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Abstract— In this paper the development of mathematical
model of voltage-input and current-input active magnetic
bearing (AMB) system in deterministic form is presented.
The AMB system, which is open-loop unstable and highly
coupled due to nonlinearities inherited in the system such as
gyroscopic effect and mass imbalance, requires a dynamic
controller that can stabilize the system. In order to
synthesize the controller, the nonlinear AMB model is
transformed into its deterministic form by using the known
upper and lower bounds of the parameters and the state
variables of the system. The voltage-input AMB model
shows that the system contains mismatched uncertainty and
non-zero system states value which suggests that
synthesizing nonlinear dynamic controller for this model is
almost unfeasible. Overcoming these problems, the current-
input AMB model, however, is in the structure that is more
suitable for the design of a stabilizing controller. A result
from a computer simulation work shows that the states of
the system behave nonlinearly without feedback control;
however, this final system model with its numerical values
can be used for the design of a class of a dynamic controller
for system stabilization.

Index Terms—Active Magnetic Bearing (AMB), determistic
form, dynamic control, computer simulation

1. INTRODUCTION

An active magnetic bearing (AMB) system is a
collection of electromagnets used to suspend an object
and stabilization of the system is performed by feedback
control. The system is composed of a floating mechanical
rotor and electromagnetic coils that provide the controlled
dynamic force and thus allowing the suspended object to
move in its predefined functionality. Due to this non-
contact operation, AMB system has many promising
advantages for high-speed, high-temperature and clean-
environment applications. Moreover, adjustable stiffness
and damping characteristics also make the AMB suitable
for elimination of vibration that presents in the system.
Although the system is complex and considered an
advance topic in term of its structural and control design,
the advantages it offers outweigh the design complexity.
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Application areas of magnetic bearings are still steadily
expanding because of these practically useful features. A
few of the AMB applications that receive huge attentions
from many research groups around the globe are the
flywheel energy and storage device [1][2], turbo
molecular pump [3], compressor [4], Left Ventricle
Assist Device (LVAD)[5] and artificial heart [6][7][8].
For the LVAD and artificial hearts applications
particularly, the present of any debris or dust resulted
from any mechanical contact is strictly intolerable since
these particles can contaminate the circulating blood that
definitely will cause more hazardous effects to human.
The use of magnetic bearing, as opposed to the fluid film
and mechanical bearings, has offered new opportunity in
this application area in which constructing both of these
devices that meet the very stringent requirement is a
viable option.

A typical control block diagram of AMB system is as
shown in Figure 1 where in order to stabilize the system,
a position feedback of the rotor obtained from a few
position sensors is required. The control algorithm that is
designed to achieve the pre-specified performance of the
system resides in the digital processor in the form of
software code. Since AMB system requires a very fast
response, Digital Signal Processing (DSP) based digital
processor board is usually adapted as the main processor.
The digital-to-analog converter (DAC) and the power
amplifiers are the electronic circuits that convert the
controlled signals to an appropriate level to the system.
Other signal conditioning circuits such as noise filter and
dc gain most of the time can be incorporated in the
control algorithm or performed by additional circuit on
the DSP board.

Magnetic bearing systems are designed in a few
configurations to meet various specifications for different
applications. In term of the rotor position, it can be
oriented in horizontal or vertical position in which in
latter configuration, the effect of gravity is uncoupled
from system dynamics wherein the vertical displacement
is controlled separately from the other set of magnetic
coils controlling horizontal position [3][9]. The magnetic
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Figure 1. Block diagram of AMB control system

bearing system configuration with horizontal rotor
orientation is however is more widely used as covered in
majority of the references therein. Also, some of the
applications such as the artificial heart, the rotor will be
in both horizontal and vertical position due to its nature
of operation which depends on the position and
movement of the host [7] [8]. Other than the difference in
rotor position, the designs of magnetic bearings that
provide the dynamic force are also made in a few
configurations. As shown in [10], the conical shape
magnetic bearings are used where a small angle is
introduced in the bearing design such that the dynamic
forces produced by the complete set of the magnetic
bearings are able to control both the radial and thrust
motion. With this configuration, the number of magnetic
bearings used is reduced; however, a more complicated
control algorithm to stabilize the system is required due
to the coupling effect of motion. An artificial intelligent
based control algorithm for the system is covered in [11]
however the model is linearized at an operating point
such that the synthesis of the controller is feasible.

Another type of arrangement of the magnetic bearings
is having three magnetic bearing at each end of the rotor
which requires only six magnetic bearing in total for
complete system [12]. However, the major trade-off in
this configuration is the flux coupling effect between the
bearings which requires a more complicated model to
represent the nonlinear behavior of the system and further
needs a more complicated stabilizing controller. In
addition to this configuration, some systems have
incorporated permanent magnets in the bearing which
supply static forces to the system. The combination of
this permanent magnets and active magnetic bearings
form so-called hybrid magnetic bearings as have been
highlighted in [1], [2], [8] and [13].

Another important aspect in magnetic bearing system
is the method to stabilize and control the system to meet
the need of the application. Both linear and nonlinear
control laws have been covered in many research works
and the choice of controllers usually relies on the
structure of model established and the requirements of
applications. Linear controllers are adapted more widely,
however, nonlinear controllers promise more optimized
power consumption which is favorable in most
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applications [14][15]. For both of these types of
controller families, the power amplifiers that supply the
current to the system (or voltage) exist in three classes of
mode of operation [16]. In Class-A power amplifier, the
operation is performed such that a constant bias current is
supplied all the magnetic coils where the value is set at
the half of the allowable current value. The controlled
currents are added to the bias current in one coil and
subtracted from the bias current in the opposite coil that
is in alignment to the direction of the force produced.
This mode of operation is the most commonly used in
magnetic bearing due to its good dynamic performance.
For Class-B mode, a lower value of bias current is
supplied to the magnetic coil but the controlled current is
only added to only one side of the pair of magnetic
bearing, according to the position of the rotor. Class-B
mode, however, inherits poor bearing stiffness and poor
robustness against system vibration which make it
suitable for low performance applications. Then, when
there is no bias current used, where only the controlled
current is supplied to the magnetic bearing, it is
categorized as Class-C power amplifier. In this mode,
only nonlinear controllers work due to its singularity
error at initial point of operation and severe nonlinearity
that resulted when the control force is zero.

AMB system is considered an advance mechatronic
system in which a successful design depends heavily on
the mathematical models that represents the system
behaviour at design stage [17]. The performance of the
system can be accessed through computer simulation
which is more cost effective and practical towards
constructing the actual physical system. However, under
these various AMB configurations, magnetic coils
arrangement as well as different types of mode of power
amplifiers, modeling the AMB system is in fact a very
challenging task. Many of early works in AMB modeling
involve the derivation of linear or linearized models
which operate at certain operating condition. This
procedure is performed in order to accommodate a linear
dynamic controller for stabilization of the AMB system.
The disadvantage of this approach is the model is valid at
a very small operating condition and the system
performance will degrade as the model of the physical
system is perturbed from this operating point [18].
However, in order to maximize the performance of the
system, the derived model needs to cover wider
operational ranges that further forces the system into its
nonlinear regime. In order to achieve this, a more
sophisticated mathematical model that can describe the
behaviour of the system within this boundary is required.

In this paper, two nonlinear mathematical models of a
horizontal shaft AMB system are derived in which the
gyroscopic effect and mass imbalance are also
considered. The two AMB models are developed based
on the system with voltages as the inputs and the system
with currents as the inputs. The derived model will be
presented in a state variable form that is suitable for the
design of a class of robust controller. Figure 2 shows the
five degree-of-freedom (DOF) horizontal AMB system
that requires four pairs of electromagnetic coils to
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Figure 2. Cylindrical Horizontal Active Magnetic Bearing System

perform the radial control. The thrust control of the
system is performed independently by another pair of
electromagnetic coil and is not shown in the figure. The
fifth DOF, which is the rotation around the x-axis, is
supplied by external rotating machine in which the
rotational speed is considered as a time-varying
parameter. For the model with voltages as the input, eight
voltage sources are supplied to the coils while for the
model with current as inputs, similarly, the currents will
be the inputs to the system.

This paper will be organized as follows: In section II,
a review on the derivation of the equations of motion and
the dynamic equation of electromagnetic coils will be
performed based on [19] and [20]. In section III, for the
both of the voltage-input and current-input AMB models,
the integration of both sets of equations is carried out to
form a state-space AMB model. The voltage-input model
falls in the Class-A mode of operation while the current-
input model belongs to Class-C mode. Then, in section
IV, based on the upper and lower bounds of the system
states and the rotational speed, both models are converted
into their deterministic form where it can be shown that
the voltage-input model contains system uncertainty and
disturbance matrices which  suffers mismatched
condition. For the current-input model, the uncertainties
present in the system, input and disturbance matrices,
however, all of the uncertainties are in phase with the
input channels but still the system is still highly nonlinear
as portrayed in a simulation result. Finally, the conclusion
in section V will summarize the work of this paper.

II. DYNAMIC EQUATIONS OF AMB SYSTEM

For the derivation of the mathematical model,
cylindrical horizontal AMB system as shown in Figure 2
is used. Equations of motions of the rotor and the
nonlinear electromagnetic coils equations are the two sets
of equations that describe the dynamical behaviour of the
system.
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A. Equations of Motion

The equations of motion describe the dynamic
movement of the rotor of the system. Assuming that the
rotor is rigid floating body, the principle of flight
dynamics is used to derive the equation. Based on the
work in [19] and [20], the rotor’s equations of motion for
five DOF are

)'}o:%[ay,ﬂr(fn—f14+fr4—fr3)+fdy]
£, ==Lz, + (i~ fi + fra = f) 4 fue + ]
(1)

. —p) .
0= ixl//+JL((fll_f12+fr2_frl)+fd9)

y Yy
. J . -
G =204 ((fi = i+ fos = S+ S

y Yy

where m is the mass of the rotor, / is the longitudinal of
length between the rotor mass centre to the
electromagnetic coil, J; is the moment of inertia around
X, J, is the moment around Y,, a is the radial eccentricity
coefficient, ,, and 0 are angular displacement of rotor

axis about Y and Z; axes, y, and z, are the coordinates of
rotor mass centre on Y, and Z; axes, fi;, fo, fi3» fis Jris
fi2s fr3, and f, are the nonlinear magnetic force produced
by the bearings (stator) and exerted on the rotor, and fy,
fas fay and fye are terms for the imbalances that present in
the system. It can be noticed from (1) that the imbalances
act like external disturbances to the system which will
cause the vibration to the rotor. The imbalance forces can
be modeled as follows [21]

foy =m,ep’ cos(pt + k)

S =m,ep” sin(pt + x)
U~ @

£, = y JX)T 2 p)
do = ] pcos(pt+A)

J, -J, .
faw =!z'p2 sin(pt + 1)

/



where m, is the mass of unbalance, ¢ and 7 are static and
dynamic imbalances, x and / are initial phase values.
B. Electromagnetic Equations

There are two ways to model the dynamic of
electromagnetic coils which are by using force-to-flux or

Figure 3. Cylindrical Horizontal Active Magnetic
Bearing System

force-to-current relation. For this model, as claimed in
[22], the force-to-flux relation for the dynamic coil is
used due to the fact that both the force and flux depend
inversely to the time varying airgap length which will
give a better system performance under feedback control.
The electromagnetic force f; produced by jth
electromagnetic coils is expressed in term of the airgap
flux ¢, and the gap length g; as shown below

280y =l LA ()
h

1 =k¢:(1+

where k is a constant and % is the width of the
electromagnetic pole. The electric circuit equation that
relates the airgap flux @, the airgap length g; and the

input voltage e; of the jth electromagnet is

d¢; 2R
=N—L g, j=1 ] 4 (4
i dt yaANg"¢’ / @

where N is the number of turn in each coil, R is the coil
resistance, A4 is the area under one electromagnetic pole
and u, = 4n x 107 H/m is the permeability of free space.
Notice that (4) is valid by assuming that the speed e.m.f
and the leakage inductance produced by the coil are
negligibly small.

C. Change of state variable — transformation matrix

From the control point of view, it is preferable to have
the gap deviations as the state variables of the system
instead of the coordinates of the mass center, yaw and
pitch angles of the rotor. This is due to the fact that the
gap deviations are easier to be measured than the rotor
mass center either by using sensors or by designing
observers [20]. The relation between the jth airgap of the
electromagnetic coils and the rotor can be expressed as
follows:

gj:Da+gj" j:lls'“sl49r19.“9r4 (5)
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where: D, is the steady state gap length at equilibrium
and g;' is the gap length deviation from steady state value
o

Based on Figure 3 which shows the exaggerated view
of the movement of the rotor in z-axis, assuming the
angle 6 is small such that sin 8 = 0, the relation between
the airgaps in the AMB with rotor mass centre coordinate
can be related as follows:

gn gh (z, —10)
"o | o | (z,+10
g= g/l - _ grz _| ) (6)
g1 g4 =y, —1lw)
g 814 (=y, +ly)

With this equation a transformation matrix, 7, can be
established to perform the change the system variables.

0o 1 -/ 0
0o 1 /! 0
_ ()
-1 0 0 -!/
-1 0 O [

III. AMB MODEL IN STATE-SPACE FORM

A. AMB Model with voltage input

Equations (1), (2), (3), (4) and (7) can now be easily
integrated to form the model of horizontal AMB system
in state-space form. Let the 16 state variables and 8 inputs
of the system to be defined as follows:

X =gn o, X, =gn . X85, X, =84
Xs =X, Xg=X, , X=X, X=X, o,
Xo =@ X0=0 . Xu=¢ , Xp=6, ,
X3=@s . Xu=@y 5 X5=05 . Xg=@,
u =€, , Uy=¢€, , Uy=e, , U =€, ,
Us=e5 , Ug=€y , U;=€5 , U3=€y

Then, (8) below is the representation of the AMB system
in state-space form.

X, (O)=A,(x,p,)x,&)+BU ())+D, (p,1) ®)

It can be observed from this nonlinear model that the
system matrix A, (X,, p, f) is dependent to the state
variables and the time-varying speed, p, while the
disturbance matrix D,(p,f) is only dependent on p. In
order to facilitate the process to develop of dynamic
controller, the equation above can be partitioned as
shown below

x,JTo 1.0 ol[x,J[0 o 0
|

Yol A At A Ay 3o 100k, 1Dy

Xv3 0 O }AVS 0 Xv3 Bvl 0 0

x,] |0 010 A.llx,]|0 B, 0
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where: X, =[g},,gﬁ1»g1'3,g£3] I :[gz,lsg;pg';yg';s] >
X, :[¢11’¢12’¢r1’¢r2 ] and X, :[¢ll’¢12’¢rl’¢r2 ] The

elements of the matrices are shown in the appendix.

B. AMB Model with current input

In this section, a current-input AMB system is
developed where the equation that relates the flux and
current is given in [11] as follows:

| AN =pn e i, 4 (10)
J Do +gj J

In this model, a bias current is introduced in the system
such that the input current supplied to each coil is
composed of the bias current and controller current. With
the introduction of the bias current, the AMB now
operates in Class A mode. The input currents are defined
as follows:

in =1, +igys i, =1,—i,, (11a)
by =1y +i,s i, =1,-i,, (11b)
Iy =1y +igys Gy =1, =iy (11c)
Ly =1y +ig,s iy =1,-i,,> (11d)

where: I, is the bias current, i, is the controlled current
of the //-I2 magnetic bearing pair, i, is the controlled
current of the r/-r2 magnetic bearing pair, i,y is the
controlled current of the /3-/4 magnetic bearing pair and
i 1 the controlled current of the r3-r4 magnetic bearing
pair. Repeating the process in previous model, equations
(1), (2), 3) ,(7), (10) and (11) are rearranged to form the
current-input AMB model as shown by (12) and (13)
below,

x.()=A,(p,)x,()+B,(x,U,0)U_(*)+D_(x_, p,t)

(12)
X 0,, I
Xa || Vaa Lo || Xa 4 0 U+ 0
XCZ Acl ACZ XCZ Bcl Dcl

where: x, =x, andx_, =x,. The elements of the

(13)

matrices are not shown in this paper since it can be
derived quite easily based by following the method used
for voltage-input model. There are a few major
differences between voltage-input and current-input
AMB models developed above. The most obvious one is
the number of state variables in current-input model is
reduced to only eight state variables which is only half of
the states in voltage-input model. This is due to the fact
that the coil voltage relation (4) is not included in the
development of the current-input model. The other
differences are the system matrix, input matrix, as well as
the disturbance vector and these differences are tabulated
in Table 2 which highlights the variables of each of these
matrices and vector. These have resulted different upper
and lower bound values of the matrices which further
changes the values of the uncertainty and disturbances
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needed for the controller development. The procedure
will be more apparent in as explained in the next section.

LE I
MATRICES FOR BOTH AMB MODELS

Voltage-input AMB Current Input
Model AMB Model
AV(X\U p’ t) AC(p3 t)
B B (x,, U, )
Dv(pat) DC(X\U p’ t)

V. AMB MODEL AS UNCERTAIN SYSTEM

A..Voltage-input AMB model

In order to synthesize a type of robust controller for
this class of system, the AMB model derived in previous
section will be treated as uncertain system in which
deterministic approach to classify the system will be used
based on [23]. By using this approach, the AMB model
can be decomposed into its nominal and uncertain parts
as shown below

x, () =[A, +AA (x,,p,)x,®)+B U (1) + D, (p,?)
Y. ()=Cx, ()
(14)

where AA (x,,p,?) represents the uncertainty of the system
matrix and D,(p,?) is the disturbance matrix associated
with speed dependent of imbalance. A, and B, are the
nominal constant matrices of the system. The
decomposition into this deterministic form is possible due
to the fact that the all the maximum and minimum values
of state variables and rotor speed are known. The
elements of the AA,(x,p,f) and D,(p,f) system and
disturbance matrices, respectively, can be calculated
based on these available bounds. The minimum and
maximum bounds of all the state variables and the rotor
speed are as follows:

~0.55mm < x, <0.55mm ,fori=12,3,4, (152
Om < x, <1.87m/sec,fori=5,6,7,8, (15b)
OWb < x, <10.0 x10~* Wb , fori=9, ..., 16, (15¢c)

and

0 rad /sec < p < 3142 rad /sec . (15d)

Then, by using these values and the other system
parameter values as shown in Table II, each element of
the system and disturbance matrices can be calculated
and specified in the following form:

(16a)
(16b)

a; < a; (xwp’t) < Zf/
i].S d‘/ (pat) < dj
fori=1,...,16,and j =1, ..., 16, where a;(x,,p.f) and

d(p.t) are the element of A,(x,,p,f) and D,(p,f) matrices
respectively. The upper and lower bars indicate the



maximum and minimum values of the elements. Since
these bounds are known, the system matrix can be written
in the following form:

A, (X, p,0)=A, +AA (X,, 1) a7
For this class of AMB system model, it can be noticed
that for the disturbance matrix, D,(p,f), only the
maximum value of the elements are needed since these
values represent the highest disturbance values caused by
the imbalance which should be eliminated from the
system. By using the values of the bounds given by (15),
and the deterministic form of system matrix given by
(14), the nominal and uncertain values of system matrix,
a well as the values of disturbance matrix are calculated
and given in the appendix. The norm for these matrices
can also be calculated and the values are as follows:

IAA ||=5.6003x10* , |D,|=1.5595x10° . (I8)

From the structure of the matrices, it can be shown
that both the uncertainty and disturbance matrices suffer
mismatched condition which means that the elements of
the uncertainty and disturbance matrices do not lie in the
range space of the input matrix B,. Also, the mismatched
condition can be checked by using the rank test as shown
below in which the results agree with the aforementioned
mismatched condition.

rank[B,] # rank [B,, AA(X,,p,1)],

rank[B,] # rank [B,, D,(p,?)]. (19)

By having this mismatched condition, the input voltages
of the system do not have direct access to the mismatched
elements. Thus, this has made the design of the robust
controller that can eliminate the disturbance and to
achieve robustness towards system uncertainty a
challenging task. Another difficulty arise from this model
is the selection of the states of the system in which the
fluxes (synonymously the current) of the electromagnetic
coils selected as the states need to converge to zero to
achieve system stability. However, this is impractical
since as the fluxes go to zero, the input to the rotor is zero
and no control occurs in the system. Both of these
difficulties, however, are alleviated in the current-input
model and make it suitable for development of dynamic
controller.

B.Current-input AMB model

By following the method in the previous section, the
deterministic model for current-input AMB system is
shown by (15),

x, () =[A, +AA (p,D)]x () +[B, +AB (x,, p,H)]U ()
+AD (x,,p,1)
y.(0)=Cx (1) (20)

and the nominal and uncertain system and input matrices
can be represented by (20) and (21) as follows:

A (p,)=A, +AA (p,0) @n
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TABLEIL
PARAMETER FOR HORIZONTAL AMB SYSTEM [20][21]

Symbol Parameter Value [Unit]
m Mass of Rotor 1.39x 10"  [kg]
A, Area of coil 1.532 x 10° [m?]
Jy Moment of Inertia 1.34 x 10
about X [kg.m?]

Jy Moment of Inertia ~ 2.32 x 10™'
about X [kg.m’]

D, Steady airgap 5.50 x 10* [m]

R Coil Resistance 1.07 x10 [Q]

L Coil Inductance 2.85 x 10" [H]

I, Bias Current 2.0 [A]

l Distance between 1.30 x 10" [m]
Mass centre to coil

o Rotor radial 1.0 [N/m]
eccentricity
coefficient

o Permeability of 4n x 107 [H/m]
free space

N Number of Turn 400 [Turn]

h Pole Width 0.04 [m]

k Proportional 4.6755576 x 10°
Constant [N/Wb?]

e Static imbalance 1.0 x 10™* [m]

T Dynamic 4.0 x 10™* [rad]
imbalance

B (x.,p,0) =B, +AB (x,, p,1) 22)

Again, by using the range of operations of the states and
rotor speed as given by (11), the upper and lower bounds
of all the elements of the system, input and disturbance
matrices can be calculated and lie in the following range
of values,

gii < al.,. (p,t) < a,‘/ (233)
by < b, (x.,p.1) < by (24b)
d, <d, (x,pt)<d, (25¢)

fori=1,...,8andj=1, ..., 8, where ay(p,1), bj(x.p.t)
and d(x.p,t) are the element of A.(p,f), B.(x,p,f) and
D.(p,?) matrices respectively. Thus, the norm value of the
uncertainties using these values can be obtained as
follows:

IAA | =90.7443 ,
|AB || =244.9987 , (26)
ID,||=2313x10°.

With these values of the norm bounded uncertainties, the
deterministic model of the AMB system with current
input is complete and a class of robust controller can be
developed. As opposed to voltage-input AMB model (8),
the current-input model (12) is in the structure where all
the uncertainties are matched and the states are selected
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Figure 4. Trajectory of the states of the system
under no control effort

such that the states will converge to zero when the system
meets its stability condition. These two conditions
definitely offer more flexibility in the design of the
dynamic controller. To portray the nonlinearity in the
system, the AMB model (12) is simulated by using
MATLAB" and Simulink™ and the trajectory of the states
of the system is shown in Figure 4. With initial conditions
of the states [x; x> x; x,]” = [1.0x10* 0.0 2.5x10* 0.0]"
m, all of the states rapidly diverge from zero (equilibrium
point) and this condition highlight the need of the
dynamic controller to stabilize the system. Controllers in
the family of Sliding Mode Control as theoretically
developed in [24][25] and [26] are to appear suitably
practicable for this AMB system due to its robustness and
reliable performance in application into nonlinear system.
The development and the implementation of the
controller that can stabilize the system as well to achieve
some system requirement will be the next milestone of
this work.

V. CONCLUSION

In this work, the nonlinear mathematical models of
AMB system based on both the voltage-input and
current-input model have been developed. The nonlinear
models are transformed into deterministic form in which
the numerical values of all of the uncertainties that
present are obtained. The norms of the uncertainties are
also calculated in which the values represent the bounded
values of the nonlinearities in the system. The models
produced are arranged in a class of system that allows an
appropriate structure of dynamic controller to be
synthesized to stabilize and to meet the requirement of
system performance. The development of the controller
will be the future direction of this work and a suggestion
of application of SMC is also highlighted.
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APPENDIX A THE ELEMENTS OF VOLTAGE-INPUT AMB

MODEL
a’ allzi 0 0] [0 0 ia? a'
Ao|@l @ 0 0] |0 0la &
"o 0 ta’ @t & @0 of
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|0 0 g att _a%” a’>l 0 0
Es a @ [0 00 O
PO S R R
| bl = --—--—-—-—————
0 0 i 0 0 4 a:l aiz iaf ai4 >
1 0 0,0 0 ] _afl af:z 1(123 a24
d' 0to o] fd olo o
0 a1 0 0 0 a1 0 0
As=|=370" 1T A= i
0 0 ia’ 0 0 0 la’ 0
|
[0 010 a [0 010 af
B 010 0] B0 o 0
22 1 22 1
|ostio oy o #io o
0 015 O 0 0 1ib5° 0
| |
0 010 B 0o 0} o0 &

m J, JA
(g+—"5p sin(pt) + lrp cos(pr))
m Jy
D= J,=J i
m, 2 x
—| —>g" cos(pt) + /T p” sin(pf)
m J
m 2 J J .
—| —Z=g" cos(pt) - 7 p” sin(pt)
m J
a3 = g2t = g2 = a41:_pr
2 2 2 2 2.
14_ 23 _ 31_ 4_ D,
a, =ay, =a, =a, = ,
2 2 2 2 ZJX
2(D, +x) 2(D, = xy)
" :—H,k(l JrT‘Jx9 s a3 =H1k[l+T]jxma
2(D,
al :sz( ( ”2)) noalt =—H k(1+2(D xZ)]
a2 = ( 2(D +x1 J 2y (] 2(Doﬂh—x1)jx10,
a3 =-H [ 2D, +x2 j ’ a; =H k[l+M}c]2,
7h
[ 2(D, +x3)J (1+2(D )jxw
2(D, +xy4) ; 2(D, —x,)
23 = sz[l + T4jx15 ’ a:A = _sz(1+74 x]6’



2D, -~
ay' = H2k[1 +2<Q17h”3)}c13 say’ =—H2k[l+%}cma

43

ay

——Hlk[1+

T

15

2D, -
9024 :Hlk(1+(0;zhmjx16,

aél ==q(D, +x,)xy> aszz =—q(D, —x,)xy »

2D, + x4)jx

a533 =—q(D, + x,)x;,» a;M ==q(D, —x,)x,;5
as ==q(D, +x3)X,5 a:z =-q(D, = x;)x3 »

ag; =—q(D, +x,)x55 ag” =—q(D, —x,)x5>

1
11 22 33 44 11 22 33 44
b] =0 =D :b] =0, :b2 :b2 :b2 =—
0 0 !1355 1355
|
|0 0 11355 1355
AA, =10%| -—=-——-=-- JoiEEo o ,
1355 13551 0 0
1355 13551 0 0
[3.4441 3.441 10.0215 0.0215]
|
,[0.0215 0.0215!3.4441 3.4441
AA, =10°| -2 RAAARAE Sans ,
0 0 ! 0 0
0 0 1 0 0
0 0 | 0 0
|
J oo 0 ! 0 0
AA, =10% =-=-—--=-= - oo ,
34441 34441100215 0.0215
10,0215 0.0215 | 3.4441 3.4441]
38216 0 | 0 0
|
0 38216] 0 0
AA =AA =TT oo mmen ,
0 0 138216 0
0 0 1 0 38216
—43.204
844.676
"1 -1097.956 |
—714.944
ACKNOWLEDGMENT

The authors wish to thank Ministry of Science,

Technology and Innovation (MOSTI) Malaysia for
providing the financial support under the VOT No.:

79014.

The authors also would like to acknowledge

Universiti Teknologi Malaysia for the support in term of
other research facilities.

(1]

(2]

REFERENCES

S. C. Mukhopadhyay, T. Ohji, M. Iwahara, and S.
Yamada, “ Modeling and Control of a New Horizontal-
Shaft Hybrid-Type Magnetic Bearing ,* IEEE Trans. On
Ind. Elec., vol. 47, no. 1, pp. 100-108, Feb. 2000.

M. Komori, M. Kumamoto, and H. Kobayashi, “A
Hybrid-Type Superconducting Magnetic Bearing System
with Nonlinear Control,” [EEE Trans. on Applied
Superconductivity, vol. 8, n0.2, pp. 7983, June 1998.

© 2007 ACADEMY PUBLISHER

(3]

[4]

(7]

(8]

[12]

[13]

[14]

[15]

[16]

JOURNAL OF COMPUTERS, VOL. 2, NO. 8, OCTOBER 2007

S. Sivrioglu and K. Nonami, “ Sliding Mode Control With
Time-Varying Hyperplane for AMB  Systems,”
IEEE/ASME Trans. on Mechatronics, vol. 3(1), pp. 51-59,
Mar. 1998.

F. Losch, C. Gahler, and R. Herzog, "Low Order p-
Synthesis Controller Design for a Large Boiler Feed
Pump Equipped with Active Magnetic Bearing,” in Proc.
of IEEE Int. Conf. on Contr. Appl., August 1999, pp. 564—
569.

R. Schoeb, N. Barletta, A. Fleischli, G. Foiera, T. Gempp,
H. G. Reiter, et. al., “A Bearingless Motor For A Left
Ventricular Assist Device (LVAD),” Proc. In 7" Int.
Symp. On Mag. Bearings, Zurich Switzerland, Aug. 23-
25, 2000.

E. M. Maslen, G. B. Bearnson, P. E. Allaire, R. D. Flack,
M. Baloh, E. Hilton, et al, ‘“Feedback Control
Applications in Artificial Hearts,” IEEE Control Sys.
Mag., vol. 18, no. 6, pp. 2634, Dec. 1998.

J. H. Lee, P. E. Allaire, G. Tao, J. Decker, and X. Zhang,
”Experimental Study of Sliding Mode Control for a
Benchmark Magnetic Bearing System and Artificial Heart
Pump Suspension’, I[EEE Trans. on Contr. Sys. Tech., vol.
11, no. 1, pp. 128-138, Jan. 2003.

J. X. Shen, K. J. Tseng, D. M. Vilathgamuwa and W. K.
Chan, “A Novel Compact PMSM with Magnetic Bearing
for Artificial Heart Application,” /EEE Trans. On Ind.
Elec., vol. 36, no. 4, pp. 1061-1068, July/August 2000.

A. F. Mohamed and I.B. Vishniac, “Imbalance
Compensation and Automatic Balancing in Magnetic
Bearing Systems Using the Q-Parameterization Theory”,
IEEE Trans. on Contr. Sys. Tech., vol.3, no.2, pp. 202—
221, June 1995.

A. M. Mohamed and F. P. Emad,” Conical Magnetic
Bearings with Radial and Thrust Control,” I[EEE Trans.
on Auto Control, vol. 37, no. 12, pp. 1859-1868, Dec
1992.

S. J. Huang and L. C. Lin, ”Fuzzy Dynamic Output
Feedback Control With Adaptive Rotor Imbalance
Compensation for Magnetic Bearing Systems,” /EEE
Trans. on Sys., Man and Cybernatics — PART B: Cybern.,
vol. 37, no. 4, pp. 1854-1864, August 2004.

C. T. Hsu and S. L. Chen, “Nonlinear control of a 3-pole
active magnetic bearing system,” Automatica 39, pp. 291—
298, 2003.

H. Kanebako and Y. Okada, “ New Design of Hybrid-
Type Self-Bearing Motor for Small, High-Speed Spindle,”
IEEE/ASME Trans. on Mechatronics, vol. 8, no. 1, pp.
111-119, Mar. 2003.

J. Levine, J. Lottin and J. C. Ponsart, “A Nonlinear
Approach to the Control of Magnetic Bearings,” /EEE
Trans. on Contr. Sys. Tech., vol.4, no.5, pp. 524-544,
Sept. 1996.

A. Charara, J. De Miras and B. Caron, “Nonlinear Control
of a  Magnetic Levitation System  Without
Premagnetization,” [EEE Trans. on Contr. Sys. Tech.,
vol.4, no.5, pp. 513-523, Sept. 1996.

M. N. Sahinkaya and A. E. Hartavi, ”Variable Bias
Current in Magnetic Bearings for Energy Optimization”



JOURNAL OF COMPUTERS, VOL. 2, NO. 8§, OCTOBER 2007

IEEE Trans. on Magnetics, vol. 43, no. 3, pp. 1052-1060,
March 2007.

[17] N. Steinschaden, and H. Ecker, ”A Nonlinecar Model for
Radial Magnetic Bearings,” in Proc. of 3¢ Matnmod, 3"
IMACS Symp. Of Math. Modeling, Vienna, Austria, Feb.
2-4, 2000.

[18] J. D. Lindlau and C. R. Knospe, “Feedback Linearization
of an Active Magnetic Bearing With Voltage Control,”
IEEE Trans. On Cont. Sys. Tech., vol. 10, no. 1, pp. 79—
83, Jan. 2002.

[19] A. R. Husain, M. N. Ahmad, and A. H. Mohd Yatim,
“Modeling of A Nonlinear Conical Active Magnetic
Bearing System with Rotor Imbalance and Speed Emf,”
Int.  Conf. in Man-Machines Systems(ICoMMS),
Langkawi, Malaysia, Sept 15-16, 2006.

[20] F. Matsumura, and T. Yoshimoto, ”System modeling and
control design of a horizontal shaft magnetic bearing
system,” IEEE Trans. Magnetics, vol MAG-22, no. 3, pp.
196-203, May 1986.

[21] A. M. Mohamed, I. M. Hassan, A. M. K. Hashem,
“Elimination of Imbalance Vibrations in Magnetic bearing
System Using Discrete-Time Gain-Scheduled Q-
Parameterization Controllers,” in Proc. Of IEEE Conf. Int,
Conf. on Contr Application, August 1999, pp. 737-742.

[22] A. M. Mohamed and F. P. Emad, “Comparison between
Current and Flux Control in Magnetic Bearing Systems,”
in Proceedings. of the American Control Conference,
June 1993, pp. 2356-2362.

[23] J. H. S. Osman and P. D. Roberts, “Two Level Control
Strategy for Robot Manipulators,” Int. Journal of Control,
vol. 61, no. 6, pp. 1201 — 1222, June 1995.

[24] G. Wheeler, C, Y. Sun and Y. Stepanenko, “A Sliding
Mode Controller with Improved Adaptation Laws for the

Upper Bounds on the Norm of Uncertainties,” Automatica
34, pp. 1657 — 1661, 1998.

[25] H. H. Choi, “A New Method for Variable Structure
Control System Design: A Linear Matrix Inequality
Approach,” Automatica 33, pp. 2089 — 2092, 1997.

[26] C. Edwards, “A practical method for the design of sliding
mode controllers using linear matrix inequality,”
Automatica 40, pp. 1761 — 1769, 2004.

© 2007 ACADEMY PUBLISHER

Abdul Rashid Husain received the B.Sc. degree in electrical
and electronic engineering from The Ohio State University,
Columbus, Ohio, U.S.A, in 1997, and the M.Sc. degrees in
mechatonics from University of Newcastle Upon Tyne, U.K., in
2003. Before joining Universiti Teknologi Malaysia, he worked
as an engineer in semiconductor industry for several years.
Currently he is pursuing his PhD degree in mechatonics and
control engineering and his research interest is modeling and
nonlinear control of dynamic system specifically the application
of Sliding Mode Control (SMC) theory for Active Magnetic
bearing system.

Mohamad Noh Ahmad received the B.Sc. degree in Electrical
Engineering from Universiti Teknologi Malaysia in 1986, the
M.Sc. degree in Control Engineering from University of
Sheffield, UK. in 1988, and Ph.D. degree in Robotics from
Universiti Teknologi Malaysia in 2003. Currently he is
Associate Professor and Head of Department of the Department
of Mechatronics and Robotics, Faculty of Electrical
Engineering, Universiti Teknologi Malaysia. Since joining
Universiti Teknologi Malaysia, his primary responsibilities
include research and teaching in Robotics and Control
Engineering. His researches involve among others modeling
and control of numerous plants such as Active Magnetic
Bearing System, Balancing Robot, and Direct-Drive Robot
Manipulator.

Abdul Halim Mohamed Yatim received the B.Sc. degree in
electrical and electronic engineering from Portsmouth
Polytechnic, Portsmouth, U.K., in 1981, and the M.Sc. and
Ph.D. degrees in power electronics from Bradford University,
Bradford, U.K., in 1984 and 1990, respectively. Since 1982, he
has been a member of the faculty at the Universiti Teknologi
Malaysia, Johor, Malaysia, where he currently is a Professor
and Deputy Dean of the Faculty. He has been involved in
several research projects in the areas of power electronic
applications and drives. He was a Commonwealth Fellow
during 1994-1995 at Heriot-Watt University, Edinburgh, U.K.,
and a Visiting Scholar at the Virginia Power Electronics Center,
Virginia Polytechnic Institute and State University, Blacksburg,
in 1993. Dr. Yatim is a Corporate Member of the Institution of
Engineers Malaysia. He is a Registered Professional Engineer
with the Malaysian Board of Engineers. He currently holds the
Interim Chapter Chair of the Malaysian Section of the IEEE
Industrial Electronics/Industry Applications/Power Electronics
Joint Societies.



