVC composites. It can be seen that all hybrid talc/SM90 filled 

PVC composites showed a higher FPT than the 30phr talc filled PVC and 30phr SM90 

filled PVC composites. As discussed earlier, the increase in the fusion time showed that 

more thermal energy is required to be absorbed to fuse PVC molecules and filler 

particles together. From Figure 4.40, the FPT of PVC composite was slightly increased 
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as the talc content slowly replaced with SM90. With further increase in SM90 content 

used to replace the talc content, the increase in FPT of PVC composite was too small 

and insignificant and could be negligible. The incorporation of hybrid talc and SM90 

fillers in PVC matrix led to higher FPT of PVC composite. All hybrid talc/SM90 filled 

PVC composites needed to absorb more thermal energy than the single filler of talc or 

SM90 filled PVC composite to pass the FPT and fuse the PVC, talc and SM90 particles 

together.  
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Figure 4.40: Effect of different Talc/SM90 ratio on fusion percolation threshold (FPT) 

of the hybrid talc/SM90 filled PVC composites. 
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4.5 Determination of Densities  

 

 

4.5.1 Effect of Different Types of Fillers 

 

 

Figure 4.41 shows the comparison between the theoretical and experimental 

densities of unfilled PVC composite and PVC composites filled with different types of 

fillers. It can be seen that all filled PVC composites were found to have higher density 

than the unfilled PVC composite. The experimental density of the unfilled PVC 

composite was 1.406g/cm
3
 and this density value was nearly similar to the density value 

reported by Abu Bakar (2006) in his study. The incorporation of fillers such as SP-FG, 

SP-FG-C, SM90, PC100, NPCC and talc significantly increased the densities of PVC 

composites. However, all the experimental densities obtained were lower than the 

theoretical densities.  

 

 

The lowering in experimental densities of PVC composites was attributed by the 

presences of voids in PVC matrix. Abu Bakar (2006) also reported that the voids 

probably existed in the PVC matrix at the filler-matrix interface or within the filler 

bundles. The SEM micrographs in Figures 4.12 to 4.18 show the presence of voids at 

CaCO3-matrix interface in the composites. The presence of voids in SM90 filled PVC 

composite as shown by SEM micrograph shown in Figure 4.15 was smaller and fewer 

than the others filled PVC composites. This was the main reason that the lowering in 

experimental density of SM90 filled PVC composite was minimal. The experimental 

density of NPCC filled PVC composite experienced the biggest drop when compared to 

the theoretical density of NPCC filled PVC composite. This was attributed by the severe 

agglomeration of NPCC particles in PVC matrix and led to increase voids content at the 

aggregate-matrix. Thus, the increase of voids content in PVC matrix greatly decreased 

the experiment density of NPCC filled PVC composite.  

 

 

 

 



 118

The lowering of experimental density of talc filled PVC composite was also very 

high in comparing to other filled PVC composites except for the NPCC filled PVC 

composite. From the SEM micrograph in Figure 4.18, the voids existed not only in the 

PVC matrix at the talc-matrix interface and also within the talc bundles. The platy 

particles of talc and poor surface adhesion between talc particles and PVC matrix were 

believed to be the main reason led to increase the presence of voids in talc filled PVC 

composite. The lowering in experimental density of unfilled PVC composite was 

attributed to the presence of voids in between the unfused and unmelted PVC particles 

and matrix interface as shown by SEM micrograph in Figure 4.12.  
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Figure 4.41: Comparison between the theoretical densities and experimental densities of 

unfilled PVC and PVC composites filled with different types of fillers.  
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4.5.2 Effect of Hybrid Talc/SM90 Fillers 

 

 

Figure 4.42 demonstrates the comparison between the theoretical densities and 

experimental densities of hybrid talc/SM90 filled PVC composites with different ratios 

of talc/SM90. From Figure 4.42, the theoretical density of 30phr talc filled PVC 

composite was obviously the highest among all hybrid composites. However, the 

experimental density of 30phr talc filled PVC composite was significantly the lowest 

and the 30phr SM90 filled PVC composite gave the highest experimental density. From 

Figure 4.42, the theoretical densities of hybrid composites slightly decreased as the talc 

content was gradually replaced with SM90. However, the experimental densities of 

hybrid composites slowly increased as the talc was gradually replaced by SM90.  

 

 

Obviously, the experimental densities of hybrid talc/SM90 filled composites 

were totally opposite to the theoretical densities of hybrid talc/SM90 filled PVC 

composites. This might because that the addition of talc in PVC matrix can lead to 

increase more voids content in PVC matrix than SM90 due to the particles size and 

shapes of talc particles. As mentioned before, the platy structure of talc particles not 

only contributed to the presence of voids at filler-matrix, but also led to create voids at 

within the talc particles bundles as shown by SEM micrograph in Figure 4.18. The poor 

surface adhesion between talc particles and PVC matrix also contributed to the presence 

of voids at the interface between talc filler and PVC matrix as mentioned earlier.  
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Figure 4.42: Comparison between the theoretical densities and experimental densities of 

hybrid Talc/SM90 filled PVC composites with different ratio of Talc/SM90.  



 121

 

 

 

 

CHAPTER 5 

 

 

 

 

CONCLUSIONS AND RECOMMENDATIONS  

FOR FUTURE WORKS 

 

 

 

 

5.1 Conclusions 

 

 

The characteristics of mechanical, thermal and fusion of hybrid talc/CaCO3 filled 

PVC composite have been studied by using different talc/SM90 ratio. The addition of 

fillers such as talc and CaCO3 into PVC composite could increase the flexural modulus 

of PVC composite. However, the addition of talc and CaCO3 significantly decreased the 

flexural strength of PVC composite and the decrease in flexural strength of talc filled 

PVC composite was the most minimal. The impact and flexural result showed that the 

talc filled PVC composite to have higher flexural modulus but lower impact strength 

compared to all CaCO3 filled PVC composites. For CaCO3 filled PVC composites, 

SM90 showed the most optimum properties in terms of impact strength and flexural 

modulus. The SM90 filled PVC composites gave the highest impact strength and 

flexural modulus among all CaCO3 filled PVC composites was selected for the hybrid 

study.  

 

 

The impact strength of hybrid talc/SM90 CaCO3 PVC composites increased 

gradually with increasing SM90 content. However, the flexural modulus of hybrid 

talc/SM90 CaCO3 PVC composites decreased gradually with increasing SM90 content. 

The results of flexural modulus and impact strength have shown that a synergistic 

hybridization was reached when 20phr talc replaced by 20phr SM90 (hybrid 10phr talc + 
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20phr SM90 filled PVC composite). For the hybrid talc/SM90 PVC composites, 

Talc/SM90 (10phr:20phr) filled PVC composite showed the most optimum properties in 

balancing impact strength and flexural modulus. 

 

 

The tensile strength of hybrid talc/SM90 filled PVC composites decreased 

gradually with increasing content of SM90. The addition of talc and SM90 decreased the 

tensile strength of PVC composite. However, the incorporation of talc and SM90 

increased the Young’s modulus of PVC composite. The Young’s modulus of hybrid 

talc/SM90 filled PVC composites gradually decreased with an increasing replacement of 

talc content by SM90. 

 

 

The SEM micrographs showed that the addition of all types of fillers could 

significantly increase the cavities in PVC matrix. The agglomeration of NPCC particles 

increased the cavities in PVC matrix. The SEM micrograph of SM90 has shown that the 

SM90 particles were evenly dispersed in PVC matrix compared to the other types of 

CaCO3. The SEM micrograph of talc filled PVC composite has shown that the talc 

particles were found in platlike structure with high aspect ratio and orientated in parallel 

to each other in PVC matrix. It is also shown that the particles of talc were clearly 

invisible and the talc particles were also tending to be embedded inside the polymer 

matrix. 

 

 

From the results of DSC thermograms, the addition of all types of fillers had 

improved the glass transition temperature onset of PVC composite. For hybrid 

Talc/SM90 filled PVC composites, the glass transition temperature onset slowly 

decreased as the talc gradually replaced by SM90. However, the hybrid (10phr talc: 

20phr SM90) filled PVC composite showed the highest glass transition temperature 

onset compared to all hybrid talc/SM90 filled PVC composites.  
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The heat deflection temperature (HDT) revealed that the addition of fillers 

(different types of CaCO3 and talc) had improved the HDT of PVC composite. The talc 

filled PVC composite showed the highest HDT compared to all filled PVC composites. 

The improvement in flexural modulus had increased the rigidity of PVC composite and 

the increase in rigidity had contributed to the improvement in HDT value. The HDT of 

the hybrid PVC composites decreased as the talc content was slowly replaced by SM90. 

However, the increases in HDT value were very small and could be negligible  

 

 

TGA curves have shown that the incorporation of fillers significantly increased 

the thermal degradation onset temperatures and ranges of decomposition temperature of 

hybrid talc/SM90 filled PVC composites. The first step thermal degradation onset 

temperatures Tonset 1 and second step thermal degradation onset temperatures, Tonset 2 of 

hybrid talc/SM90 filled PVC composites were increased as the SM90 content was 

slowly replaced by talc. The %weight losses of hybrid talc/SM90 composites were 

significantly decreased with the addition of fillers.  

 

 

 

The fusion results have shown that the addition of talc and SM90 significantly 

increased the fusion time of PVC composite. At 30 filler content, the fusion time of 

SM90 filled PVC composite was three times longer than talc filled PVC composites. The 

fusion time of hybrid talc/SM90 filled PVC composite increased with increasing SM90 

content. The hybrid (10phr Talc: 20phr SM90) filled PVC composite showed the longest 

fusion time among all PVC composites. Talc and SM90 decreased the fusion torque of 

PVC composite. At 30 filler content, the fusion torque of SM90 filled PVC composites 

was more than two times lower than talc filled PVC composites. The fusion torque of 

hybrid talc/SM90 filled PVC composite decreased with increasing SM90 content. All 

the hybrid composites showed higher FPT value compared to single talc or SM90 filled 

PVC. 

 

 

The densities results have shown that the incorporation of fillers significantly 

could increase the densities of PVC composites. The experimental densities of unfilled 
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PVC composite and PVC composites filled with different types of fillers were lower 

than the theoretical densities. The lowering in experimental densities of PVC composites 

was attributed by the presences of voids in PVC matrix.  

 

 

 

 

5.2 Recommendations for Future Works 

 

 

a. The effect of surface treatments can be studied  

i. The talc and SM90 used in hybrid talc/SM90 filled PVC composites can 

be treated with different surface treatment such silane, titanate, sodium 

stearate in order to improve the bonding of filler particles PVC matrix. 

ii. The PC100 and NPCC used in this study also can be treated with 

different surface treatments to improve the surface adhesion between the 

fillers particles and PVC matrix and prevent the particles PC100 and 

NPCC from severe agglomerated.  

 

b. The distribution of hybrid talc and SM90 fillers in PVC matrix can be observed 

by using SEM. The morphological properties of hybrid composites can be 

studied and correlated the mechanical properties of hybrid composites in this 

study.  

 

c. The rheological properties of hybrid PVC composites can be studied to 

investigate the effect of hybrid fillers on the shear and complex viscosity of PVC 

compound.  

 

d. The effect of other inorganic filler such as clay, kaolin and mica on the 

mechanical properties of hybrid PVC composite can be investigated and 

compared to the results in this study. 
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Appendix A 

 

The collected data, mean and standard deviation of impact strengths for PVC 

composites. 

 

 

The collected data, mean value and standard deviation of impact strength for unfilled 

PVC and PVC composites filled with SP-FG and SP-FG-C. 

 

Number of Sample 

Izod Impact Strength, KJ/m
2
 

Unfilled PVC 30phr SP-FG-C 

Filled PVC 

30phr SP-FG 

Filled PVC 

1 5.858 8.705 7.241 

2 4.147 5.561 7.657 

3 7.229 5.940 7.851 

4 7.412 6.788 6.475 

5 5.499 5.563 5.864 

6 6.842 6.747 8.857 

7 5.757 10.333 7.929 

8 7.323 9.240 8.040 

9 7.216 8.981 6.683 

10 7.389 8.599 8.984 

Mean value  6.467 7.646 7.558 

Standard Deviation 1.103 1.723 1.005 
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The collected data, mean and standard deviation of impact strength for unfilled PVC and 

PVC composites filled with SM90, PC100, NPCC and Talc. 

Number of 

Sample 

Izod Impact Strength, KJ/m
2
 

30phr SM90 

Filled PVC 

30phr PC100 

Filled PVC 

30phr NPCC 

Filled PVC 

30phr Talc 

Filled PVC 

1 19.685 9.472 6.819 7.689 

2 18.083 9.566 6.650 5.790 

3 10.173 8.933 6.543 5.439 

4 8.258 17.683 5.369 5.167 

5 11.678 19.120 6.394 5.140 

6 12.782 8.531 6.458 5.957 

7 25.108 10.5128 6.198 5.973 

8 11.121 10.777 5.850 5.632 

9 10.226 9.7153 6.309 6.490 

10 23.435 9.348 7.494 8.708 

Mean value 15.0549 10.333 6.345 5.698 

Standard 

Deviation 

6.030 2.678 0.549 0.434 
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The collected data, mean and standard deviation of impact strengths for Hybrid 

Talc/SM90 filled PVC composites with different ratios of talc/SM90. 

Number 

of 

Sample 

Izod Impact Strength, KJ/m
2
 

30T:0S 25T:5S 20T:10S 15T:15S 10T:20S 5T:25S 0T:30S 

1 7.689 7.750 6.005 6.562 8.743 26.774 19.685 

2 5.790 7.650 7.310 7.419 15.220 10.499 18.083 

3 5.439 7.121 8.971 6.391 8.060 15.142 10.173 

4 5.167 8.072 10.226 6.425 8.223 9.285 8.258 

5 5.140 6.293 8.436 8.948 13.601 25.237 11.678 

6 8.708 5.900 6.356 7.650 11.595 10.333 12.782 

7 5.957 8.948 5.865 7.158 9.113 11.386 25.108 

8 5.973 8.480 7.630 7.272 7.669 8.994 11.121 

9 5.632 7.330 6.326 18.928 15.809 10.443 10.226 

10 6.490 7.469 5.895 6.309 7.730 9.285 23.435 

Mean 5.698 7.501 7.302 8.306 10.576 13.738 15.0549 

Standard 

Deviation 

0.434 0.923 1.502 3.186 3.216 6.706 6.030 
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Appendix B 

 

SEM micrographs of different types of fillers filled PVC composites. 

 

 

 

SEM photograph of Unfilled PVC composite at 500X. 

 



 139

 

SEM photograph of 30phr SP-FG Filled PVC Composite 500X. 

 

 

SEM photograph of 30phr SP-FG-C Filled PVC Composite at 500X. 
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SEM photograph 30phr SM90 Filled PVC Composite at 500X. 

 

 

SEM photograph of 30phr PC100 Filled PVC Composite at 2.50KX. 
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SEM photograph of 30phr NPCC Filled PVC Composite at 2.50KX. 

 

 

SEM photograph of 30phr Talc Filled PVC Composite at 2.50KX. 
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Appendix C 

 

TGA curves for all hybrid Talc/SM90 filled PVC composites 

 

 

 

 

TGA curve for hybrid (5phr Talc: 25phr SM90) filled PVC composite. 
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TGA curve for Hybrid (10phr Talc: 20phr SM90) filled PVC composite. 

 

 

 

 

TGA curve for hybrid (115phr Talc: 15phr SM90) filled PVC composite. 
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TGA curve for hybrid (20phr Talc: 10phr SM90) filled PVC composite. 

 

 

 

TGA curve for hybrid (25phr Talc: 5phr SM90) filled PVC composite. 
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TGA curve for talc and SM90 fillers. 
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Appendix D 

Calculation of theoretical densities of unfilled PVC and all filled PVC Composites  

 

 

Density for Unfilled PVC Composite 

Ingredient  Formula 

Weight, g 

Density (ρ), 

g/cm
3
 

Weight 

Fraction (W) 

W/ρ 

PVC resins (K-

66) 

100 1.40 0.9208 0.6577 

Tin Stabilizer 2 1.08 0.0184 0.0170 

Sak-CS-P 0.5 1.03 0.0046 0.0045 

Stearic Acid  0.6 0.84 0.0055 0.0065 

Processing Aid 1.5 1.53 0.0138 0.0090 

TiO2  4 4.05 0.0369 0.0091 

Total  108.6  1.0000 0.7038 

 

Density of unfilled PVC = 1/0.7038 

    = 1.4209g/cm
3
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Density for 30phr SP-FG filled PVC Composite 

Ingredient  Formula 

Weight, g 

Density (ρ), 

g/cm
3
 

Weight 

Fraction (W) 

W/ρ 

PVC resins (K-

66) 

100 1.40 0.7215 0.5154 

SP-FG 30 2.70 0.2165 0.0802 

Tin Stabilizer 2 1.08 0.0144 0.0133 

Sak-CS-P 0.5 1.03 0.0036 0.0035 

Stearic Acid  0.6 0.84 0.0043 0.0051 

Processing Aid 1.5 1.53 0.0108 0.0071 

TiO2  4 4.05 0.0289 0.0071 

Total 138.6  1.0000 0.6317 

 

Density of 30phr SP-FG filled PVC  composite = 1/0.6317 

       = 1.5830g/cm
3
 

 

Density for 30phr SP-FG-C filled PVC Composite 

Ingredient  Formula 

Weight, g 

Density (ρ), 

g/cm
3
 

Weight 

Fraction (W) 

W/ρ 

PVC resins (K-

66) 

100 1.40 0.7215 0.5154 

SP-FG-C 30 2.70 0.2165 0.0802 

Tin Stabilizer 2 1.08 0.0144 0.0133 

Sak-CS-P 0.5 1.03 0.0036 0.0035 

Stearic Acid  0.6 0.84 0.0043 0.0051 

Processing Aid 1.5 1.53 0.0108 0.0071 

TiO2  4 4.05 0.0289 0.0071 

Total 138.6  1.0000 0.6317 

 

Density of 30phr SP-FG-C filled PVC Composite = 1/0.6317 

       = 1.5830g/cm
3
 



 148

Density for 30phr SM90 filled PVC Composite 

Ingredient  Formula 

Weight, g 

Density (ρ), 

g/cm
3
 

Weight 

Fraction (W) 

W/ρ 

PVC resins (K-

66) 

100 1.40 0.7215 0.5154 

SM90 30 2.70 0.2165 0.0802 

Tin Stabilizer 2 1.08 0.0144 0.0133 

Sak-CS-P 0.5 1.03 0.0036 0.0035 

Stearic Acid  0.6 0.84 0.0043 0.0051 

Processing Aid 1.5 1.53 0.0108 0.0071 

TiO2  4 4.05 0.0289 0.0071 

Total 138.6  1.0000 0.6317 

 

Density of 30phr SM90 filled PVC Composite = 1/0.6317 

       = 1.5830g/cm
3
 

 

Density for 30phr PC100 filled PVC Composite 

Ingredient  Formula 

Weight, g 

Density (ρ), 

g/cm
3
 

Weight 

Fraction (W) 

W/ρ 

PVC resins (K-

66) 

100 1.40 0.7215 0.5154 

PC100 30 2.70 0.2165 0.0802 

Tin Stabilizer 2 1.08 0.0144 0.0133 

Sak-CS-P 0.5 1.03 0.0036 0.0035 

Stearic Acid  0.6 0.84 0.0043 0.0051 

Processing Aid 1.5 1.53 0.0108 0.0071 

TiO2  4 4.05 0.0289 0.0071 

Total 138.6  1.0000 0.6317 

 

Density of 30phr PC100 filled PVC  Composite = 1/0.6317 

       = 1.5830g/cm
3
 



 149

Density for 30phr NPCC filled PVC Composite 

Ingredient  Formula 

Weight, g 

Density (ρ), 

g/cm
3
 

Weight 

Fraction (W) 

W/ρ 

PVC resins (K-

66) 

100 1.40 0.7215 0.5154 

NPCC 30 2.55 0.2165 0.0849 

Tin Stabilizer 2 1.08 0.0144 0.0133 

Sak-CS-P 0.5 1.03 0.0036 0.0035 

Stearic Acid  0.6 0.84 0.0043 0.0051 

Processing Aid 1.5 1.53 0.0108 0.0071 

TiO2  4 4.05 0.0289 0.0071 

Total 138.6  1.0000 0.6364 

 

Density of 30phr SP-FG filled PVC  composite = 1/0.6364 

       = 1.5713g/cm
3
 

 

Density for 30phr Talc filled PVC Composite 

Ingredient  Formula 

Weight, g 

Density (ρ), 

g/cm
3
 

Weight 

Fraction (W) 

W/ρ 

PVC resins (K-

66) 

100 1.40 0.7215 0.5154 

SP-FG 30 2.79 0.2165 0.0776 

Tin Stabilizer 2 1.08 0.0144 0.0133 

Sak-CS-P 0.5 1.03 0.0036 0.0035 

Stearic Acid  0.6 0.84 0.0043 0.0051 

Processing Aid 1.5 1.53 0.0108 0.0071 

TiO2  4 4.05 0.0289 0.0071 

Total 138.6  1.0000 0.6291 

 

Density of 30phr SP-FG filled PVC  composite = 1/0.6291 

       = 1.5896g/cm
3
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Density for Hybrid (25phr Talc: 5phr SM90) filled PVC Composite 

Ingredient  Formula 

Weight, g 

Density (ρ), 

g/cm
3
 

Weight 

Fraction (W) 

W/ρ 

PVC resins (K-

66) 

100 1.40 0.7215 0.5154 

Talc 25 2.97 0.1804 0.0646 

SM90 5 2.70 0.0361 0.0134 

Tin Stabilizer 2 1.08 0.0144 0.0133 

Sak-CS-P 0.5 1.03 0.0036 0.0035 

Stearic Acid  0.6 0.84 0.0043 0.0051 

Processing Aid 1.5 1.53 0.0108 0.0071 

TiO2  4 4.05 0.0289 0.0071 

Total 138.6  1.0000 0.6295 

 

Density of 30phr SM90 filled PVC Composite = 1/0.6295 

       = 1.5885g/cm
3
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Density for Hybrid (20phr Talc: 10phr SM90) filled PVC Composite 

Ingredient  Formula 

Weight, g 

Density (ρ), 

g/cm
3
 

Weight 

Fraction (W) 

W/ρ 

PVC resins (K-

66) 

100 1.40 0.7215 0.5154 

Talc 20 2.97 0.1443 0.0517 

SM90 10 2.70 0.0722 0.0267 

Tin Stabilizer 2 1.08 0.0144 0.0133 

Sak-CS-P 0.5 1.03 0.0036 0.0035 

Stearic Acid  0.6 0.84 0.0043 0.0051 

Processing Aid 1.5 1.53 0.0108 0.0071 

TiO2  4 4.05 0.0289 0.0071 

Total 138.6  1.0000 0.6299 

 

Density of 30phr SM90 filled PVC Composite = 1/0.6299 

       = 1.5874g/cm
3
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Density for Hybrid (15phr Talc: 15phr SM90) filled PVC Composite 

Ingredient  Formula 

Weight, g 

Density (ρ), 

g/cm
3
 

Weight 

Fraction (W) 

W/ρ 

PVC resins (K-

66) 

100 1.40 0.7215 0.5154 

Talc 15 2.97 0.1082 0.0388 

SM90 15 2.70 0.1082 0.0401 

Tin Stabilizer 2 1.08 0.0144 0.0133 

Sak-CS-P 0.5 1.03 0.0036 0.0035 

Stearic Acid  0.6 0.84 0.0043 0.0051 

Processing Aid 1.5 1.53 0.0108 0.0071 

TiO2  4 4.05 0.0289 0.0071 

Total 138.6  1.0000 0.6304 

 

Density of 30phr SM90 filled PVC Composite = 1/0.6304 

       = 1.5864g/cm
3
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Density for Hybrid (10phr Talc: 20phr SM90) filled PVC Composite 

Ingredient  Formula 

Weight, g 

Density (ρ), 

g/cm
3
 

Weight 

Fraction (W) 

W/ρ 

PVC resins (K-

66) 

100 1.40 0.7215 0.5154 

Talc 10 2.97 0.0722 0.0259 

SM90 20 2.70 0.1443 0.0534 

Tin Stabilizer 2 1.08 0.0144 0.0133 

Sak-CS-P 0.5 1.03 0.0036 0.0035 

Stearic Acid  0.6 0.84 0.0043 0.0051 

Processing Aid 1.5 1.53 0.0108 0.0071 

TiO2  4 4.05 0.0289 0.0071 

Total 138.6  1.0000 0.6308 

 

Density of 30phr SM90 filled PVC Composite = 1/0.6308 

       = 1.5852g/cm
3
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Density for Hybrid (5phr Talc: 25phr SM90) filled PVC Composite 

Ingredient  Formula 

Weight, g 

Density (ρ), 

g/cm
3
 

Weight 

Fraction (W) 

W/ρ 

PVC resins (K-

66) 

100 1.40 0.7215 0.5154 

Talc 5 2.97 0.0361 0.0129 

SM90 25 2.70 0.1804 0.0668 

Tin Stabilizer 2 1.08 0.0144 0.0133 

Sak-CS-P 0.5 1.03 0.0036 0.0035 

Stearic Acid  0.6 0.84 0.0043 0.0051 

Processing Aid 1.5 1.53 0.0108 0.0071 

TiO2  4 4.05 0.0289 0.0071 

Total 138.6  1.0000 0.6312 

 

Density of 30phr SM90 filled PVC Composite = 1/0.6312 

       = 1.5843g/cm
3
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Appendix E 

 

Fusion curves of unfilled PVC and Hybrid Talc/SM90 filled PVC composites  
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Fusion curve of unfilled PVC composite which melted in a Haake Torque Rheometer at a temperature of 180
0
C with a rotor speed of 

45rpm. 
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Fusion curve of 30phr Talc filled PVC composite which melted in a Haake Torque Rheometer at a temperature of 180
0
C with a rotor 

speed of 45rpm. 
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Fusion curve of hybrid (25phr Talc: 5phr SM90) filled PVC composite which melted in a Haake Torque Rheometer at a temperature of 

180
0
C with a rotor speed of 45rpm. 
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Fusion curve of hybrid (20phr Talc: 10phr SM90) filled PVC composite which melted in a Haake Torque Rheometer at a temperature 

of 180
0
C with a rotor speed of 45rpm. 
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Fusion curve of hybrid (15phr Talc: 15phr SM90) filled PVC composite which melted in a Haake Torque Rheometer at a temperature 

of 180
0
C with a rotor speed of 45rpm. 
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Fusion curve of hybrid (10phr Talc: 20phr SM90) filled PVC composite which melted in a Haake Torque Rheometer at a temperature 

of 180
0
C with a rotor speed of 45rpm. 
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Fusion curve of hybrid (5phr Talc: 25phr SM90) filled PVC composite which melted in a Haake Torque Rheometer at a temperature of 

180
0
C with a rotor speed of 45rpm. 
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Fusion curve of 30phr SM90 filled PVC composite which melted in a Haake Torque Rheometer at a temperature of 180
0
C with a rotor 

speed of 45rpm. 

 



Appendix F 

 

Calculation of the average aspect ratio for the talc particles. 

 

 

 

SEM photograph for 30phr Talc filled PVC composite. 

 

Average aspect ratio of talc particles 

= (Length / Diameter) for 8 particles of talc 

= (1.6/0.2 + 1.1/0.15 + 1.1/0.15 + 1.4/0.15 + 1.3/0.15+ 2.1/0.3 + 2.1/0.25 + 1.2/0.15) 

= 8 
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