

Visualization Pipeline for Medical Datasets on Grid Computing Environment

Aboamama Atahar Ahmed *1, Muhammad Shafie Abd Latiff *1,

Kamalrulnizam Abu Bakar *1, Zainul Ahmad Rajion *2

1 Department of Computer Systems and Communications
Faculty of Computer Science and Information Technology

Universiti Teknologi Malaysia, 81310 UTM Skudai Malaysia
Atahar@siswa.utm.my , shafie@fsksm.utm.my , kamarul@fsksm.utm.my

2 School of Medical Sciences, Health Campus

Universiti Sains Malaysia
16150 Kubang Kerian, Kelantan, Malaysia

zainul@kck.usm.my

Abstract Distance visualization of large datasets often
takes the direction of remote viewing and zooming
techniques of stored static images. However, the continuous
increase in the size of datasets and visualization operation
causes insufficient performance with traditional desktop
computers. Additionally, the visualization techniques such
as Isosurface depend on the available resources of the
running machine and the size of datasets. Moreover, the
continuous demand for powerful computing powers and
continuous increase in the size of datasets results an urgent
need for a grid computing infrastructure. However, some
issues arise in current grid such as resources availability at
the client machines which are not sufficient enough to
process large datasets. On top of that, different output
devices and different network bandwidth between the
visualization pipeline components often result output
suitable for one machine and not suitable for another. In
this paper we investigate how the grid services could be
used to support remote visualization of large datasets and
to break the constraint of physical co-location of the
resources by applying the grid computing technologies. We
show our grid enabled architecture to visualize large
medical datasets (circa 5 million polygons) for remote
interactive visualization on modest resources clients.

Keyword: Visualization, Grid computing, Medical datasets,
visualization techniques, thin clients, Globus toolkit, VTK.

1. Introduction

Scientific Visualization is becoming increasingly important
in analyzing and interpreting numerical and complex
datasets. However, the datasets generated by medical
detectors or simulations is growing in size and complexity.

This makes analyzing and interpreting the datasets more
cumbersome using traditional desktop computers, where the
conventional computer will be overwhelmed with intensive
processing of large datasets even with the latest
development of visualization techniques. This is due to
limited memory and computational powers available in the
machines. Additionally, designing visualization system to
run on a single machine always results in specialist high
cost supercomputers. These high-end resources are
expensive and often based in secure location with limited
access privileges. Several methods and techniques were
introduced in the past few years to tackle the problem of
providing computational power required for visualization
operations. The introduced techniques suffer most often in
building a cluster of nodes to provide the necessary
computational power [1], [2], [3], [4]. Other techniques
suggest the utilization of remote visualization requester
machine to do the rendering which is normally lack of
required computational resources. Unlike clusters, grid
methods are designed to deal with unreliable resources
where the cluster is a group of similar resources attached
together to build extra computational power. Grid
computing [5] is a term used to describe the process of
sharing geographically distributed resources. This
distributed computing infrastructure allows the sharing of
processing power, memory, storage and high performance
graphics in heterogeneous environment. This paper
investigates the integration of grid services with scientific
visualization and we support our findings with practical
implementation of grid enabled remote visualization
prototype for large medical datasets. We give an overview
of our grid visualization architecture and describe our
implementation and the results obtained. Our initial results
show the performance of rendering large datasets located
remotely.

Fifth International Conference on Computational Science and Applications

0-7695-2945-3/07 $25.00 © 2007 IEEE
DOI 10.1109/ICCSA.2007.92

565

Fifth International Conference on Computational Science and Applications

0-7695-2945-3/07 $25.00 © 2007 IEEE
DOI 10.1109/ICCSA.2007.92

567

Authorized licensed use limited to: UNIVERSITY TEKNOLOGI MALAYSIA. Downloaded on January 13, 2010 at 23:58 from IEEE Xplore. Restrictions apply.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Universiti Teknologi Malaysia Institutional Repository

https://core.ac.uk/display/11785132?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

2. Previous Work

The scientific data visualization was sparked by landmark
NSF report ‘Visualization in Scientific Computing’ by
McCormick [6]. The introduced visualization concept was
based on breaking down the dataflow of the visualization
process to smaller distributed processes. The smaller
processes can be placed on distributed locations which are
interconnected by network to form a modular visualization.
Each part can contribute as an independent modular to form
the overall visualization process. However, the existing grid
enabled visualization systems are in the direction of
translating the existing dataflow concept presented by
Haber and McNabb [7] as described in Figure [1].

Figure [1] Haber-McNabb Visualization Pipeline

The existing visualization systems such as AVS Express
[8], VTK [9], IBM Data Explorer, OpenGL VizServer [10]
and IRIS Explorer [11] are generally available today and
used to visualize a variety of large volume of data including
medical data. For example, a system such as VTK is
making use of wide range of visualization algorithms and
VTK supports parallelism through the use of threads.
However, these visualization systems are generally
designed to work in single high capabilities hardware
machine. Despite the fact that VTK was designed in an
object oriented fashion, during the design of this system
there were no considerations to be supported in the grid
environment. Other projects are in a direction to extend the
capabilities of these visualization systems. For instance,
gViz project was designed to extend IRIS Explorer.
However, the possible integration in grid environment
should be based on the design of internal components of
these systems. Therefore, the challenge now is in providing
a flexible and effective mechanism to support remote access
to the resources. Current implementations of grid enabled
visualization are often tied to expensive hardware and
powerful graphic support. In addition to that, the different
network bandwidth and different output devices between
the rendering location and presentation location produces
output suitable for one device and not suitable for another.
On the other hand, the existing grid visualization
applications often make assumptions on the available
resources ‘render local and render remote methodologies’.
The following are some of Grid enabled visualization
applications and projects.
RAVE [12] is a grid enabled visualization system that
reacts and responds to available heterogeneous resources.
RAVE implements techniques to make use of both remote
and local resource according to the participating machines
from high capabilities machines to Small PDA’s.

The gViz project [13] is another grid enabled visualization
application. The idea was to incorporate the grid in the
internal components of the IRIS Explorer [11].
The E-Demand [14] is another grid enabled visualization
project focusing on the use of Grid services to support
stereoscopic visualization in a distributed environment. The
E-demand application considered as PSE “problem solving
environment” on the grid. OGSA [5] presents each model as
an entity. Multi rendering services can be deployed to form
a collaborative environment.
The SuperVise [15] is another grid implementation. In
SuperVise Project, the phases of visualization pipeline such
as filtering and geometry transformation are distributed
across the grid. The user selects the data then the SuperVise
selects the appropriate resources and form the visualization
pipeline.
The Distributed Visualization System [16] is visualization
application that uses frameless buffer for rendering to
distribute the pixel images between several machines. Each
machine receives subset of the pixels to render it and submit
the rendered part to create the full image, but each machine
must have the original copy of the full image.
 Some other visualization applications do not relay totally
on software in their implementations for instance Visapult
[1] is a visualization framework with the ability to render a
huge amount of datasets (of the order of 1-5 Tb). Visapult
uses parallel rendering hardware to carry out the high speed
rendering processes. Using Cactus [17] the data are
distributed amongst many parallel nodes for volume
rendering, the rendered subset 2D image sent to the client
for local rendering.
Engel_vis [18] is another application that combines Local
and Remote Visualization Techniques for Interactive
volume rendering in medical applications. The application
was implemented using java, java 2D and java 3D based on
the client which communicate with a server implemented in
C++ and OpenInventor. The methodology followed is to
load the datasets from the client side. Clients send the
datasets to slicing tool. The slicing tool inspects slices in
axial, coronal directions, and transfers the volume data to
the server application. The server, a stand-alone application
that utilizes 3D texture mapping hardware renders images
off-screen and sends back compressed images to the clients.
The methodology presented will not work well for clients
with limited capabilities for local rendering and geometry
transformation. However, most of the mentioned grid
enabled visualization applications are well structured and
designed to solve specific problem. Some of the
applications provide the participating machines with no
ability to do the rendering processes such as COVISE.
Others assume that the participating machines support the
rendering resources such as OpenGL VizServer 3.1. In
addition, the other newly implemented techniques are trying
to solve the rendering and resources support such as RAVE
visualization application. RAVE is trying to develop a
mechanism to figure out which machines support the

Filter Data Map Render

566568

Authorized licensed use limited to: UNIVERSITY TEKNOLOGI MALAYSIA. Downloaded on January 13, 2010 at 23:58 from IEEE Xplore. Restrictions apply.

rendering tasks and which machines have limited support
for the rendering.

3. A Framework for Volumetric Visualization on

the Grid Environment

3.1 Visualization Toolkit

VTK [9] is an open source library for 3D computer graphics
and image processing and visualization. It is object
oriented implementation of over 700 C++ classes and more
than 350000 lines of code. The library created by Ken
Martin, Will Schroeder and Bill Lorensen. This library
organized in a form of kits. The kits are used to build
application in sequential modules with related functionality.
VTK supports a variety of dataset formats and visualization
algorithms. The object oriented design of VTK allows the
C++ library to be accessed with wrappers built in TCL, java
or Python. We are using two algorithms provided by VTK
Marching Cubes [19] for extracting the Isosurface from the
datasets to produce the polygons and Decimation algorithm
[20] to simplify the mesh and reduce the number of
polygons produced by Marching Cubes stage.

3.2 Grid Services

The motivation for implementing the grid services in the
architecture is to allow the automatic discovery of the
resources. For that purpose, we utilize the Globus toolkit
[21] components such as MDS (Monitoring and Discovery
Services) and Globus GRAM (Grid Resources allocation
Manager). The architecture should have globus installed on
each node except for the display clients. However, the
display clients should have COG Kit installed to allow the
RSL script to map the GRAM jobs to other grid nodes. In
addition to globus installation, we separately implemented
the installation of VTK modules on each node. That is by
breaking out the visualization operations into small subtasks
to be run as network connected modules. This way we
achieved the distribution of workload between the grid
nodes and avoid the visualization operations to overwhelm
one single machine. For the display client, we must have
VTK java packages as a jar file to give a flexible
implementation of the interaction features and to allow real-
time interaction with the scene. With this backend
architecture components VTK and Globus, we only need to
promote our services as grid services with WSDL and to
discover these services as the visualization requirements.
From the display client, the user will need to perform the
grid mapping task as a mouse click to map the jobs to which
resources. Unlike other grid applications where the
implementation of grid resources discovery use manual
selection of resources, the resources discovery in our
architecture is done in automatic way and the users are not
required to have detailed knowledge of the grid nodes and
the users will not worry about manual mapping and

selection for resources. In our configurations, MDS is used
to query the resources available and register them in the
resources directory. However, we wrote java program to
map the sufficient resources according to the size of our
datasets. WSDL contain the address location and the
services provided by the node. These web services are
distributed as visualization modules, where some nodes are
equipped with Isosurface extraction or data reader in
addition to other information about the node such as current
CPU load and available memory and status of the storage.
With this information, we implement our automatic
resources selection mechanism. The result of the selection
process is to assign which task to be sent to which node in
the grid without having user’s interaction and worry about
this underlying configurations.

3.3 Grid Visualization Pipeline Architecture

Our grid visualization pipeline architecture is divided into
several stages as follow Reader, Iso-surface extractor,
Maper, renderer and Display.

 Figure 2Automatic formation of Visualization Pipeline on the grid

567569

Authorized licensed use limited to: UNIVERSITY TEKNOLOGI MALAYSIA. Downloaded on January 13, 2010 at 23:58 from IEEE Xplore. Restrictions apply.

3.3.1 Data Reader

 Data reader was designed to read different type of datasets,
such as ASCII binary files or Raw datasets format. The
reader was selected according to specified datasets and the
data reader is able to read data from more than one location
and append the data to one or more Iso-surface extractor.
The datasets size is calculated at this stage.

3.3.2 Isosurface extractor

For extracting 3D grid from the datasets, we used The
Marching Cubes algorithm [19]. We have chosen this
particular algorithm for geometry generation for several
reasons. Firstly, modeling the dynamic changes of the
visualization operations on the grid is a great challenge.
However, for our particular Isosurface algorithm case,
different Isovalue with the same datasets produces different
number of generated polygons. Additionally, different
quantities of polygons produced by the same Isovalue even
with the same datasets with different time step. The
quantity of generated polygons causes different
performance of the entire extraction process and over all the
performance of the pipeline. Secondly, this scenario is
providing dynamic changes in the environment where the
load is not fixed throughout the distributed visualization
pipeline. The visualization requirements (datasets location
and Isovalue) passed from the user is located at remote
location to the starting server of the pipeline. Then, the
pipeline is formed according to selected dataset size and
generated polygons. Figure3, the initial Isosurface drawing
requests contain datasets address location and Isovalue.
These parameters are passed to the starting pipeline server.
The source of the datasets can be from static file or life feed
from external programs. After reading and calculating the
datasets size the server serialize the datasets to the assigned

to one or two Isosurface extractor according to datasets size
and the capacity of the extracting machine. The Isosurface
extractor then deserializes the data and appends the datasets
with vtkappendFilter implemented as grid service used to
append datasets from several data extracting instances.
After extracting the polygons from the datasets the extractor
then serialize the resulted datasets to mapping service. The
decimation process takes a place after the extraction for
datasets size reduction by reducing the number of polygons.

3.3.4 Data Mapper

Mapping service is responsible for taking datasets produced
by Isosurface extractor and deserializes the data and maps it
to one or more rendering service. Mapping and Isosurface
extraction may be implemented as a single service. The
resulted datasets serialized to the rendering service. The
importance of mapping is to allow the discovery of grid
available resources by querying the Globus MDS. The
result of the query is used to assign the proper rendering
nodes. The mapping service is also responsible for
partitioning the resulted geometric datasets.

3.3.5 Renderer

Rendering is a process of transforming the geometric data
into images. The rendering process is known to consume
the available resources memory and storage. This particular
problem is common for standard desktop computers where
the rendering of large geometric datasets will consume CPU
and available memory. For these reasons, our technique
uses rendering services in the form of grid services. Each
rendering services is registered in UDDI server and
advertises itself to other services. The Globus MDS is used
to discover the rendering resources in the grid. Then the
render receives the assigned chunk of the datasets.

Figure 3 Redraw process requests of an isosurface

568570

Authorized licensed use limited to: UNIVERSITY TEKNOLOGI MALAYSIA. Downloaded on January 13, 2010 at 23:58 from IEEE Xplore. Restrictions apply.

4. Grid Visualization Pipeline Features

This section describes the gird visualization features and the
advantages of spreading the visualization pipeline on the
grid.

4-1 Heterogeneous support

The implementation of our pipeline as grid services allows
different hardware and different operating systems to
communicate and exchange the data without worrying
about underlying configuration. As an example, for our
testbed, we have Linux RedHat 9 and fedora implemented
as data reader and Isosurface extractor respectively which
are able to communicate with Windows XP.

4.2 Efficient Resources Utilization

The technique of distributing the visualization operations
offers chance to other users to utilize the resources where
the workload is divided to several machines, unlike other
grid enabled visualization systems such as stated in [13] in
their implementation the visualization operations take over
the memory of the entire used machine and the user will
have to wait for the operations to complete. Resources
utilization is an important concept in the grid concept. In
our architecture, we implemented resources utilization in
two main points. The first point is to divide the
visualization task as connected pipeline that helped us in
distributing the load and avoid our machines to be
overwhelmed with several operations in one node. The
second point is in our implementation of automatic
discovery of resources. Where we first discover the proper
resources and we make best use of them.

4.3 Automatic Resource Discovery

For resources discovery, we utilize Globus MDS. Our
resources discovery mechanism starts from the display
client node as the user executes the grid mapping task
provided in GUI. The MDS then query the resources
available in the grid and registers the resources in the
system. The resulted of the query is information of current
load of each node and the memory, storage and CPU. For
that purpose we wrote java client program for selection
mechanism that is done by comparing our calculated
datasets size and the power of the available nodes. On the
other hand, our system is publically available to other users.
The resources are advertised as grid services and registered
in UDDI server. This allows automatic discovery of
resources and give the system flexibility to add or remove
services to the pipeline as required.

5. Testbed Implementation

The resources we used for testbed implementation include 2
HP workstations equipped with NVidia GeForce 4MX Go
graphics, 512 MB of RAM and 2.87 GHz CPU, running on
Linux RedHat 9 and Linux Fedora core 3 respectively. At
the client user, we used HP Notebook equipped with
Intel(R)Pentium(R)4 CPU 2.80GH, Graphic Adapter ATI
Mobility IGP 340M/345M , 512 MB of RAM and
ST94011A 40 GB disk drives running on windows XP
Professional. All the machines were linked with LAN cable
100MB Ethernet LAN. During the implementation there
was extra demand for memory during the rendering process.

6. Experimental Results

For our initial results, we used test models (CT scan of
facial bone) in raw format that were obtained from Hospital
Universiti Sains Malaysia and second model was the UNC
head dataset converted to ASCII VTK Binary format was
taken from public datasets archive Table 1 shows the
models used in our experiment.

 Figure 4 A – Isosurface with Isovalue of 1200 Figure 4 B- Isosurface with Isovalue of 600

569571

Authorized licensed use limited to: UNIVERSITY TEKNOLOGI MALAYSIA. Downloaded on January 13, 2010 at 23:58 from IEEE Xplore. Restrictions apply.

Table 1: Models used in benchmarks

Model Name Number of Polygons Size of Data File
Skeleton head 4.28 million 15.1MB
3D full head 11.17 million 23.1MB

The raw skeleton consists of 121 slices of 256*256 * 256
producing file size 15.1MB as reported in the table. The
datasets were processed by marching cubes and a polygon
decimation algorithm. The two models are shown in the
screenshots from the visualization client in Figure 5.

The used algorithms in our architecture are
vtkmarchingcubes to extract the Isosurface and
vtkDecimatePro to reduce the number of produced
polygons from the first step. (Figure 4 A) shows Isosurface
of 15.1 MB datasets at client with Isovalue 1200. (Figure 4
B) shows the Isovalue 600. And it is enough for skin
surface for this particular datasets. Figure 5 shows graph
Isosurface characteristics and usage of different Isovalue
along the resulted number of polygons. To analyze and
exchange our datasets via the pipeline, we used VTK at
each node of the pipeline installed along with GT4. In our
architecture, the implemented VTK java classes imports
GT4 packages for easy programs integration. WSDL are
used to advertise our services, such as render services. Our
implementation is not restricted to particular platform. Our
visualization pipeline components are distributed and
advertized as grid services then published by UDDI server.
Users only need to query the MDS for available services.
However, for our initial implementation for resources
discovery we utilize MDS included with GT4 installation.
From the users perspective this underlying configuration is
hidden. The only task for client user is to pressed on map
grid function to query the resources available and map

the proper resources as showing in Figure 7.

7. Pipeline Performance

Figure 6 shows the distributed pipeline performance which
we used the tools supplied in Linux RedHat 9 to capture the
CPU and memory usage for each machine. However, there
some other technologies we are putting into consideration
such as NWS Network Weather Services [22] and
NetLogger [23] for measurements in distributed systems.
For now, we are utilizing the performance model as
analytical approach based on [24] Performance Modeling
technique where the overall pipeline performance is
calculated by calculating individual machines. The reason
for choosing this method is that, in order to have accurate
performance modeling for sequential pipeline as in our case
the performance of an Isosurface algorithm, we notice that
different numbers of polygons and points with different
Isovalue even with the same datasets. Therefore, the
number of produced polygons results in radically different
performance characteristics for the entire pipeline
execution. Figure 7 shows an interface of Isosurface of 15.1
MB datasets located at our (Skudai.fsksm.utm.my) starting
pipeline node for reading then datasets passed to Isosurface
extraction node (Mewah.fsksm.utm.my) and then passed to
rendering service then to client display
(HP_Mobile.fsksm.ut.my) notebook.

8. Resources Mapping and Discovery

The grid mapping is used to map the resources. Our current
implementation of mapping is done by using RSL script as
GRAM implementation of GT4.as showing in the Figure 7

Figure 5 Isosurface characteristics for different Isovalue

570572

Authorized licensed use limited to: UNIVERSITY TEKNOLOGI MALAYSIA. Downloaded on January 13, 2010 at 23:58 from IEEE Xplore. Restrictions apply.

 A- Skudai server extracting the datasets B - Mewah Isosurface Extractor C- HP_Mobile client rendering the datasets

Figure 6 Pipeline performance

Figure 7 Java Swing Client Display of Isosurface of remote located Medical datasets with Isovalue 1200

571573

Authorized licensed use limited to: UNIVERSITY TEKNOLOGI MALAYSIA. Downloaded on January 13, 2010 at 23:58 from IEEE Xplore. Restrictions apply.

the user only need to specify the starting node of the
pipeline and the location of the datasets that he or she needs
to visualize and the Isovalue required for visualization. The
rest of the operation will be done automatically without
having the user worry about extra configuration.

9. Conclusion and Future Works

 We presented our implementation of grid enabled remote
visualization architecture. We gave a brief description of
our technical implementation and showed the possible
integration of grid services and valuable support for
scientific visualization particularly on medical datasets. We
decomposed the visualization pipeline in distributed
machines and developed our visualization services as grid
services registered and published to public UDDI server.
We show the usefulness of distributing the workload
between several machines and how to utilize the Globus
GRAM services to automatically launch the pipeline. Our
next aim is to distribute the rendering process. Specifically,
we are interested in applying parallel algorithms for this
implementation. We were able to interactively visualize
large number of polygons circa 9 million polygons at the
client with java installed on modest resources machine.

10. References

[1] Bethel .W, Tierney. Brian, Lee . J, Gunter .D, Lau S

(2000): Visapult Using High-Speed WANs and
Network Data Caches to Enable Remote and Distributed
Visualization, 2000 IEEE.

[2] Xiaoyu Zhang, Chandrajit Bajaj, William Blanke : 2001
Scalable Isosurface Visualization of Massive Datasets
on COTS Clusters : Proceedings of the IEEE 2001
symposium on parallel and large-data visualization and
graphics

[3] Engel K Sommer .O, Ernst C, Ertl T. (2000): Remote
3D Visualization using Image- Streaming Techniques.
2000

[4] Brett Beeson1,2, Mark Dwyer1, David 2005 : Server-
side Visualization of Massive Datasets Thompson3
Proceedings of the First International Conference on e-
Science and Grid Computing (e-Science’05)

[5] Foster, C. Kesselman, Nick .K. M., Tuecke .S (2002):
The Physiology of the Grid: An Open Grid Services
Architecture for Distributed Systems Integration.
Technical report, Globus, February 2002.

[6] McCormick B. H., DeFanti T. A., Brown M. D. (1987),
“Visualization in Scientific Computing”, Computer
Graphics 21 1-14.

[7] Haber, R.B. and McNabb, D.A. 1990. Visualization
Idioms: A Conceptual Model for Scientific Visualization
Systems. In: Visualization in Scientific Computing,

Shriver, B., Neilson, G.M., and Rosenblum, L.J., Eds.,
IEEE Computer Society Press, 74-93.

[8] Upson, C., Faulhaber, T., Kamins, D., Schlegel, D.,
Laidlaw, D., Vroom, J., Gurwitz, R. and van Dam, A.
1989. The Application Visualization System: a
Computational Environment for Scientific
Visualization, IEEE Computer Graphics and
Applications 9, 4, 30- 42.

[9] Will Schroeder, Ken Martin, and Bill Lorensen, The
Visualization Toolkit: An Object-Oriented Approach To
3D Graphics. Second Edition. Prentice Hall. Upper
Saddle River, NJ. 1998.

[10] SGI. SGI OpenGL VizServer 3.1. Data sheet, SGI,
March 2003.
[11] Walton, J.P.R.B. (2004). NAG’s IRIS Explorer. In:

Visualization Handbook, Johnson, C.R. and Hansen,
C.D., Eds., Academic Press (in press). Available at

 http://www.nag.co.uk/doc/TechRep/Pdf/tr2_03.pdf
[12] Walker D. W. , Grimstead .I (2004): Resource aware
visualization environment.
 http://www.wesc.ac.uk/projects/rave/.2004
[13] Wood. J, Brodlie, K., J. Walton. (2003) gViz –

visualization and steering for the grid. In Proceedings
of the UK All Hands Meeting 2003,
http://www.nesc.ac.uk/events/ahm2003/AHMCD/pdf/0
30.pdf. , http://www.visualization.leeds.ac.uk/gViz.

[14] Charters, S., Holliman, N.S. and Munro, M. 2003.
Visualization in e-Demand: Grid Service Architecture
for Stereoscopic Visualization, Proceedings of UK e-
Science Second All Hands Meeting.

[15] Osborne .J, Wright .H, (2003) SuperVise: Using Grid
Tools to Support Visualization. In Proceedings of the
Fifth International Conference on Parallel Processing
and Applied Mathematics (PPAM 2003),

[16] Mahovsky .J, Benedicenti. L (2003): Architecture for
Java-Based Real-Time Distributed Visualization. IEEE
Transactions on Visualization and Computer Graphics,
9(4):570 – 579, October December 2003.

[17]Allen .G, Benger. W, Goodale. T, Hege H.-C,
Lanfermann . G , Merzky . A, Radke. T , Seidel .E,
Shalf .J (2000): The Cactus Code: A Problem Solving
Environment for the Grid. In Proceedings of the Ninth
International Symposium on High Performance
Distributed Computing (HPDC’00), pages 253–262.
IEEE, August 2000

[18] Engel K. et al.. (2000): Combining Local and Remote
Visualization Techniques for Interactive Volume
Rendering in Medical Applications. 2000

[19] Lorensen, William and Harvey E. Cline. Marching
Cubes: A High Resolution 3D Surface Construction
Algorithm. Computer Graphics (SIGGRAPH 87
Proceedings) 21(4) July 1987, p. 163-170)
http://www.cs.duke.edu/education/courses/fall01/cps12
4/resources/p163-lorensen.pdf

[20] William J. Schroeder , Jonathan A. Zarge , William E.
Lorensen, Decimation of triangle meshes, ACM

572574

Authorized licensed use limited to: UNIVERSITY TEKNOLOGI MALAYSIA. Downloaded on January 13, 2010 at 23:58 from IEEE Xplore. Restrictions apply.

SIGGRAPH Computer Graphics, v.26 n.2, p.65-70,
July 1992

[21] Thomas Sandholm and Jarek Gawor. Globus Toolkit 3
Core - A Grid Service Container Framework. Globus
Toolkit 3 Core White Paper, July 2003.

[22] Rich Wolski 2003 : Experiences with Predicting
Resource Performance On-line in Computational Grid
Settings (ACM SIGMETRICS Performance
Evaluation Review, Volume 30, Number 4, pp 41--49,
March, 2003.

[23] Daniel K. Gunter, Keith R. Jackson, David E.
Konerding, Jason R. Lee and Brian L. Tierney, 2005 :
Essential Grid Workflow Monitoring Elements , The
2005 International Conference on Grid Computing and
Applications (GCA'05) , LBNL-57428

[24] Ian Bowman 2004 Performance Modeling for 3D
Visualization in a Heterogeneous Computing
Environment : available online
http://vis.lbl.gov/Publications/2004/Bowman-PGV-
LBNL-56977.pdf

573575

Authorized licensed use limited to: UNIVERSITY TEKNOLOGI MALAYSIA. Downloaded on January 13, 2010 at 23:58 from IEEE Xplore. Restrictions apply.

