Journal of Chemical and Natural Resources Engineering,Special Edition:141-154
© FKKKSA, Universiti Teknologi Malaysia

STRUCTURE PREDICTION OF LARGE PROTEIN USING THE
COMBINATION OF KNOWLEDGE-BASED AND PHYSICS-BASED
APPROACHES: METHOD VALIDATION ON CHOLESTEROL ESTERASE

N.B. AHMAD KHAIRUDIN!, H. A. WAHAB?, M.R. SAMIAN?, N. NAJIMUDIN?

ABSTRACT

The objective of this study was to predict the structure of a large protein using a
combined approach of knowledge-based comparative modeling and physics-based
Molecular Dynamics (MD) simulation applied to the enzyme cholesterol esterase. The
core region of the enzyme was modelled using information from homologous known
protein structures whereby leaving the end-terminal regions (the nonhomologous regions)
to fold via MD simulation. Currently, there is yet a reported study where one begins with
a knowledge-based model of the core region of a protein and allowing the remaining end
terminal regions to fold via MD simulation. The method was categorized into three parts;
the development of the core region of the protein, the development of the complete
protein structure and the MD refinement simulation. Three models were tested, CEcgy.s7,
CErnc4s and CEjkm.14, With each originating from different core regions developed at
three different cutoff values of sequence identity; more than 70% (%id > 70%), less than
60% but more than 30% (30% < %id < 60%) and less than 20% (%id < 20%),
respectively. The remaining residues were later added using MD simulation which then
followed by 20 ns of MD refinement. It was shown that the use of different starting core
regions did not significantly contribute towards correct structure predictions of large
proteins. Furthermore, the use of restraint of the core region would only deteriorate the
model as observed in CErpc.4s.

Key Words : Protein structure prediction, Homology modeling, Molecular dynamics,
cholesterol esterase, Fold recognition

1.0 INTRODUCTION

Despite the fact that predicting the structures of proteins using computational
approach remains one of the longest standing challenges in structural biology [1-3], the
field has somehow made impressive strides forward [4-7]. It has been revolutionized by
the blend of knowledge-based method and physics-based de novo folding simulation.
Over the years, these two methods have become more and more integrated. Accurate
predictions of the knowledge-based method rely heavily on the sequence identities or
similarities between the target and the template proteins [8]. The problem commences
when the target protein does not share any significant similarities with any solved
protein structures.

Molecular dynamics (MD) simulation on the other hand has been widely applied
to fold proteins without having to rely on sequence conservation [9-13]. Applying
proper force field and sufficient computing resources, all-atom MD simulation is
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capable of folding small proteins or peptides into their functional states using only the
information of the linear chain of the amino acid sequence. This method however
requires a substantially high computational power to cope with the huge number of
degrees of freedom in proteins [14]. As a result, MD folding simulation is currently
restricted to very small proteins and peptides with the time regime limited to hundreds
of nanoseconds or a few microseconds which is the upper bound of current simulation
time [13, 15]). Among the many successful ones include the folding simulations of
helical proteins [16-18] and B-hairpins [19-23]. While current computer speed can
successfully fold small proteins and peptides into their native state, large proteins (more
than 300 residues) on the lower end are trailing behind with daunting challenges. To
date, there is no reported work on full atomic folding studies of large proteins. The
reason is that folding simulation involving large proteins using the current all-atom
folding simulation is regarded to be impractical.

This study seeks to embark upon structure prediction of a large protein using a
combined approach of knowledge-based comparative modeling and physics-based MD
simulation. The intention of this study is neither to solve the protein folding problem nor
to investigate the folding pathways of proteins. The main aim of this work is to validate
the proposed prediction method towards the accurate prediction of large proteins with
more than 500 residues, which is the range of lengths of many important proteins. The
general idea is to model the core region of the protein using information from
homologous protein structures leaving the end-terminal regions or the nonhomologous
regions to fold via MD simulation. There have been many reported studies that exploited
the knowledge-based and physics-based methods such the Rosetta method which has
shown to be quite effective [24]. There are also others which have contributed in better
understanding of the de novo protein structure prediction [25, 26]. There are also
abundant studies which employed MD as a refinement tool to verify the stability of the
complete 3D models built using homology modeling method [27-33]. Nevertheless, there
is yet a reported study where one begins with a knowledge-based model of the core region
of a protein and letting the remaining end terminal regions to fold via MD simulation. It
is hoped that this study could contribute to the understanding of protein structure
prediction generally and to the structure prediction of large proteins specifically
especially for proteins that cannot be solved using the conventional knowledge-based
method alone.

2.0 MATERIALS AND METHODS
Cholesterol esterase )

The enzyme cholesterol esterase (CE) was chosen as the system to be studied.
Figure 1 shows the 3D structure of CE obtained from the asporogenic yeast Candida
cylindracea solved at the resolution of 2.0 A using X-ray Crystallography (PDB id:
1CLE) [34]. Containing 534 amino acid residues, this enzyme reversibly hydrolyzes
cholesterol and other cholesterol-containing compounds into sterol and fatty acids. Its
tertiary structure consists of the a/B domain with a combination of 13 B-strands and 16
a-helices with the core region comprises of seven -strands forming parallel P sheet.
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Figure 1 Ribbon representation of the 3D tertiary structure of cholesterol esterase. Red =
helices, blue = B-strands, grey=random coils, green= B-turns.

Development of the Core Region of CE

The core regions of CE were developed at three different cutoff values of (
sequence identity (id); more than 70% (%id > 70%), less than 60% but more than 30%
(30% < %id < 60%) and less than 20% (%id < 20%). The rationale behind the variety of
the cutoffs was to investigate how the different identity values of the core region would
contribute to the extent of the success of this proposed method. Thus, this study involved
three independent study cases with different starting structures.

The linear chain of CE was subjected to sequence analysis using BLAST [35] to
locate for appropriate templates. The search for the appropriate template was also
performed using the fold recognition methods of mGenThreader [36], 3DPSSM [37] and
FUGUE (38]. Results showed that CE shared a wide range of similarities among solved
structures. The possible templates were ranked according to the highest percentage of
sequence identity.

Table 1 Summary of the BLAST results with scores and % global identity.

LPP, 1LPO, . 88
ILPN,1LPM, ITRH, 1CRL ‘
1GZ7 908 0.0 82
ITHG 411 le-115 41

From Téﬁie 1, it was observed that CE shared high sequence identity (88%) with
lipases 1LPS, 1LPP, 1LPO, 1LPN, ILPM, ITRH and 1CRL. Out of these lipases, 1CRL
[39] was chosen as the template to build the comparative model for the first case study (%
id > 70%). The lipase 1THG [40] shared more than 30% but less than 50% identity with
CE. Therefore, this structure was chosen as the template to build the core region of CE
for the second case study. Table 2 lists the possible templates obtained from the fold
recognition methods. Protein 1JKM [41] was found to be the most suitable template for
the third case study, with % id cutoff < 20%. Not only was it in the range of the cutoff
threshold, it was also the only protein that appeared in all the results obtained from the
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three methods. Among other criterion considered in the template selection was the quality
of the template structure. For X-ray solved structure, the resolution must be as low as
possible and that there should be no missing residues. Table 3 summarizes the selected
templates for the modeling of the core regions of CE. The sequence alignments between
the templates and the proteins were performed using CLUSTALX [42] and the models
were developed using Modeller7v7 [43].

Table 2 Proposed templates obtained from the three threading methods along with the %
id and the calculated scores.

Methods % identity Score
3D-PSSM E-value
e 1gid (acetylcholinesterase) 27 4.8¢-06
e lehq (butyryl cholinesterase) 27 0.0027
e 2bce (cholesterol esterase) 25 0.0027
o 1ge3 (PNB esterase) 27 0.0027
e 1jkm (brefeldin A esterase) 13 0.0114
e 1gkl (Feruloyl esterase) 10 0.0485
FUGUE Z-score
o 1jji (Carboxylesterase) 14.52 16.42
e 1vkh (serine hydrolase) 9.52 13.09
e 1jkm (brefeldin A esterase) 13.60 11.84
e 1h2w (oligopeptidase) 13.57 11.16
o 1jfr (lipase) 10.63 4.15
MGenThreader Z-score
e 1c7i (PNB esterase) 27.1 3e-05
e 2bce (cholesterol esterase) 235 3e-05
e lukc (esterase) 25.9 4e-05
e levq (carboxylesterase) 17.2 5e-05
e 1jkm (brefeldin A esterase) 13.7 6e-05
e 1mpx (hydrolase) 8.20 9e-05

Table 3 The chosen templates for the 3D core region structure prediction of CE at
various cutoff of sequence identity

% id cutoff > 70% ICRL 87.0
30 < % id cutoff < 60% ITHG 45.0
% id cutoff <20% 1JKM 13.6
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Development of the Complete 3D Mode

For the development of the complete structure of the protein, the remaining amino
acids that were not modeled were added to the core region, 10 residues at a time,
consecutively. This was followed by energy minimization and short MD simulation in
order to quickly fold the extended segments towards the core region. The whole process
was repeated by adding another group of 10 amino acids until the complete structure was
formed. The MD simulations were performed using AMBERS [44] suite of programs.
The force field amber,ff003 [45] was used in all the simulations. Figure 2 summarized the
general procedure applied for the three study cases.

Core Structure

v

Add 10 Residues at N-terminal
Add 10 Residues at C-termina!

Y

Energy minimization &
MD simulation

All amino acids No
added ]

Yos

Y
[ Structure Completed ]

Figure 2 Protocol for the development of the 3D complete protein

The energy minimization was carried out using 500 cycles of steepest descent and
another 500 cycles of conjugate gradient. The MD simulation was carried out for 1 ns. In
order to save computing time, the system was simulated in vacuum environment with a
crude estimation of the solvent using distance dependent dielectric constant. Non-bonded
interactions were truncated by using a 16 A cutoff. The system was coupled to a
temperature bath using Berendsen [46] thermostat to maintain the temperature at 300K
with coupling constants of 1.0 ps. Bond constraints were imposed on all bonds involving
hydrogen atoms via SHAKE [47]. The trajectories were produced by numerical
integration of the Newton’s equation of motion using the Verlet-leap frog [48] algorithm
with a time step of 2 fs. The protein models (CEjxm.14 and CEcri.s7) Were simulated
without any restraifit except for the second case (CEtuc4s) in which restraint was
imposed on the core region.

Long MD Simulation

The final part of the method was the long MD refinement in the presence of explicit water
molecules. The model was first subjected to energy minimization using 500 cycles of
steepest descent and another 500 cycles of conjugate gradient. The simulation was
performed in a periodic boundary condition with the molecule immersed in a truncated
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octahedron water box filled with TIP3P water model. Table 3.4 showed the initial
properties of the system under investigation. The nonbonded interactions were treated
using 16A cutoff and PME for Lennard Jones and coulombic interactions, respectively.
The system was simulated at constant pressure (1 bar) and constant temperature (300 K)
using Berendsen weak-coupling thermostat with coupling constants of 1 ps. Bond
constraints were imposed on all bonds involving hydrogen atoms via SHAKE [47]. The
production phase was started from an equilibration phase of 1 ns at 300K and 1 bar of
pressure. The simulation was conducted for 20 ns. As a control, the crystal structure of
native CE was also subjected to MD simulation for 10 ns using the same conditions
described above.

3.0 RESULTS

Figure 3 illustrates the development of the RMSDy, as a function of the simulation time
for the three models, CEjxm.14, CEThg4s and CEcrig7. As observed from the trendlines,
all of the models had very large RMSD with more than 20A. This suggested that the
models were largely different from the native conformation. This finding was supported
by the small fraction of the tertiary native contacts as presented in Table 4. The very small
percentages (less than 18%) portrayed an almost zero occurrence of tertiary native
contacts, whereas there were around 84.5% contacts in the CEpp-ave.

25.5

[ eJKM -CRL :THG |

215 - T T — J

(1] 4000 8000 12000 16000 20000
Figure 3 Time evolution (ps) of RMSDgack (A) for CEcri-87, CEthg4s and CEjxm-14

Table 4 Average values of the structural properties of the predicted 3D structures during
the last 10ns of MD refinement

RMSDygj - 22.09 24.30 23.02
RMSDcore - 6.56 5.25 17.79
Gyration 22.51 22.78 23.94 24.15
Total SASA 19,516.94 22,258.72 24,056.09 22,534.03
Nonpolar SASA 11,807.53 14,746.22 15,525.23 14,657.38
Polar SASA 7,709.41 7,512.50 8,530.85 7,876.65
Fraction 0.85 0.14 0.15 0.11
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The RMSDy,x for CEtpgas and CEjxm.14 increased in the initial part of the MD
refinement. This rise was due to the release of strain in the structure which in turn led the
models to adopt other conformational geometries. After 2 ns, the RMSDyack of CEthG.45
started to slowly decrease until it reached 5 ns and began to stabilize for the remaining
sampling period with values varying between 24.2 to 24.5 A from that of CEmp.ave- In
contrast, the RMSDy,cx for CEjkm.14 continued to increase modestly from 22.6 A in the
beginning up to 23 A until it reached 8 ns where the value started to remain plateau. As
for CEcryL.s7, it was observed that the structure did not undergo any significant structural
change. This was demonstrated by the stable trend of the RMSDy,k throughout the
simulation. As expected, the RMSDy,cx for CEcri.s7 was found to be lower by 1A and
2.5A from that of CEjxm.14 and CEtugs, respectively.

250 ‘
[« JKM  THG = CRL — Native!
24.5 -

24.0 -

22-0 T T T T T
0 4000 8000 12000 16000 20000

Figure 4 Time evolution (ps) of the Ry, (A) for CEcre 87, CETHG45, CEjxm.14 and the
native

As demonstrated in Figure 4, both CErnc4s and CEjkm.14 displayed larger Rgy,
compared to that of CEcgrp-s7 and the native. There was a slight increment in the values
during the first 4 ns of the simulation and it continued to rise gradually until it reached 16
ns where the value started to stabilize around 23.8 to 24.2 A. This showed that both
CEtuc4s and CEjxm.14 were highly expanded compared to the native with averaged value
of 22.5 A. This indicated that the added residues in both models did not pack well with
residues in the core region. On the other hand, Ry, for CEcri.g7 almost resembled that of
the native with compactness of around 22.3 A. However, as the simulation progressed,
the value slowly raised up to 23 A at the end of the simulation.

The total SASA for the models and the native were calculated and presented in
Figure 5. The SASA of the native remained stable throughout the simulation with an
averaged exposed area of 19516 A%. There seemed to be a drastic steady increase in
SASA for CEjm.14 from 19980 A? to 22559 A? in the first 4 ns. As for CEqygu.as, the
increment was quite modest but showed higher SASA value of 24,056 A%. In contrast to
CEthg4s and CEjkm.14, the SASA for CEcrig7 started to rise only after 4 ns and
continued to increase up to the end of the refinement to achieve the same SASA value of
that CEjxm.14- The elevated SASA values were mostly contributed by the large exposed
surface area involving the nonpolar amino acids as depicted in Figure 6. The nonpolar
SASA increased over time except for CEtggas in which the SASA remained fluctuated in
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the range of 15,000 to 16,000 A2, At the end of the simulation, the three models shared
the same nonpolar SASA with values varying between 14,000 to 15,000 A,

27000
[ _ -
26000 [ JKM - CRL : THG — Native]

25000 - s k. :

22000 {7 - Gk PRy i
21000 |
20000 - Sluc ;ka

19000

18000

T T T 1

0 4000 8000 12000 16000 20000

Figure 5 Time evolution (ps) of Total SASA (A?) for CEcrv-g7, CEthgus, CEjxm.14 and
the native

Apart from the nonpolar SASA, the evolution of the polar component of the
SASA was also investigated (Figure 7). There was a rapid increase of the polar SASA for
CEm-14 while a more stable increase for both CEryg4s and CEcgi-s7. In the beginning
of the simulation, all models had lower polar SASA compared to that of the native
indicating that most of the polar residues in the structure models were not located on the
protein surface. However, in the last 4 ns, the polar SASA for both CEcgy-s7 and CExm-14
stabilized and fluctuated around 7700 A? resembling the averaged polar SASA of the
native. As for CErygas, the polar SASA remained stable at much higher value of 8500
A2, Even though the high deviation of the total SASA from that of the native was caused
by the large amount of the nonpolar SASA, the continuous rise in the total SASA was
however largely contributed by the substantial rise of SASA involving polar residues.
About 66.4%, 71.3% and 45.3% of the increment in the total SASA was due to the
exposure of the polar surface area for CEtngas, CEjxm-14 and CEcry-g7 respectively.

18000

| JKM_ - CRL - THG — Native |

17000 -

13000
12000
11000

1 0000 T T T T T
0 4000 8000 12000 16000 20000

Figure 6 Time evolution (ps) of Nonpolar SASA (A?) for CEcgy 87, CEtnoas, CEixw-14
and the native
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[ JKM - CRL - THG —Natiueﬂ
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Figure 7 Time evolution (ps) of Polar SASA (Az) for CEcri-37, CEThG4s, CExm-14 and
the native

Another interesting feature worth mentioning was the changes observed in the
secondary structures throughout the simulation. In general, there were very low '
occurrences of secondary structures in the models. The models were mainly composed of
random coils and loops which occupied more than 450 residues in average instead of less
than 300 residues as what was observed in the native. Table 5 summarized the
percentages as well as the total number of residues involved in the formation of the native
a-helices and B-strands for the native crystal and for the CE models taken at 20 ns of the
MD simulation. A feature worth highlighting was the increase in the percentage of the
native helices for CEcrL.s7 from 6.74% to 12.17% following the 20ns refinement.
However, these helices usually were either shorter or longer by a few residues as
compared to the helices in the native. This increment was not observed to occur in other
models. Apart from the a-helices, the formation of the native strands was also observed
to increase by 0.38% and 1.5% in the models CEcri-s7 and CEtygus, respectively. In the
native structure, 31.65% and 12.36% of the 534 amino acids formed the a-helices and the
B-strands, respectively while the remaining consisted of loops. In contrast, there were
only 65 and 57 residues forming native t-helices in CEcri-s7 and CEtugus, respectively,
more than twofold lower from that of the native. On the lower end, the model CEjky-14
was almost entirely made up of random loops.

Table S  Total number of residues involved in the formation of the secondary structures
for the native crystal, CEmp-av and the CE models.

o-helices 169 36 65 6l

13
GI65  (674) (12.17) (1142) (10.67) (431)  (2.43)

B-strands 66 6 8 13 21 25 12
(1236)  (1.12)  (1.50)  (2.43) (393)  (4.68)  (2.25)

loops 299 492 461 460 456 486 509

(5599) (92.13) (86.33) (86.14) (85.39) (91.01) (95.32)
Sec. elements = secondary structural elements
Avg MD = average structure of the native after 10 ns MD simulation
Raw = mode] before refinement
MD = model after 20 ns refinement
All numbers in the parenthesis correspond to percentages (%).
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40  DISCUSSION

The central objective of this study was to validate the proposed combined knowledge-
based and physics-based structure prediction method when applied to large protein. Three
models were tested with each originating from different starting core regions developed
using the knowledge-based method. The remaining residues were later added and folded
via MD simulation followed by 20 ns of MD refinement. Initially, it was hoped that the
core region could provide a scaffold for the remaining residues to fold correctly.
However, throughout the 20 ns MD refinement, the models did not closely resemble the
native conformation. The high RMSDy., the large Rgy, and the significant increase in the
total SASA indicated that the models were experiencing large conformational changes
involving expansion of the protein size and errors in packing within the protein interior.
Result also showed that there was no bias between the three models which suggested that
the core region, regardless of its accuracy, was not significantly exploited to correctly
predict the structure of the protein. This was due to the huge number of atoms involved
and 20 ns was insufficient to correctly fold the added residues.

It is believed that hydrophobic interactions are crucial in forming and stabilizing
the protein structures [49]. The aggregation of the nonpolar side chains in the interior part
of the protein to avoid contact with surrounding water molecules is indeed the basis of the
hydrophobic effects. In this study, this effect was investigated by SASA and Rgy,. Since
the models were less compact, with almost zero of native tertiary contacts, the chances of
the occurrences of the secondary structures such as a-helices and B-strands were slim.
This suggested that the network of protein-protein hydrogen bonds was very poor which
forced the buried polar residues to traverse to the protein surface to seek interactions with
water molecules. This behavior led to the opening up of the structures as if they were
unfolding as shown by the high SASA values. Since it was agreed that SASA for
denatured state is larger than that of the native state [50-52], it could be pointed that the
models obtained in the current work were denatured in which all the native attributes
were nowhere closed.

In general, if a model was poorly developed, the structure would likely to unfold
into a different conformation following MD refinement. Thus, structural restraint on the
core region was imposed for CEryg4s, in order to investigate whether the restrained core
structure could provide a better channel for the protein to fold into its native form.
Surprisingly, not only was the RMSD for CErygas higher compared to that of CEjxm-14
which had the core region developed less accurately, the result also indicated that the
polar SASA for CEyg4s was greatly diverged from the native polar SASA. This finding
suggested that the use of restraint on the core region caused the protein to be trapped in a
high energy conformatipn.

It is widely agreed that all-atom folding study of large proteins is highly
impractical and could not be accomplished even in the foreseeable future. It is unrealistic
to expect large protein to fold into its native structure within the current limit of
simulation time. In view of this difficulty, this study aimed to contribute a new
perspective to interpret the problem only to find that the massive amount of degrees of
freedom present in large proteins still could not be handled even in the presence of an
accurate core region. Thus, the method proposed in this study cannot be applied to predict
the 3D structure of a large protein. It might work should the MD simulation were
extended to the order of milliseconds to minutes. However, this is impossible for even the
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most powerful paralle] machines today could only simulate all-atom folding in the limits
of microseconds using only small proteins typically less than 100 amino acids [53,
54].The current all-atom folding simulation studies were restricted by the efficiency of
the MD simulation itself to effectively sample the conformational space of the system.
Efficient conformational sampling over the entire phase space is vital to obtain an
accurate thermodynamic ensemble at certain temperature which obeys the ergodic
hypothesis. However, for large structures such as proteins, the sampling process is not
trivial due to the rugged energy landscape that contains numerous local energy minimas
separated by high energy barriers.

5.0 CONCLUSIONS

The attempt to predict the 3D structure of a large protein by exploiting both the
knowledge-based and the physics-based methods did not succeed. Although both methods
were commonly applied in the field of protein structure prediction, the challenge however (
was far from trivial when it involved large proteins. Three models CEcgy.s7, CEtng.4s and
CEjkm-14 were developed using different starting core regions. Each region represented a
different level of accuracy spanning from the most accurate (CEcrr-s7) to the least
accurate (CEjxm-14) models. MD simulation was further applied to add the remaining
residues onto the core regions followed by a 20 ns MD refinement simulation. However,
the predicted structures were found to be denatured and had lost the native attributes.
Nevertheless, this study could be regarded as important in the sense that it provided the
understanding of using different starting models of different accuracies towards
predicting the 3D structure of a large protein using the proposed structure prediction
technique. It was shown that the use of different starting core regions did not significantly
contribute towards correct predictions even when the region showed very high sequence
identity (CEcgri-s7). Furthermore, it was also shown that the use of restraint in this
combined method deteriorated the structure, as observed in the model CEtyg.ss. The task
to predict the functional form of a large protein via conventional MD simulation is not a
reliable method even with the inclusion of knowledge-based information. This is due to
the massive conformational space that need to be sampled and current computational
power still could not cope with such exhaustive conformational space.
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