
 

  

Abstract-- This paper deals with modeling and control of 

a nonlinear horizontal active magnetic bearing (AMB) 

system via current control scheme. The gyroscopic effect 

and mass imbalance inherited in the system are 

proportional to the rotor speed in which these 

nonlinearities cause high system instability as the 

rotational speed increases. In order to synthesize a robust 

controller that can stabilize the system under a wide range 

of rotational speed, the dynamic AMB model is 

transformed into a deterministic model to form a class of 

uncertain system. Then, based on Sliding Mode Control 

(SMC) theory and Lyapunov method, a new robust 

controller that stabilizes the system is proposed wherein 

the Linear Quadratic Regulator (LQR) is used to design 

the sliding surface. Under this control, the reaching 

condition is guaranteed and the closed loop system is 

stable. The performance of the controller applied to the 

AMB model is demonstrated through simulation works 

under various rotational speeds and system conditions.  

 
Index Terms—Active Magnetic Bearing (AMB), Sliding Mode 

Control, deterministic form.  

 

I.  INTRODUCTION  

LIDING Mode Control (SMC) has received great attention 

in recent years because of its robustness against 

uncertainties that present in system [1], [2] and [3]. SMC is a 

nonlinear control technique that is applicable to linear, 

nonlinear, multi-input/multi-output, discrete-time and large 

scale systems. There are many approaches which have been 

considered in the design process of the sliding-mode control 

law, such that the system is robust or even insensitive to 

parametric uncertainties and disturbance. 

In the practical application of SMC, the controller has been 
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successfully adapted in many forms and applied in numerous 

real-world applications such as DC-motor control [4], robot 

manipulator [5], active suspension system [6], magnetic 

suspension system and magnetic bearings [7][8]. 

 Prior designing the SMC control law, a representation of the 
dynamic system in a class of model structure is a prerequisite 
for development of the control algorithm. Once the model is 
available, the design of SMC controller involves two crucial 
steps which are commonly referred to as the reaching phase 
and the sliding phase [2][9]. In this paper, the design of both 
the sliding surface and control law based on SMC theory and 
its application to a four-degree-of-freedom (DOF) AMB 
system are considered. The AMB system contains the 
gyroscopic effect and imbalance in which this nonlinearities 
cause the system to be unstable and the magnitude is 
proportional to the rotating speed of the rotor. The designed 
controller is proven to be able to stabilize the AMB system for 
a given range of rotational speed, which is a main advantage 
compared to the method reported in [8]. In addition, instead of 
using the standard pole placement method to parameterize the 
sliding surface, an optimal quadratic method in which the 
linear quadratic performance index is minimized. The 
hyperplane design problem as shown in [10] is finally reduced 
to be a standard Linear Quadratic Regulator (LQR) problem in 
which the design procedure is quite established. The stability 
of the closed-loop system is guaranteed and the whirling orbit 
of the rotor due to the nonlinearities is reduced significantly. 

The outline of this paper is as follows: In Section II, the 
model of the AMB system based on [8] is illustrated and 
represented in its deterministic form which serves as a tool for 
the controller design. Section III covers the detail design of 
SMC control algorithm wherein both the parameterization of 
sliding surface based on LQR method and the development of 
nonlinear control law are shown. The stability of the system 
under the designed controller is also proven mathematically. 
Then, in Section IV, the performances on the AMB system 
under the controller are illustrated through simulation works 
under various system conditions. Finally, the conclusion in 
Section V summarizes the contribution of the work. 

II.  MODELING OF AN ACTIVE MAGNETIC BEARING SYSTEM 

In order to synthesize the proposed sliding surface with the 

controller, a vertical shaft AMB system model for the 

application of turbo molecular pump system is re-derived 

based on the work done in [8].  
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A.  Mathematical Model 

 
 
The gyroscopic effect that causes the coupling between two 

axes of motions (pitch and yaw) is also considered. Fig. 1 
illustrates the five degree-of-freedom (DOF) vertical magnetic 
bearing in which the vertical axis (z-axis) is assumed to be 
decoupled from the system and hence controlled separately.  

The top part of the rotor of the system in Fig. 1 is 
controlled actively by the magnetic bearing, labeled as AMB, 
in which the coil currents are the inputs. The bottom part of the 
rotor however is levitated to the center of the system by using 
two sets of permanent magnets labeled as PMB.  The rotation 
of rotor around the z-axis is supplied by external driving 
mechanism and considered a time-varying parameter. Fig. 2 
illustrates the free-body diagram of the rotor which shows the 
total forces produced by the AMB and PMB of the system. 
Based on the principle of flight dynamics [11], the equations 
of motion of the rotor-magnetic bearing system is as follows: 

 
       

     )cos(2 tlmffxm unxxg bu
ωω++=��  

     
bu xbxuzar fLfLJJ −+−= αωβ ���  

     )sin(2 tlmffym unyyg bu
ωω++=��  

      
bu ybyuzar fLfLJJ +−= βωα ���  

 

The terms )cos(2 tlmun ωω and )sin(2
tlmun ωω  are the 

imbalances due the difference between rotor geometric center 
and mass center. These imbalances cause the whirling motion 
and the magnitude is proportional to the rotor rotational speed, 
ω. The gyroscopic effect is represented by the term αω �zaJ−  

and βω �
zaJ , where it can be noticed that this will cause the 

coupling between the axes of motions proportional to the 
speed. The control forces produced by the AMB are given by 
the following equations: 
 

        
xuiuduugduxu iKKLxKf 222 ++= β  

        
yuiuduugduyu iKKLyKf 222 +−= α  

  

where 
xulxurxu fff −=  and 

yulyuryu fff −= are the net forces 

produced by the AMB on each x- and y-axis respectively (the 
same net force for bottom PMB as well). This is possible by 
having the AMB coil wound to produce differential current 
mode. For the PMB, the net forces produced are given by the 
following equations: 
 

            ββ bbgbbbgbxb LKxKLCxCf 2222 +−+−= ��  

            αα bbgbbbgbyb LKyKLCyCf 2222 −−−−= ��  

 

Equations (1), (2) and (3) can be integrated to produce the 
AMB model in the following form: 
 

         ),()()()()( tFtBUtXAtX ωω ++=�  
 

where T

gggg yxyxX ],,,,,,,[ αβαβ ����=  are the states of the 

system, 88)( x
A ℜ∈ω  is the system matrix, 28x

B ℜ∈  is the input 

matrix, T

yuxu iitU ][)( =  the input currents and F(ω,t) is the 

disturbance vector due to the imbalances. The nonzero 

elements of the matrices are shown in the appendix. 

 

B.  AMB model in deterministic form 

In order to synthesize the controller, the AMB model is 
treated as an uncertain system in which deterministic approach 
to classify the system is used based on [12]. By using this 
approach, the AMB model can be decomposed into its nominal 
and uncertain part as shown below  

 

    ),()()()),(()( tFtBUtXtAAtX ωω ++∆+=�        (5) 
 

where ∆A(ω,t) represents the uncertainty of the system matrix 
and F(ω,t) is the disturbance matrix associated with speed 
dependent of imbalance. A and B are the nominal constant 
matrices of the system. The decomposition into this 
deterministic form is possible due to the fact that the maximum 
and minimum values of the rotational rotor speed are known. 
The elements of the ∆A(ω,t) and F(ω,t) can be calculated 

Fig. 1.  Vertical Active Magnetic Bearing System 
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            Fig. 2. The total forces acting on the AMB rotor. 

fxdl 

fydr 

α 

ω 

z 

x 

y 

β 

fxur fxul 

fyul 

fyur 

fxdr 

fydl 

G(xg,yg,zg) 

z 

x 

y 

AMB - xu1 AMB - xur 

AMB - yu1 

AMB - yur 

PMB – xd1 PMB – xdr 

PMB – ydr 

PMB – ydl G 

Authorized licensed use limited to: UNIVERSITY TEKNOLOGI MALAYSIA. Downloaded on December 30, 2009 at 22:13 from IEEE Xplore.  Restrictions apply. 



 

based on these available bounds. The rotational speed is given 
as follows: 
 

         sec/3142sec/0 radrad ≤≤ ω .                 (6) 
 

Then, by using these bounds and the other system parameter 
values as shown in Table I, each element of the system and 
disturbance matrices can be calculated and specified in the 
following form: 
 

                               ijijij
ataa ≤≤ ),(ω                    (7a) 

                         jjj
dtdd ≤≤ ),(ω                            (7b) 

 

for i = 1, …, 8, and j = 1, …, 8, where aij(ω,t) and dj(ω,t) are 
the element of ∆A(ω,t) and F(ω,t) matrices respectively. The 
upper and lower bars indicate the maximum and minimum 
values of the elements. The element of matrix A and ∆A(ω,t) 
can be calculated based on these bounds by using the 
following procedure: 

      
2

),(
ijij

A

aa
jia

+
= , ),(),( jiaajia AijA −=∆    (8) 

for i-th row,j-th column elements of A and ∆A(ω,t). 
 For the disturbance matrix, F(ω,t), only the maximum 
values of the elements are needed since these values represent 
the highest disturbance values caused by the imbalance which 
should be eliminated from the system.  
 

TABLE I 
PARAMETER FOR VERTICAL AMB SYSTEM [8] 

 

III.  SLIDING MODE CONTROLLER DESIGN 

 Consider a dynamical system modeled by the following 
differential equation 
 

     ),()()()),(()( tFtButxtAAtx ωω ++∆+=�            (9) 
 

where n
tx ℜ∈)(  is the system states, m

tu ℜ∈)(  is the control 

input, F(ω,t) is the nonlinear disturbance that presents in the 
system and matrix B is of full rank. ∆A(ω,t) is the uncertainty 
in the system matrix. To complete the description of the 
uncertain dynamical system, the following assumptions are 
introduced and assumed to be valid. 
 
A1) For existence purposes, ∆A (·, ·) and F (·,·) are   
        continuous on their arguments. 
A2) Matching condition is met and there exist functions       

    nmn
tpH

×ℜ→ℜ×ℜ:),(   and mn
tpE ℜ→ℜ×ℜ:),(  such  

     that  
          ∆A(ω,t) = BH(ω,t) 

 F(ω,t) = BE(ω,t) 
 

A3) The pair (A,B) is completely controllable. 
 
 From the structural assumptions, the uncertainties can be 
lumped and the dynamical system can be represented in the 
following form: 
 

       )],()([)()( tgtuBtAxtx ω++=�      (10) 
 

where g(ω,t) is the lumped uncertainties. Notice that the 
system varies with the time-varying parameter, ω, and if the 
bound is known, the following assumption can be introduced. 
 
A4) There exists a positive scalar valued function      

    
+ℜ→ℜ×ℜ:),( tωρ  such that ),(),( ttg ωρω ≤ . 

A.  Sliding surface design 

 In SMC design, the first step is to parameterize the sliding 
surface such that the system constrained to the sliding surface 
exhibits desired system behavior. As covered in [2],[9] and 
[10], under the SMC, once the system slides on the designed 
surface, the order of the system is reduced. This can be 
demonstrated by treating g(ω,t) = 0 in (10) and the nominal 
system now can be partitioned and represented as follows: 
 

           )(
0

12

1

2221

1211

2

1
tu

Bx

x

AA

AA

x

x
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=









�

�
     (11) 

 

where )(
1

mn
x

−ℜ∈  and m
x ℜ∈2

. Let the sliding surface is 

defined to be as follows: 
 

       }0)(:{)( =ℜ∈= tSxxt
nσ              (12) 

 

where nm
S

×ℜ∈ is full rank matrix, ][ 21 SSS = and 
mm

S
×ℜ∈2

is nonsingular. Thus, during the ideal sliding, the 

motion can be represented as 
 

         02211 =+ xSxS  

Symbol Parameter     Value  Unit 

m Mass of Rotor 1.595         kg 
Ja Moment of Inertia 

about rotational 
axis 

1.61 × 10-3    kg.m2 

Jr Moment of Inertia 
about radial axis 

3.83 × 10-3   kg.m2 

Lu Distance of upper 
AMB to G 

0.0128          m 

Lb Distance of lower 
PMB to G 

0.0843          m 

Kiu Linearized 
force/current factor 

200               N/A 

Kdu Linearized 
force/displ.  factor 

2.8 × 105      N/m 

Kb Stiffness coefficient 
of PMB 

1.0 × 105      N/m 

Cb Damping 
coefficient of PMB 

48                kg/s 

mun Static imbalance 0.6 × 10-3     m 
l Distance of 

unbalance mass 
from G 

0.02             m 

ω Rotor rotational 
speed 
 

0 – 1047 
(0 – 10000) 
 

rad/sec 
(rpm) 
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11

2

1
2 Mxx

S

S
x −=−= .        (13) 

Based on (11), the closed loop system on the sliding surface is 
given by 
         

2121111 xAxAx −=� .       (14) 
 

Substituting (13) into (14), the closed-loop system is 
represented as follows: 
 

         
112111 )( xMAAx −=�        (15) 

 

It is clear the closed-loop system will be stable as long as the 
eigenvalues of (A11-A12M) are stable, i.e. the eigenvalues are 
on the left-hand side of the s-plane. This can be achieved by 
choosing the design matrix M through various linear state 
feedback control laws including pole placement method, 
quadratic minimization and direct eigenstructure assignment 
[10]. In this work, the design of the sliding surface subjected 
to minimization of the following quadratic performance index 
is considered [10]: 

        ∫
∞

=
st

T dttQxtxJ )()(
2

1
      (16) 

 
where Q is symmetric positive definite, and ts is the time when 
the sliding motion starts. To continue with the design, matrix 
Q is partitioned such that it is compatible with the reduced 
order system (11) and given as follows: 
 

        







=

2221

1211

QQ

QQ
Q          (17) 

 

where Q12 = Q21. Equation (16) can now be transformed to 
match the structure of the system (11) and can be expressed as  
 

   dtxQxxQxxQxxQxJ
st

TTTT

∫
∞

+++= )(
2

1
2222121221211111  

  dtxQxxQxxQx
st

TTT

∫
∞

++= )2(
2

1
222221211111     (18) 

 

Equation (18) can be treated as a standard LQR problem when 
the last two terms of (18) are factored out as follows: 
 

121
1

22211

121
1

22222121
1

22222222121 )()(2

xQQQx

xQQxQxQQxxQxxQx

TT

TTT

−

−−

−

++=+
 

                       (19) 
Substituting (19) into (18) yields 
 

  ∫
∞

−−=
st

T
xQQQQxJ 121

1
2212111 )(

2

1
 

                      dtxQQxQxQQx T )()( 121
1

22222121
1

222
−− +++  

            dtzQzxQx T

t

T

s

)(
2

1
2211 += ∫

∞

         (20) 

where 

        21
1

221211 QQQQQ −−=         (21) 

                  121
1

222 xQQxz −+= .        (22) 

 

Recall that the dynamic of the reduced order system during the 
sliding motion is represented by (14). By using (22), x2 can be 
eliminated and the new reduced order system can be shown as 
follows: 
    

     zAxQQAAx 12121
1

2212111 )( +−= −
�       (23) 

 
Notice that with minimization of cost function (20) subject to 
system (23) is similar to the standard LQR problem in which 

022 >Q  since Q is selected to be positive definite. This 

condition guarantees the existence of 22Q and 0>Q . 

Approaching the design problem in similar line with LQR 
problem, the optimal z that minimizes (20) is given as follows: 
 

        
112

1
22 PxAQz T−−=          (24) 

 

where P is the unique solution of the algebraic Riccati 
equation (ARE) given by 
 

0)()( 12
1

221221
1

22121121
1

221211 =+−−+− −−−
QPAQPAPQQAAQQAAP

TT

                          (25) 
Substituting (24) into (22) will result  
 

      121
1

222112
1

22 xQQxPxAQ
T −− −−=  

        121112
1

222 )( xQPxAQx
T +−= −  

          1Mx−=             (26) 

 
which is equivalent to (13). Thus, finding the solution of (26) 
leads to the values of the sliding surface parameter, S. 

B.  Control law design 

 The next crucial step is to establish a control law such that 

the reachability condition, 0<σσ �
T  is met. When this condition 

is fulfilled, the system states trajectories are attracted to the 
designed surface and on the intersection with the surface, the 
trajectories will remain there for all subsequent time [2][10].  
Based on this methodology, the following proposition is 
stated. 
 
Proposition 3.1. Given a class of uncertain system (10), the 

reaching condition 0<σσ �
T  is satisfied by employing the 

control law u(t) given below:  

    
σ

σ
ωρσ

TT

TT

SB

SB
tSAxSBKSBtu ),()()()( 11 −−−= −−     (27) 

where mmK ×ℜ∈ is a positive design matrix. 

 
Proof: Given the uncertain system (10), the reachability 
condition evaluates to 
 

)]),()([)(( tgtuBtAxSTT ωσσσ ++=�  

)],()([)( tgtuSBtSAx TT ωσσ ++=  

),(

]),()()([)( 11

tSBg

SB

SB
tSAxSBKSBSBtSAx

T

TT

TT
TT

ωσ

σ

σ
ωρσσσ

+

−−−+= −−
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]),()()()( 11

tSBg
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SSBB
tSAxSBSBKSBSBtSAx

T

TT

TTT
TTT

ωσ

σ

σσ
ωρσσσσ

+

−−−= −−

),(),(

2

tSB
SB

SB
tK

T

TT

TT

T ωρσ
σ

σ
ωρσσ +−−<  

σσ K
T−<  

 

Thus, the condition 0<σσ �
T  is met as long as the matrix K is 

chosen to be positive definite. If K = I is selected, then the 
following is true: 

        2σσσσσ <−< TT
�  

This completes the proof.                   � 
 
 Notice that the control law (27) has the constant gain, 
ρ(ω,t), obtained from the norm bounded lumped uncertainty. 
By looking at the dynamical system (9), however, the 
nonlinearity of disturbance term, F(ω,t), can be treated as an 
external disturbance which depends on the time-varying 
parameter. Applying this idea to the AMB model developed 
earlier, the time varying parameter is the rotational speed and 
it varies from zero to 10000rpm. Thus, if the constant gain 
ρ(ω,t) is designed such that 
 

       ρ(ω,t) = ρA (ω,t)+ ω ρf (ω,t)         (28) 
 

where ρA (ω,t) is a constant gain that bound the system 
uncertainty and ωρf(ω,t) is a time-varying parameter 
dependent gain that bound the disturbance effect with ω 
remains as the time-varying parameter. With this newly 
defined gain, the previous proposition is restated: 
 
Proposition 3.2.  For the uncertain dynamical system of class 
(10), which is equivalent to system (11), the control law (27) 
with the controller gain (28) can satisfy the reachability 

condition 0<σσ �
T .  

 
Proof: The proof is omitted since it is in similar line of proof 
for Proposition 3.1.                      � 
 
The main advantage of having this new control law is the 
control input can be adapted according to the time-varying 
parameter in which this will reduce the conservatism of having 
norm-bounded disturbance that accommodates the maximum 
disturbance value. However, the trade-off is the new control 
law needs an on-line update of the time-varying parameter for 
the gain calculation where it might be unrealistic for certain 
dynamical system. Looking specifically for the AMB 
application, however, the time-varying rotational speed is 
practically available through online measurement and does not 
impose any constraint in implementation wise. 

IV.  SIMULATION RESULT AND DISCUSSION 

 The simulation work is performed by using MATLAB® and 
Simulink®. After transforming the AMB model into the 
deterministic form, the procedure of designing the controller 
and its application on the system is outlined as follows: 

Step 1: Compute the norm for the system matrix uncertainty 
∆A(ω,t) , matrix B and disturbance vector F(ω,t). 
    

             2479.8),(,103601.1,0614.220 3 =×==∆ tpFBA      
 

Note that for controller (27) with gain (28), the norm of 
disturbance is not required since the value of ρf (ω,t) can be 
obtained from the value of the mass imbalance. The norm 
value is shown here to show the magnitude of the disturbance 
relative to the gyroscopic effect in the matrix uncertainty. 
 

Step 2:  Compute the gain (27) with mass imbalance, mun = 0.6 
× 10-3 kg.  

          162.0
103601.1

0614.220),(
),(

3
=

×
=

∆
=≥

B

tpA
tpHAρ                 

             9

3

6

10532.5
103601.1

10524.7 −
−

×=
×

×
=≥

B

l
m

mun

fρ  

 
Also notice that although the gain ρf is considerably small, the 
final value of the gain will increase as the speed increases. As 
highlighted earlier, this gain is zero if no imbalance presents 
and the total control effort is reduced and mainly contributed 
by the equivalent control term.  
 

Step 3:  Parameterize the sliding surface matrix, S. From (13) 
the parameter S2 acts as a scaling parameter and does not give 
any impact on the stability of the closed-loop system (15). 
Thus S2=I is chosen.  For matrix S1, the matrix M is calculated 
based on (26). From the structure of matrix Q shown by (17) 
and its positive definiteness, Q is chosen such that of, Q12 = 
Q21 = 0, Q11 = diag{2000,100,100,100} and Q22 = diag{10-6, 
10-6, 10-6, 10-6}. Notice that Q22 = 0 can still guarantee the 
positive definiteness of Q, however, small values of Q22 is 
selected to ensure the existence of (20). With these design 
values, the value for ‘gain’ matrix M and the resulted sliding 
surface parameters are as follows: 
 











×××
=

48.621-

0

102.4448-100103.0056-101.5103-

001000
3446

4

M

          MS =1  

since S2 = I. 
  
 In order to view the performance of the controller, the 
system is run at three different rotating speed and  the resonant 
frequency (critical speed) at ω = 6000rpm as stated in [8] 
where the system produces the most chaotic whirling motion 
and the largest whirling rotor orbit. In Fig. 4, the largest 
diameter of the whirling rotor orbit is about 7µm, achieving a 
about 90% reduction of rotor orbit compared to the result in 
[8] shown in Fig. 3. To further compare the performance of the 
controller, the diameter of the rotor orbit at speed ω = 
8000rpm and ω =10000rpm are also shown in Fig. 5 and Fig. 
6 respectively wherein the decrease of the diameters of the 
rotor orbit are significantly achieved. 
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    Fig. 3. X-Y displacement of rotor at speed, ω=6000rpm from [8]. 
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           Fig. 4. X-Y displacement of rotor at speed, ω=6000rpm. 
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                  Fig. 5. X-Y displacement of rotor at speed, ω =8000rpm. 
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                 Fig. 6. X-Y displacement of rotor at speed, ω =10000rpm. 

 

V.  CONCLUSION 

 In this work, a new SMC controller is proposed for 
stabilization of a four-DOF AMB system in which sliding 
surface is designed based on LQR method. The proposed 
controller is proven to be more superior in term of eliminating 
the whirling motion of the rotor at wide range of rotational 
speed as compared to method in [8] and this is demonstrated 
through various simulation results.                

VI.  APPENDIX 

The nonzero elements of matrix A(ω,t), B and F(ω,t) where 

i and j indicate the i-th and j-th entry of each element. 
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