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Abstract. Most of the clustering methods used in the clustering of chemical 
structures such as Ward’s, Group Average, K- means and Jarvis-Patrick, are 
known as hard or crisp as they partition a dataset into strictly disjoint subsets; 
and thus are not suitable for the clustering of chemical structures exhibiting 
more than one activity. Although, fuzzy clustering algorithms such as fuzzy c-
means provides an inherent mechanism for the clustering of overlapping 
structures (objects) but this potential of the fuzzy methods which comes from 
its fuzzy membership functions have not been utilized effectively.  In this work 
a fuzzy hierarchical algorithm is developed which provides a mechanism not 
only to benefit from the fuzzy clustering process but also to get advantage of 
the multiple membership function of the fuzzy clustering. The algorithm divides 
each and every cluster, if its size is larger than a pre-determined threshold, into 
two sub clusters based on the membership values of each structure. A structure 
is assigned to one or both the clusters if its membership value is very high or 
very similar respectively. The performance of the algorithm is evaluated on two 
bench mark datasets and a large dataset of compound structures derived from 
MDL’s MDDR database. The results of the algorithm show significant 
improvement in comparison to a similar implementation of the hard c-means 
algorithm. 

Keywords: cluster analysis, chemoinformatics, fuzzy c-means, bioinformatics,  
chemical information systems. 

1   Introduction 

The clustering of drug like compound structures is important in many phases of drug 
discovery and design like the virtual screening, prediction and modeling of structure 
properties, virtual library generation and enumeration etc. Drug discovery is a 
complex and costly process, with the main issues being the time and costs of finding, 
making and testing new chemical entities (NCE) that can prove to be drug candidates. 
The average cost of creating a NCE in a major pharmaceutical company was 
estimated at around $7,500/compound [1]. For every 10,000 drug candidate NCE 
synthesized, probably only one will be a commercial success and there may be 10-12 
years after it is first synthesized before it reaches the market [2].  
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Currently, many solution- and solid- phase combinatorial chemistry (CC) strategies 
are well developed [3]. Millions of new compounds can be created by these CC based 
technologies but these procedures have failed to yield many drug candidates. 
Enhancing the chemical diversity of compound libraries would enhance the drug 
discovery. A diverse set of compounds can increase the chances of discovering 
various drug leads and optimization of these leads can lead to better drugs.  In order to 
obtain a library of high chemical diversity, a number of structural processing 
technologies such as diversified compound selections, classification and clustering 
algorithms have been developed. However, the need for more robust and reliable 
methods is still seriously felt [4].  

The term cluster analysis was first used by Tryon in 1939 that encompasses a 
number of methods and algorithms for grouping objects of similar kinds into 
respective categories [5].  The main objective of clustering is to organize a collection 
of data items into some meaningful clusters, so that items within a cluster are more 
similar to each other than they are to items in the other clusters. This notion of 
similarity and dissimilarity may be based on the purpose of the study or domain 
specific knowledge. There is no pre-notion about the groups present in the data set. 

Willett [6] has found that, among the hierarchical methods, the best result was 
produced by Ward's, Group Average and Complete Linkage hierarchical methods and 
Jarvis-Patrick was found to be the best method among the non-hierarchical methods 
tested. They have evaluated almost 30 hierarchical and non hierarchical methods on 
10 datasets each containing a group of compounds exhibiting a particular property or 
biological activity such as anesthetic activity, inhibition activity, molar refractivity, 
where 2D fingerprints been used as compound descriptors. In another study [7], 
Barnard and Downs have further investigated Jarvis-Patrick method in more detail 
using a small dataset of 750 diverse set of compounds from the ECDIN database 
using 29 physiochemical and toxicological information. Though satisfactory 
correlations have been obtained yet to obtain the best correlations for different 
properties and activities different parameter setting was necessary. 

In [8], Downs and Willett have analyzed the performance of Ward’s, Group 
Average, Minimum Diameter and Jarvis Patrick methods on two datasets: a small 
subset of 500 molecules and another one of 6000 molecules from Chemical Abstract 
Service [9] database. They have incorporated the same 29 physiochemical properties. 
The performance of Jarvis Patrick’s method was very poor. The Minimum diameter 
method was found to be the most expensive, and the performance of the Ward’s 
method was the best.  

Another work on the clustering of chemical dataset was reported by Brown and 
Martin [9] where Ward’s, Jarvis-Patrick’s (fixed and variable length nearest neighbor 
lists), Group Average and Minimum Diameter (fixed and variable diameter) methods 
have been evaluated on four datasets, each with single activity containing active as 
well as inactive compounds, summing to a total of 21000 compounds. They have 
employed a number of descriptors like MACCS 2D structural keys, Unity 2D keys, 
Unity 2D fingerprints, Daylight 2D fingerprints and Unity 3D pharmacophore 
screens. The performance of wards was found to be the best across all the descriptors 
and datasets, whilst the Group average and minimum diameter methods were slightly 
inferior. The performance of Jarvis Patrick method was very poor for fixed as well as 
for variable length nearest neighbor lists. 
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Recently, fuzzy clustering methods have been applied for clustering of chemical 
datasets. In [10] Rodgers et al have evaluated the performance of fuzzy c-means 
algorithm in comparison with hard c-mean and Ward’s methods using a medium size 
compound dataset from Starlist database for which LogP values were available. Their 
results show that fuzzy c-means is better than Ward’s and c-means. They have used 
simulated property prediction method [11] as performance measure, where the 
property of the cluster is determined by the average property of all the molecules 
contained in the cluster. This average property of the cluster is called the simulated 
property of each of the structure in the cluster. The simulated property of each 
molecule is correlated with the actual property of the compound to find the 
performance. In [12], we have used fuzzy Gustafson-Kessel, fuzzy c-means, Ward’s 
and Group Average methods to cluster a small size dataset from MDL’s MDDR 
database containing about 15 biologically active groups. Instead of using simulated 
property prediction method, the active cluster subset method where the proportion of 
active compounds in active clusters is used as performance measure, was employed. 
Our results show that the performance of Gustafson-Kessel algorithm is the best for 
optimal number of clusters. The Ward’s, fuzzy c- means and Group Average methods 
are almost the same for optimal number of clusters.  

Bocker et al [13] have revised the hierarchical k-means algorithm and developed an 
interface to display the resultant hierarchy of compound structures in the form of a 
very useful colorful dendrogram. The same system has also been used for the display 
of results for an improved median hierarchical algorithm [14]. 

 

Fig. 1. The upper graph describes the non-overlapping compound structures whereas where as 
the lower graph describes the overlapping clusters. The vertical axis plots the strength of 
activity of the compound structure and horizontal axis plots the number of activities. 
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The main problem of the current clustering methods used in the field of 
chemoinformatics is their non overlapping nature, where these methods consider the 
datasets as having very distinct and clearly separable boundaries among the various 
clusters. It is contradictory to the real problems at hand, where the boundaries are 
very vague and so it is not always as simple to delineate the clusters as these 
traditional methods tackle them. In Figure 1, two types of datasets are depicted a) 
where the boundaries of the clusters are well defined and can easily be separated and 
b) where the boundaries of the clusters are vague and so difficult to delineate. The 
second case is a challenge for the current methods where their performance is 
expected to be not as good as when each data element is not limited to belong to only 
one cluster. 

In case of chemical compounds that are biologically active, it is often the scenario 
that they exhibit more than one activity simultaneously and grouping such compounds 
under one cluster is not justified. For example, the MDDR database [15], which 
currently contains around 16 million compounds, the number of compounds active 
against multiple targets is considerably large. 

Thus the previous researches show the effectiveness of hierarchical methods on 
one hand and that of the fuzzy methods on the other hand. The fuzzy clustering 
methods have the promise to care for the overlapping nature of chemical structures. In 
this work an improved hierarchical fuzzy algorithm is employed for the clustering of 
chemical structures that exhibit multiple activities. It has also been shown on a dataset 
sufficiently quantified in terms of the activities that the method result in better 
clustering when higher overlapping is allowed in the clustering process. The results 
have also been compared with a similar implementation of the k-means method.  

In the next section the dataset and the corresponding structural descriptors used in 
this work are described. Section 3 discusses the hierarchical implementation of the 
fuzzy c – means in detail. In section 4 the results are discussed and section 5 
concludes the work. 

2   Dataset Preparation and Descriptors Generation 

In this work three datasets have been utilized to evaluate the performance of the 
proposed algorithm: two benchmark datasets known as the Fisher’s Iris dataset [16] 
and Golub’s Lekuemia datasets [17] and one drug dataset composed of bioactive 
molecules exhibiting overlapping as well as non-overlapping activities collected from 
the MDDR database. The MDDR database contain 132000 biologically relevant 
compounds taken from patent literature, scientific journals, and meeting reports [15]. 
Each entry of the database contain a 2D molecular structure field, an activity class and 
an activity class index fields besides many other fields like biological investigation 
phase, chemical abstract service (CAS) [18] compound identity , and patent 
information fields. The activity index is a five digit code used to organize the 
compounds’ structures based on biological activity; for example the left most one or 
two digits describe a major activity group and the next three digits describes sub 
activities inside the bigger activity. For example, the activity index 31000 shows a 
large activity of antihypertensive agents and the activity indexes 31250, 31251 show 
Adrenergic (beta) Blocker, Adrenergic (beta1) Blocker respectively. The dataset used 



144 J.Z. Shah and N. bt Salim 

here comprised of 12 major activities where each group can further be divided into a 
few sub categories. Initially 55000 compounds have been extracted from the database 
using a number of filtering strategies (as described in the following equations 1 and 
2). The number of compounds in dataset1 (DS1) was 29843 and dataset2 (DS2) 6626. 
The dataset DS1 contain exactly non-overlapping structures where each compound in 
the dataset can exhibit only and only one activity among the list of activities selected 
for this work. The dataset DS2 contain bioactive (compounds exhibiting only two 
activities) such that each compound exhibit two activities only. Let A be the set of 
activities selected and l be the number of activities in this set, then the DS1 is a 
superset of sets Di, a set of compounds exhibiting activity Ai ∈ . If 1DSz ∈ is an 
arbitrary compound, then 

{}{ }liiAiAiDzDS i ,...,2,1,|1 =−∉∧∈∈=  (1) 

Similarly, DS2 is a superset of sets Dij, where compound 2DSz ∈ exhibit two 
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By combining these two datasets, another dataset DS3 has been organized in the same 
way as depicted in fig 1. It contains single activity compounds from DS1 and in 
between any two activity groups there are bi-activity molecules from DS2 which will 
belong to both the groups on its right and left. 

The descriptors generation or features extraction is an important step in 
computational clustering of molecular structures and other problems such as 
classification and quantitative property/activity relationship modeling. A number of 
modeling tools are available that can be used to generate structural descriptors. In this 
work, we use the Dragon software [19] to generate around 99 topological indices for 
the molecules. Topological indices are a set of features that characterize the 
arrangement and composition of the vertices, edges and their interconnections in a 
molecular bonding topology. These indices are calculated from the matrix information 
of the molecular structure using some mathematical formula. These are real numbers 
and possess high discriminative power and so are able to distinguish slight variations 
in molecular structure. This software can generate more than 1600 descriptors which 
include connectivity indices, topological indices, RDF (radial distribution function) 
descriptors, 3D-MORSE descriptors and many more.  

Scaling of the variables generated is very important in almost all computational 
analysis problems. If magnitude of one variable is of larger scale and the other one is 
of smaller scale then the larger scale variable will dominate all the calculations and 
effect of the smaller magnitude variables will be marginalized. In this work all the 
variables used were normalized such that the maximum value for any variable is 1 
and the minimum is 0. 
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Table 1. Selected Topological Indices 

TI Description 
Gnar Narumi geometric topological index 
Hnar Narumi harmonic topological index 
Xt Total structure connectivity index 
MSD Mean square distance index (Balaban) 
STN Spanning tree number (log) 
PW2 path/walk 2 – Randic shape index 
PW3 path/walk 3 – Randic shape index 
PW4 path/walk 4 – Randic shape index 
PW5 path/walk 5 – Randic shape index 
PJI2 2D Petitjean shape index 
CSI Eccentric connectivity index 
Lop Lopping centric index 
ICR Radial centric information index 

In order to reduce the descriptor space and to find the more informative and 
mutually exclusive descriptors a feature selection method principal component 
analysis (PCA) [20] was used. PCA was carried out using the MVSP 3.13 [21]. It has 
been found that 13 components can represent more than 98% of the variance in the 
dataset.  The input to our clustering system is thus a 13 X 28003 data matrix. The 13 
selected topological indices are shown in Table 1. 

3   Methods 

Fuzzy clustering is the intrinsic solution to the problem of overlapping data, where the 
data elements can be member of more than one cluster. The traditional clustering 
methods do not allow this shared membership by restricting the data elements to 
belong to only one of the many clusters exclusively. There can be almost three types 
of partitioning concepts, the traditional hard or crisp one where a compound can 
belong to only one cluster and so the membership degree of the compound is said to 
be 1 in any one cluster and zero in the rest of the clusters. Another approach is 
provided by the fuzzy logic where the membership degree of a compound can be [0, 
1] and so the compound can belong with varying degree to more than one cluster [22-
23]. In both of these partitioning scenarios, the membership ikμ  follow a few 

conditions such as the sum of the membership values over a range of clusters c is 
always equal to one: 
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Where n is the number of compounds in the dataset, c is the number of clusters and i 
and k are the indexes for the clusters and data elements respectively. 

In the third case, called the possibilistic partitioning [24], this constrain is also 
relaxed and the sum of the membership degrees is not required to be equal to one, 
however, clustering algorithms based on this theory are out of the scope of this work. 

3.1   Fuzzy Clustering Algorithm 

In the literature there are a large number fuzzy based clustering algorithms [22-26] 
that are variations of the most fundamental and  widely used fuzzy c-means, a fuzzy 
counter part of the ordinary c-means (or k-means) algorithm, first characterized by 
Dunn [27] and then formalized by Bezdek [28]. The algorithm is based on the 
iterative minimization of an objective functional and so independent of the 
initialization conditions and sequence of input presentation. The objective functional 
is given as: 
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where Zk is the kth feature vector representing a molecule of the dataset Z containing a 
total of n molecules, Vi is the prototype (center or codebook) of ith cluster of the total 
number of clusters c, ||.||2 is the square of distance between each molecule and each 

cluster center, and ikμ  is the membership value of molecule Zk to be part of prototype 

Vi. A represents a positive definite norm inducing matrix dependent on the type of 
distance (in case of Euclidean distance it is a unity matrix).  The stepwise description 
of the algorithm is given below: 

 
Step1. Initialize the fuzzification index m, the partition matrix U, the number of 
clusters c and tolerance ε. 

Repeat the following steps  

Step2. Compute the cluster prototypes 
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where the subscripts l  and l-1 represent the current and previous iterations 
respectively.  

Step3. Compute the distances between compound Zk and cluster center Vi  
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Step4. Update the partition matrix 
If DikA >0 
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else 

0=ikμ  (6d) 

Step5. if ε<− − )1()( ll UU  Stop 

           else go to Step 2 
 

The fuzzification parameter m is a measure of the fuzzfication that can have any 
value from 1.1 to ∞. As the value of m is increased the memberships of molecular 
structures to the clusters become fuzzier. For a value of m = 1, the algorithm will 
simply becomes the crisp or hard c-means, but it should be avoided as it will result in 
a divide by zero error in equation 6(c). Many researches suggest a value of 2.0 for m, 
as the first fuzzy c-means algorithm suggested by Dunn also used the same value [29]. 
The stopping condition ε = 0.001 is usually enough for convergence, but we have 
kept it at 0.0001, just to be on the safe side. 

3.2   Fuzzy Hierarchical Clustering 

The algorithm is a recursive procedure of fuzzy clustering, where each cluster formed 
is further re-clustered. The number of child clusters in each recursive call can be 2, 3 
or any other number greater than 1. However, here in every recursive call the value of 
c is kept at 2 to obtain binary tree like order on the structures, a fashion more suitable 
and historical to the chemical structures based on their biological activities.  The 
inputs are a n X m data matrix Z composed of n (number of structures in each 

recursive call) rows of feature vectors m
kZ ℜ∈ and m columns of features. The 

output of each recursive call is a c X n membership matrix U. The two child clusters 
are formed using the membership matrix U, where a structure Zk can be a member of 
either one of the two clusters if the membership of one is greater than the other to 
some extent, or can be part of both the clusters if their membership degrees do not 
show much difference. Once a cluster is partitioned into its child clusters, the 
membership matrix is discarded but the algorithm keeps the necessary global 
information in the constituent clusters by adding the structures which are closely 
related to both the clusters. Thus in each recursive call a new membership matrix is 
generated and optimized based on the local information of the cluster. 

This recursive process of clustering continues until every cluster is a singleton (a 
cluster containing only one structure) or when an optimal partition is obtained. For 
this purpose the partition validity measure suggested by Bocker et al [13] is adopted. 
The clustering process is repeated for a number of threshold and at the end of each 
repetition, the number of singletons, the number of non singleton clusters, and a 
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distance measure Dmax (Equation 7) are calculated and plotted against the thresholds 
to find the optimal threshold. 

nkczdD
i

ik ≤≤= ∑ 1)],,(max[max  (7) 

where d is the Euclidean distance, between the structure ik cz ∈ and the prototype of 

the cluster ci , and n is the number of structures in each cluster. The value of Dmax 
represents the maximum deviation of the clusters from their prototypes. 

Once the optimal threshold is obtained from the graph by visual inspection (one 
shown in Fig 2(a)-(b)), the clustering process is repeated for the last time with the best 
threshold selected. The main steps of the algorithms are ordered below: 

 
Run1: For finding the optimal threshold 

(i) A threshold is selected from a range of thresholds 
(ii) The value c is initialized which is 2 for binary trees, the membership 

matrix U is initialized 
(iii) The dataset is clustered using the fuzzy –c-means algorithm 
(iv) Each of the cluster is checked if the size is larger than the Threshold 

selected, then go to step (ii) for sub-clustering the resultant cluster 
(v) Plot the number of clusters, singletons and the metric Dmax against the 

range of threshold 
Run2: (i) Select the optimal threshold through visual inspection of the graph 

(ii) Repeat the algorithm for the last time using the optimal threshold. 
 

In clustering a good method is supposed to combine highly similar activity 
structures together, so large number of singletons is not considered a good gesture. 
Thus, an appropriate point for a good clustering will be a threshold for which the 
number of singletons is a minimum. 

4   Results and Discussion 

Three datasets have been used to evaluate the performance of the clustering process. 
These include two small size benchmark datasets a leukemia cancer dataset and fisher 
iris dataset, and a real dataset of chemical structures described earlier in detail. 
Leukemia dataset is a collection of 72 genes expressions belonging to two types of 
cancer, acute myeloid leukemia (AML) and acute lymphoblastic leukemia 
(ALL).Almost 62 of the specimens for this genes expression data were obtained from 
bone marrow samples of the acute leukemia patients while the rest had been collected 
from the peripheral blood samples. The fisher’s Iris dataset consists of 150 random 
samples of flowers belonging to the Iris species setosa, versicolor, and virginica. For 
each of the specie, the dataset contain 50 samples and each sample consists of four 
variables, sepal length, sepal width, petal length and petal width. 

The Iris dataset poses much difficulty to be partitioned  into three classes as two of 
the classes are highly overlapped [30, 31]. However, our method can partition the 
dataset into three clusters with high accuracy, when a good threshold is selected. 
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(a)                                                                        (b) 

                                            
(c)                                                                                       (d) 

Fig. 2. Clustering results of (a) lekuemia threshold, (b) iris threshold (c) leukemia clustering 
tree and (d) iris clustering tree  

The threshold selection plot is given in figure 2(b) and corresponding dendrogram for 
the threshold value 0.5, is given in figure 2(d). It can easily be observed that one 
(shown in yellow color) of the classes could not been separated with much accuracy.  

Since these two real datasets are almost non-overlapping but when the number of 
clusters is decreased, the accuracy (performance) of the clustering degrades. These 
two results are for the threshold level 0.5 (iris) and 3.0 (leukemia). As the threshold is 
decreased, the clustering accuracy increases but results in more number of clusters 
and as the threshold is increased lesser number of clusters and more heterogeneous 
clusters are obtained. 

After confirming the results with the help of benchmark datasets, the methods was 
applied to the real molecular dataset DS3 developed in section 2. This dataset contain 
around 12 biologically active and overlapping clusters and the objective of the work is 
to evaluate the clustering performance of the developed hierarchical fuzzy c-mean 
(HFCM) algorithm. For evaluation, we use the active cluster subset method [9]. A 
threshold range of 0.01-0.1 with an increment step of 0.01 was used in this work. For 
each threshold a number of clusters were obtained. Some of the clusters obtained may 
be having only actives or inactives structures but many of them will have both. The 
clusters having at least one active structure are combined to make one super cluster 
called the active cluster subset.  

This subset of the dataset used should not contain any of the singletons, the 
singletons do not give any clue about the performance of the clustering method, and 
the clustering method should combine active structures with actives and inactives 
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Fig. 3. Performance of the Hierarchical Fuzzy c-means (HFCM) and hierarchical c-means 
(HCM) 

0
10
20
30
40
50
60
70
80
90

100

0.1 0.09 0.08 0.07 0.06 0.05 0.04 0.03 0.02 0.01

Threshold

%
 P

ro
p

o
rt

io
n

 o
f 

A
ct

iv
es

 

HFC-0.0

HFC-0.1

HFC-0.2

HFC-0.3

 

Fig. 4. Performance of the HFCM for various Membership Thresholds. The HFC-0.0 stands for 
the HFCM with Membership Threshold of 0.0, and so on. 

structures with inactives. Thus the singletons are avoided to be included in the active 
cluster subset. The proportion of actives to inactive structures in the active cluster 
subset is determined. For each activity group of the dataset, the structures belonging 
to that activity group were taken as active and the rest of the groups were taken as 
inactive. The process is repeated for all the 12 bioactivity groups of the dataset for all 
the clusters obtained for each threshold level and an average proportion was 
determined. 
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The fuzzification index of the fuzzy c-means determines the spread in the dataset 
[24] whose value can range from 1.1 to any finite number, a smaller value means that 
the data and natural clusters are spread over  wide area (volume). As the value of 
fuzzification index is increased the data and the clusters within becomes more and 
more compact. The best value of the fuzzification index for which the best clustering 
can be obtained depends on the dataset used. So, first a fuzzy c-mean method was 
used to determine the best value for fuzzification index, and was found to be 1.4. The 
performance of the hierarchical fuzzy c-means is shown in figure 3, for various values 
of the threshold level, in comparison with the hierarchical hard c-means clustering.  
Further, to investigate the effect of overlap we repeated a number of experiments. The 
parent cluster was partitioned into two child clusters based on the membership degree 
of each compound structure as follows: 

 

If       Uik – Threshold > 0 
 
         The compound k is assigned to cluster i, 0 <= i <= 1 
 
else 
 
         the compound is assigned to both of the two clusters 

 

Since, [ ]1 0,   ∈
ik

μ , so, the value of Threshold can be between 0 and 0.5. We have 

tested for a number of values of Threshold and the results are shown in figure 4. As 
the Threshold is increased the compounds are allowed to show more overlap and so 
we get compounds that go to both of the two child clusters. This permission of higher 
overlap results in small size and homogeneous clusters, which increases the 
percentage of active structures in active cluster subset. 

5   Conclusions 

In this work, an improved hierarchical fuzzy algorithm has been employed for the 
clustering of chemical structures. The results of the algorithm are very convincing in 
clustering the multiple activity compounds. A special real dataset have been 
developed for this purpose where the overlap of activities have been restricted to only 
two which complements the analysis process for binary tree like clustering. It has 
been shown that the algorithm have an edge over a similar implementation of the k – 
means algorithm. Moreover, when higher overlap of activities is allowed, which is 
incorporated by fuzzy membership as threshold, the results are improved. 
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