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Abstract Distance visualization of large datasets often 
takes the direction of remote viewing and zooming 
techniques of stored static images. However, the continuous 
increase in the size of datasets and visualization operation 
causes insufficient performance with traditional desktop 
computers. Additionally, the visualization techniques such 
as Isosurface depend on the available resources of the 
running machine and the size of datasets. Moreover, the 
continuous demand for powerful computing powers and 
continuous increase in the size of datasets results an urgent 
need for a grid computing infrastructure. However, some 
issues arise in current grid such as resources availability at 
the client machines which are not sufficient enough to 
process large datasets. On top of that, different output 
devices and different network bandwidth between the 
visualization pipeline components often result output 
suitable for one machine and not suitable for another. In 
this paper we investigate how the grid services could be  
used to support remote visualization of large datasets and 
to break the constraint of physical co-location of the 
resources by applying the grid computing technologies. We 
show our grid enabled architecture to visualize large 
medical datasets (circa 5 million polygons) for remote 
interactive visualization on modest resources clients. 
 
Keyword: Visualization, Grid computing, Medical datasets, 
visualization techniques, thin clients, Globus toolkit, VTK.  
 
1. Introduction 

Scientific Visualization is becoming increasingly important 
in analyzing and interpreting numerical and complex 
datasets. However, the datasets generated by medical 
detectors or simulations is growing in size and complexity.  

 
 
This makes analyzing and interpreting the datasets more 
cumbersome using traditional desktop computers, where the  
conventional computer will be overwhelmed with intensive 
processing of large datasets even with the latest 
development of visualization techniques. This is due to 
limited memory and computational powers available in the 
machines. Additionally, designing visualization system to 
run on a single machine always results in specialist high 
cost supercomputers.  These high-end resources are 
expensive and often based in secure location with limited 
access privileges. Several methods and techniques were 
introduced in the past few years to tackle the problem of 
providing computational power required for visualization 
operations. The introduced techniques suffer most often in 
building a cluster of nodes to provide the necessary 
computational power [1], [2], [3], [4]. Other techniques 
suggest the utilization of remote visualization requester 
machine to do the rendering which is normally lack of 
required computational resources. Unlike clusters, grid 
methods are designed to deal with unreliable resources 
where the cluster is a group of similar resources attached 
together to build extra computational power.  Grid 
computing [5] is a term used to describe the process of 
sharing geographically distributed resources.  This 
distributed computing infrastructure allows the sharing of 
processing power, memory, storage and high performance 
graphics in heterogeneous environment. This paper 
investigates the integration of grid services with scientific 
visualization and we support our findings with practical 
implementation of grid enabled remote visualization 
prototype for large medical datasets. We give an overview 
of our grid visualization architecture and describe our 
implementation and the results obtained. Our initial results 
show the performance of rendering large datasets located 
remotely. 
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2. Previous Work 

The scientific data visualization was sparked by landmark 
NSF report ‘Visualization in Scientific Computing’ by 
McCormick [6]. The introduced visualization concept was 
based on breaking down the dataflow of the visualization 
process to smaller distributed processes. The smaller 
processes can be placed on distributed locations which are 
interconnected by network to form a modular visualization. 
Each part can contribute as an independent modular to form 
the overall visualization process. However, the existing grid 
enabled visualization systems are in the direction of 
translating the existing dataflow concept presented by 
Haber and McNabb [7] as described in Figure [1].   
 
 
 
 
 

Figure [1] Haber-McNabb Visualization Pipeline 
 

The existing visualization systems such as AVS Express 
[8], VTK [9], IBM Data Explorer, OpenGL VizServer [10]  
and IRIS Explorer [11] are generally available today and 
used to visualize a variety of large volume of data including 
medical data. For example, a system such as VTK is 
making use of wide range of visualization algorithms and 
VTK supports parallelism through the use of threads. 
However, these visualization systems are generally 
designed to work in single high capabilities hardware 
machine. Despite the fact that VTK was designed in an 
object oriented fashion, during the design of this system 
there were no considerations to be supported in the grid 
environment. Other projects are in a direction to extend the 
capabilities of these visualization systems. For instance, 
gViz project was designed to extend IRIS Explorer. 
However, the possible integration in grid environment 
should be based on the design of internal components of 
these systems. Therefore, the challenge now is in providing 
a flexible and effective mechanism to support remote access 
to the resources. Current implementations of grid enabled 
visualization are often tied to expensive hardware and 
powerful graphic support. In addition to that, the different 
network bandwidth and different output devices between 
the rendering location and presentation location produces 
output suitable for one device and not suitable for another. 
On the other hand, the existing grid visualization 
applications  often make assumptions on the available 
resources ‘render local and render remote methodologies’. 
The following are some of Grid enabled visualization 
applications and projects. 
RAVE [12] is a grid enabled visualization system that 
reacts and responds to available heterogeneous resources. 
RAVE implements techniques to make use of both remote 
and local resource according to the participating machines 
from high capabilities machines to Small PDA’s.  

The gViz project [13] is another grid enabled visualization 
application. The idea was to incorporate the grid in the 
internal components of the IRIS Explorer [11].  
The E-Demand [14] is another grid enabled visualization 
project focusing on the use of Grid services to support 
stereoscopic visualization in a distributed environment. The 
E-demand application considered as PSE “problem solving 
environment” on the grid. OGSA [5] presents each model as 
an entity. Multi rendering services can be deployed to form 
a collaborative environment.  
The SuperVise [15] is another grid implementation. In 
SuperVise Project, the phases of visualization pipeline such 
as filtering and geometry transformation are distributed 
across the grid. The user selects the data then the SuperVise 
selects the appropriate resources and form the visualization 
pipeline. 
The Distributed Visualization System [16] is visualization 
application that uses frameless buffer for rendering to 
distribute the pixel images between several machines. Each 
machine receives subset of the pixels to render it and submit 
the rendered part to create the full image, but each machine 
must have the original copy of the full image. 
 Some other visualization applications do not relay totally 
on software in their implementations for instance Visapult 
[1] is a visualization framework with the ability to render a 
huge amount of datasets (of the order of 1-5 Tb).  Visapult 
uses parallel rendering hardware to carry out the high speed 
rendering processes. Using Cactus [17] the data are 
distributed amongst many parallel nodes for volume 
rendering, the rendered subset 2D image sent to the client 
for local rendering.  
Engel_vis [18] is another application that combines Local 
and Remote Visualization Techniques for Interactive 
volume rendering in medical applications.  The application 
was implemented using java, java 2D and java 3D based on 
the client which communicate with a server implemented in 
C++ and OpenInventor. The methodology followed is to 
load the datasets from the client side. Clients send the 
datasets to slicing tool. The slicing tool inspects slices in 
axial, coronal directions, and transfers the volume data to 
the server application. The server, a stand-alone application 
that utilizes 3D texture mapping hardware renders images 
off-screen and sends back compressed images to the clients. 
The methodology presented will not work well for clients 
with limited capabilities for local rendering and geometry 
transformation. However, most of the mentioned grid 
enabled visualization applications are well structured and 
designed to solve specific problem. Some of the 
applications provide the participating machines with no 
ability to do the rendering processes such as COVISE. 
Others assume that the participating machines support the 
rendering resources such as OpenGL VizServer 3.1.  In 
addition, the other newly implemented techniques are trying 
to solve the rendering and resources support such as RAVE 
visualization application. RAVE is trying to develop a 
mechanism to figure out which machines support the 
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rendering tasks and which machines have limited support 
for the rendering. 
 
3. A Framework for Volumetric Visualization on 

the Grid Environment 
 
 

3.1  Visualization Toolkit    

VTK [9] is an open source library for 3D computer graphics 
and image processing and visualization.   It is object 
oriented implementation of over 700 C++ classes and more 
than 350000 lines of code. The library created by Ken 
Martin, Will Schroeder and Bill Lorensen. This library 
organized in a form of kits. The kits are used to build 
application in sequential modules with related functionality. 
VTK supports a variety of dataset formats and visualization 
algorithms. The object oriented design of VTK allows the 
C++ library to be accessed with wrappers built in TCL, java 
or Python.  We are using two algorithms provided by VTK 
Marching Cubes [19] for extracting the Isosurface from the 
datasets to produce the polygons and Decimation algorithm 
[20] to simplify the mesh and reduce the number of 
polygons produced by Marching Cubes stage. 
  
3.2 Grid Services 

 

The motivation for implementing the grid services in the 
architecture is to allow the automatic discovery of the 
resources. For that purpose, we utilize the Globus toolkit 
[21] components such as MDS (Monitoring and Discovery 
Services) and Globus GRAM (Grid Resources allocation 
Manager). The architecture should have globus installed on 
each node except for the display clients.  However, the 
display clients should have COG Kit installed to allow the 
RSL script to map the GRAM jobs to other grid nodes. In 
addition to globus installation, we separately implemented 
the installation of VTK modules on each node. That is by 
breaking out the visualization operations into small subtasks 
to be run as network connected modules. This way we 
achieved the distribution of workload between the grid 
nodes and avoid the visualization operations to overwhelm 
one single machine. For the display client, we must have 
VTK  java packages as a jar file to give a flexible 
implementation of the interaction features and to allow real-
time interaction with the scene. With this backend 
architecture components VTK and Globus, we only need to 
promote our services as grid services with WSDL and to 
discover these services as the visualization requirements.  
From the display client, the user will need to perform the 
grid mapping task as a mouse click to map the jobs to which 
resources. Unlike other grid applications where the 
implementation of grid resources discovery use manual 
selection of resources, the resources discovery in our 
architecture is done in automatic way and the users  are not 
required to have detailed knowledge of the grid nodes and 
the users will not worry about manual mapping and  

selection for resources. In our configurations, MDS is used 
to query the resources available and register them in the 
resources directory. However, we wrote java program to 
map the sufficient resources according to the size of our 
datasets. WSDL contain the address location and the 
services provided by the node. These web services are 
distributed as visualization modules, where some nodes are 
equipped with Isosurface extraction or data reader in 
addition to other information about the node such as current 
CPU load and available memory and status of the storage. 
With this information, we implement our automatic 
resources selection mechanism.  The result of the selection 
process is to assign which task to be sent to which node in 
the grid without having user’s interaction and worry about 
this underlying configurations.  
 
 
 
 
 

 
 
 

 
 
 
 
 
3.3   Grid Visualization Pipeline Architecture 

Our grid visualization pipeline architecture is divided into 
several stages as follow Reader, Iso-surface extractor, 
Maper, renderer and Display. 

       Figure 2Automatic formation of Visualization Pipeline on the grid  
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3.3.1 Data Reader 

 Data reader was designed to read different type of datasets, 
such as ASCII binary files or Raw datasets format. The 
reader was selected according to specified datasets and the 
data reader is able to read data from more than one location 
and append the data to one or more Iso-surface extractor.  
The datasets size is calculated at this stage. 

3.3.2 Isosurface extractor 

For extracting 3D grid from the datasets, we used The 
Marching Cubes algorithm [19].  We have chosen this 
particular algorithm for geometry generation for several 
reasons. Firstly, modeling the dynamic changes of the 
visualization operations on the grid is a great challenge. 
However, for our particular Isosurface algorithm case, 
different Isovalue with the same datasets produces different 
number of generated polygons.  Additionally, different 
quantities of polygons produced by the same Isovalue even 
with the same datasets with different time step.  The 
quantity of generated polygons causes different 
performance of the entire extraction process and over all the 
performance of the pipeline. Secondly, this scenario is 
providing dynamic changes in the environment where the 
load is not fixed throughout the distributed visualization 
pipeline. The visualization requirements (datasets location 
and Isovalue) passed from the user is located at remote 
location to the starting server of the pipeline. Then, the 
pipeline is formed according to selected dataset size and 
generated polygons. Figure3, the initial Isosurface drawing 
requests contain datasets address location and Isovalue.   
These parameters are passed to the starting pipeline server. 
The source of the datasets can be from static file or life feed 
from external programs. After reading and calculating the 
datasets size the server serialize the datasets to the assigned  

 

 

 

 

 

 

 

 

 

 

  

to one or two Isosurface extractor according to datasets size 
and the capacity of the extracting machine.  The Isosurface 
extractor then deserializes the data and appends the datasets 
with vtkappendFilter implemented as grid service used to 
append datasets from several data extracting instances. 
After extracting the polygons from the datasets the extractor 
then serialize the resulted datasets to mapping service. The 
decimation process takes a place after the extraction for 
datasets size reduction by reducing the number of polygons.  

3.3.4 Data Mapper   

Mapping service is responsible for taking datasets produced 
by Isosurface extractor and deserializes the data and maps it 
to one or more rendering service. Mapping and Isosurface 
extraction may be implemented as a single service. The 
resulted datasets serialized to the rendering service. The 
importance of mapping is to allow the discovery of grid 
available resources by querying the Globus MDS. The 
result of the query is used to assign the proper rendering 
nodes. The mapping service is also responsible for 
partitioning the resulted geometric datasets.   

3.3.5 Renderer 

Rendering is a process of transforming the geometric data 
into images. The rendering process is known to consume 
the available resources memory and storage. This particular 
problem is common for standard desktop computers where 
the rendering of large geometric datasets will consume CPU 
and available memory. For these reasons, our technique 
uses rendering services in the form of grid services. Each 
rendering services is registered in UDDI server and 
advertises itself to other services. The Globus MDS is used 
to discover the rendering resources in the grid. Then the 
render receives the assigned chunk of the datasets.  

 
Figure 3 Redraw process requests of an isosurface 
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4. Grid Visualization Pipeline Features 

This section describes the gird visualization features and the 
advantages of spreading the visualization pipeline on the 
grid. 
 
4-1 Heterogeneous support 
   
The implementation of our pipeline as grid services allows 
different hardware and different operating systems to 
communicate and exchange the data without worrying 
about underlying configuration. As an example, for our 
testbed, we have Linux RedHat 9 and fedora implemented 
as data reader and Isosurface extractor respectively which 
are able to communicate with Windows XP.   
 
4.2 Efficient Resources Utilization   
 
The technique of distributing the visualization operations 
offers chance to other users to utilize the resources where 
the workload is divided to several machines, unlike other 
grid enabled visualization systems such as stated in [13] in 
their implementation the visualization operations take over 
the memory of the entire used machine and the user will 
have to wait for the operations to complete. Resources 
utilization is an important concept in the grid concept. In 
our architecture, we implemented resources utilization in 
two main points. The first point is to divide the 
visualization task as connected pipeline that helped us in 
distributing the load and avoid our machines to be 
overwhelmed with several operations in one node. The 
second point is in our implementation of automatic 
discovery of resources. Where we first discover the proper 
resources and we make best use of them. 
 
4.3 Automatic Resource Discovery 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
For resources discovery, we utilize Globus MDS. Our 
resources discovery mechanism starts from the display 
client node as the user executes the grid mapping task 
provided in GUI. The MDS then query the resources 
available in the grid and registers the resources in the 
system. The resulted of the query is information of current 
load of each node and the memory, storage and CPU. For 
that purpose we wrote java client program for selection 
mechanism that is done by comparing our calculated 
datasets size and the power of the available nodes. On the 
other hand, our system is publically available to other users. 
The resources are advertised as grid services and registered 
in UDDI server.  This allows automatic discovery of 
resources and give the system flexibility to add or remove 
services to the pipeline as required.        
   
5. Testbed Implementation 

The resources we used for testbed implementation include 2 
HP workstations equipped with NVidia GeForce 4MX Go 
graphics, 512 MB of RAM and 2.87 GHz CPU, running on 
Linux RedHat 9 and Linux Fedora core 3 respectively.   At 
the client user, we used HP Notebook equipped with 
Intel(R)Pentium(R)4 CPU 2.80GH, Graphic Adapter ATI 
Mobility IGP 340M/345M ,  512 MB of RAM and 
ST94011A 40 GB disk drives running on windows XP 
Professional. All the machines were linked with LAN cable 
100MB Ethernet LAN. During the implementation there 
was extra demand for memory during the rendering process.  
 

6. Experimental Results 

For our initial results, we used test models (CT scan of 
facial bone) in raw format that were obtained from  Hospital 
Universiti Sains Malaysia and second model was the UNC 
head dataset converted to ASCII VTK Binary format was 
taken from public datasets archive Table 1 shows the 
models used in our experiment. 
 

             
   Figure 4 A – Isosurface with Isovalue of 1200                    Figure 4 B- Isosurface with Isovalue of 600  
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Table 1: Models used in benchmarks 
 

Model Name Number of Polygons Size of Data File 
Skeleton head 4.28 million 15.1MB 
3D full head  11.17 million 23.1MB 
 
The raw skeleton consists of 121 slices of 256*256 * 256 
producing file size 15.1MB as reported in the table. The 
datasets were processed by marching cubes and a polygon 
decimation algorithm. The two models are shown in the 
screenshots from the visualization client in Figure 5. 
 
The used algorithms in our architecture are 
vtkmarchingcubes to extract the Isosurface and 
vtkDecimatePro to reduce the number of produced 
polygons from the first step. (Figure  4 A) shows Isosurface 
of 15.1 MB datasets at client with Isovalue 1200. (Figure 4 
B) shows the Isovalue 600. And it is enough for skin 
surface for this particular datasets. Figure 5 shows graph 
Isosurface characteristics and usage of different Isovalue 
along the resulted number of polygons. To analyze and 
exchange our datasets via the pipeline, we used VTK at 
each node of the pipeline installed along with GT4. In our 
architecture, the implemented VTK java classes imports 
GT4 packages for easy programs integration. WSDL are 
used to advertise our services, such as render services. Our 
implementation is not restricted to particular platform. Our 
visualization pipeline components are distributed and 
advertized as grid services then published by UDDI server. 
Users only need to query the MDS for available services. 
However, for our initial implementation for resources 
discovery we utilize MDS included with GT4 installation. 
From the users perspective this underlying configuration is 
hidden. The only task for client user is to pressed on map 
grid function to query the resources available and map 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
the proper resources as showing in Figure 7.  
 
7. Pipeline Performance 

Figure 6 shows the distributed pipeline performance which 
we used the tools supplied in Linux RedHat 9 to capture the 
CPU and memory usage for each machine. However, there 
some other technologies we are putting into consideration 
such as NWS Network Weather Services [22] and 
NetLogger [23] for measurements in distributed systems.  
For now, we are utilizing the performance model as 
analytical approach based on [24] Performance Modeling 
technique where the overall pipeline performance is 
calculated by calculating individual machines. The reason 
for choosing this method is that, in order to have accurate 
performance modeling for sequential pipeline as in our case 
the performance of an Isosurface algorithm, we notice that 
different numbers of polygons and points with different 
Isovalue even with the same datasets. Therefore, the 
number of produced polygons results in radically different 
performance characteristics for the entire pipeline 
execution. Figure 7 shows an interface of Isosurface of 15.1 
MB datasets located at our (Skudai.fsksm.utm.my) starting 
pipeline node for reading then datasets passed to  Isosurface 
extraction node (Mewah.fsksm.utm.my) and then passed to 
rendering service then to client display 
(HP_Mobile.fsksm.ut.my)  notebook.  
 
8. Resources Mapping and Discovery 

The grid mapping is used to map the resources. Our current 
implementation of mapping is done by using RSL script as 
GRAM implementation of GT4.as showing in the Figure 7  
 

 
 

Figure 5 Isosurface characteristics for different Isovalue 
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            A- Skudai server extracting the datasets         B - Mewah Isosurface Extractor                 C- HP_Mobile client rendering the datasets                

 

Figure 6 Pipeline performance 

 
Figure 7 Java Swing Client Display of Isosurface of remote located Medical datasets with Isovalue 1200 
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the user only need to specify the starting node of the 
pipeline and the location of the datasets that he or she needs 
to visualize and the Isovalue required for visualization. The 
rest of the operation will be done automatically without 
having the user worry about extra configuration. 
 
9. Conclusion and Future Works 

 We presented our implementation of grid enabled remote 
visualization architecture. We gave a brief description of 
our technical implementation and showed the possible 
integration of grid services and valuable support for 
scientific visualization particularly on medical datasets. We 
decomposed the visualization pipeline in distributed 
machines and developed our visualization services as grid 
services registered and published to public UDDI server.  
We show the usefulness of distributing the workload 
between several machines and how to utilize the Globus 
GRAM services to automatically launch the pipeline.  Our 
next aim is to distribute the rendering process. Specifically, 
we are interested in applying parallel algorithms for this  
implementation. We were able to interactively visualize 
large number of polygons circa 9 million polygons at the 
client with java installed on modest resources machine. 
 
 
10. References 
 
[1] Bethel .W, Tierney. Brian, Lee . J, Gunter .D, Lau  S 

(2000): Visapult Using  High-Speed WANs and 
Network Data Caches to Enable Remote and Distributed 
Visualization, 2000 IEEE. 

[2]  Xiaoyu Zhang, Chandrajit Bajaj, William Blanke : 2001  
Scalable Isosurface Visualization of Massive Datasets 
on COTS Clusters : Proceedings of the IEEE 2001 
symposium on parallel and large-data visualization and 
graphics 

[3] Engel K Sommer .O, Ernst C, Ertl T. (2000): Remote 
3D Visualization using Image- Streaming Techniques.  
2000 

[4] Brett Beeson1,2, Mark Dwyer1, David  2005 :  Server-
side Visualization of Massive Datasets  Thompson3  
Proceedings of the First International Conference on e-
Science and Grid Computing (e-Science’05) 

[5] Foster, C. Kesselman, Nick .K. M., Tuecke .S (2002): 
The Physiology of the Grid: An Open Grid Services 
Architecture for Distributed Systems Integration. 
Technical   report, Globus, February 2002. 

[6] McCormick B. H., DeFanti T. A., Brown M. D. (1987), 
“Visualization in Scientific   Computing”, Computer 
Graphics 21 1-14. 

[7] Haber, R.B. and McNabb, D.A. 1990. Visualization 
Idioms: A Conceptual Model for Scientific Visualization 
Systems. In:  Visualization in Scientific Computing, 

Shriver, B., Neilson, G.M., and Rosenblum, L.J., Eds., 
IEEE Computer Society Press, 74-93. 

[8] Upson, C., Faulhaber, T., Kamins, D., Schlegel, D.,  
Laidlaw, D.,   Vroom, J., Gurwitz, R. and van Dam, A. 
1989. The Application Visualization System: a 
Computational Environment for Scientific  
Visualization, IEEE Computer Graphics and 
Applications 9, 4, 30- 42. 

[9] Will Schroeder, Ken Martin, and Bill Lorensen, The 
Visualization Toolkit: An Object-Oriented Approach To 
3D Graphics. Second Edition. Prentice Hall. Upper 
Saddle River, NJ. 1998. 

[10]  SGI. SGI OpenGL VizServer 3.1. Data sheet, SGI, 
March 2003. 
[11] Walton, J.P.R.B.  (2004). NAG’s IRIS Explorer. In: 

Visualization Handbook, Johnson, C.R. and Hansen, 
C.D., Eds., Academic Press (in press). Available at 

          http://www.nag.co.uk/doc/TechRep/Pdf/tr2_03.pdf 
[12] Walker D. W.  , Grimstead .I (2004):  Resource aware 
visualization environment. 
         http://www.wesc.ac.uk/projects/rave/.2004 
[13] Wood. J, Brodlie, K., J. Walton. (2003)  gViz – 

visualization and steering for the grid. In Proceedings 
of the UK All Hands Meeting 2003, 
http://www.nesc.ac.uk/events/ahm2003/AHMCD/pdf/0
30.pdf. , http://www.visualization.leeds.ac.uk/gViz. 

[14] Charters, S., Holliman, N.S. and Munro, M. 2003. 
Visualization in e-Demand: Grid Service Architecture 
for Stereoscopic    Visualization, Proceedings of UK e-
Science Second All Hands Meeting. 

[15] Osborne .J, Wright .H, (2003) SuperVise: Using Grid 
Tools to Support Visualization. In Proceedings of the 
Fifth International Conference on Parallel Processing 
and Applied Mathematics (PPAM 2003), 

[16] Mahovsky .J, Benedicenti. L (2003):  Architecture for 
Java-Based Real-Time Distributed Visualization. IEEE 
Transactions on Visualization and Computer Graphics, 
9(4):570 – 579, October December 2003. 

[17]Allen .G, Benger. W, Goodale. T, Hege H.-C, 
Lanfermann . G , Merzky . A, Radke. T , Seidel .E, 
Shalf .J (2000): The Cactus Code: A Problem Solving   
Environment for the Grid. In Proceedings of the Ninth 
International Symposium on High Performance 
Distributed Computing (HPDC’00), pages 253–262.    
IEEE, August 2000 

[18] Engel K.  et al.. (2000): Combining Local and Remote 
Visualization Techniques for Interactive Volume 
Rendering in Medical Applications.  2000 

[19] Lorensen, William and Harvey E. Cline. Marching 
Cubes: A High Resolution 3D Surface Construction 
Algorithm. Computer Graphics (SIGGRAPH 87 
Proceedings) 21(4) July 1987, p. 163-170) 
http://www.cs.duke.edu/education/courses/fall01/cps12
4/resources/p163-lorensen.pdf  

[20] William J. Schroeder , Jonathan A. Zarge , William E. 
Lorensen, Decimation of triangle meshes, ACM 

572574

Authorized licensed use limited to: UNIVERSITY TEKNOLOGI MALAYSIA. Downloaded on January 13, 2010 at 23:58 from IEEE Xplore.  Restrictions apply. 



 

SIGGRAPH Computer Graphics, v.26 n.2, p.65-70, 
July 1992 

[21] Thomas Sandholm and Jarek Gawor. Globus Toolkit 3 
Core - A Grid Service Container Framework. Globus 
Toolkit 3 Core White Paper, July 2003. 

[22] Rich  Wolski 2003 :  Experiences with Predicting 
Resource Performance On-line in Computational Grid 
Settings ( ACM SIGMETRICS Performance 
Evaluation Review, Volume 30, Number 4, pp 41--49, 
March, 2003. 

[23] Daniel K. Gunter, Keith R. Jackson, David E. 
Konerding, Jason R. Lee and Brian L. Tierney, 2005 :  
Essential Grid Workflow Monitoring Elements , The 
2005 International Conference on Grid Computing and 
Applications (GCA'05) , LBNL-57428 

[24] Ian Bowman  2004  Performance Modeling for 3D 
Visualization in a Heterogeneous Computing 
Environment  : available online 
http://vis.lbl.gov/Publications/2004/Bowman-PGV-
LBNL-56977.pdf 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 

573575

Authorized licensed use limited to: UNIVERSITY TEKNOLOGI MALAYSIA. Downloaded on January 13, 2010 at 23:58 from IEEE Xplore.  Restrictions apply. 


