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Abstract: We report on the development of an adaptive wavelet image coder based on

stack-run representation of the quantized coefficients. The coder works by selecting an

optimal wavelet packet basis for the given image and encoding the quantization indices for

significant coefficients and zero runs between coefficients using a 4-ary arithmetic coder.

Due to the fact that our coder exploits the redundancies present within individual subbands,

its addressing complexity is much lower than that of the wavelet zerotree coding algorithms.

Experimental results show coding gains of up to 1.4 dB over the benchmark wavelet coding

algorithm.

Keywords: Lossless Data Compression, Image Compression, Wavelet Transform, Adaptive

Wavelet Transform, Best Basis Selection

1 INTRODUCTION

Wavelet transform based image coding methods have gained popularity during the last decade

or so [11, 10,5, 14, 15]. This is mainly due to localization properties of wavelets in both time

(space) and frequency resulting in a sparse representation with redundancies in and across

sub bands that can be exploited. Wavelets, however, are not well-suited [6] to represent

oscillatory patterns, a special form of texture. Oscillatory variations of intensity can only be

described by the small scale wavelet coefficients. Unfortunately, those small scale

coefficients carry very little energy, and are often quantized to zero, even at high bit rates.

Fingerprints or seismic signals are a few examples of non-wavelet-friendly signals. Wavelet

packets [2] were developed in order to adapt the underlying wavelet bases to the contents of a

signal. The basic idea is to allow non-octave sub band decomposition to adaptively select the

best basis for a particular signal. Results from various image coding methods based on
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wavelet packets [6, 8] show that they are particularly good in coding images with oscillatory

patterns. There has, however, been relatively much less research on wavelet packet image

coding.

The zerotree quantization, proposed first by Shapiro [11], is an effective way of exploiting the

self-similarities among high-frequency subbands at various resolutions. The success of

wavelet based image coding methods has widely been perceived to be due to across-scale

similarities which could enable encoding of a set of wavelet coefficients by a single

codeword, called a zerotree. However, it has become increasingly clear [14, 6] that

exploitation of redundancies present within subbands can also result in coding gains

comparable to those of the state-of-the-art in image compression.

In this paper, we present an adaptive wavelet transform based image coder which employs a

stack-run representation [14] for quantized transform coefficients in order to benefit from the

intra-subband redundancies. Our compression algorithm can be divided into four parts: In the

first part, an adaptive wavelet packet basis is selected for representing the given image using

certain entropy-based cost function. We found that the Coifman-Wickerhauser (CW) entropy

cost function [3] does not often result in the best wavelet packet basis yielding the highest

compression performance for our coding algorithm. Next, the wavelet packet coefficients are

quantized using an optimal scalar quantizer for Laplacian distribution [13]. In the third part,

we represent the quantized coefficients with stack-run coding using 4-symbol set of [14]

which generates a redundant symbol stream. Finally, this symbol stream is entropy coded

using a high order arithmetic coder. We use a symbol set for the arithmetic coding of

runllevel values in which context information is used to enable multiple uses of a single

symbol. Our coder offers the following advantages: (a) a relatively simple and therefore fast

coding algorithm, (b) capable of progressive transmission, and (c) coding performance

consistently comparable with and often outperforming two state-of-the-art image coders [10,

6].

This paper is organized as follows. In the next section, a brief review of wavelet packet

transform is presented. The coder algorithm is described in further detail in Section 3.

Experimental results of the new coder are presented in Section 4. Finally, the paper concludes

with some remarks on coder's nature and performance.
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2 ADAPTIVE WAVELET TRANSFORM

Adaptive wavelet transform, also known as the wavelet packet transform, for images can be

regarded as an adaptive wavelet subband decomposition that lifts the limitation of only

decomposing the lowpass subband. This adaptation of representation basis to the image

contents can be achieved in practical applications if a fast basis selection algorithm is

employed to select the best basis from among the huge library of possible bases.

2.1 Best Basis Selection

Coifman and Wickerhauser [3] suggested to use a fast dynamic programming algorithm with

a time complexity of O(MogN), where N is the number of pixels in the image, to select the

best basis according to a given cost function C. A key criterion must be met in order to invoke

a dynamic programming strategy [4]: the cost-function should be separable or additive; ie,

C(x) = Lk P(Xk); where Xk, k=O,I,.... ,N-l, are the elements of wavelet packet decomposed

image x, and P is a positive function such that p(O) = O.

2.2 Role of a Cost Function

The notion of the best wavelet packet basis is limited to the cost function based on which the

full wavelet packet tree is pruned to obtain an optimal tree. It is, therefore, crucial that an

appropriate cost function is chosen taking into consideration the quantization strategy

employed by the coder. Initially, Coifman and Wickerhauser [3] used

(1)

as a cost function. Ramchandran and Vetterli [9] used the optimal bit allocation algorithm of

Shoham and Gersho [12] to distribute the budget across the nodes of the wavelet packet tree,

and they select the best basis according to the following rate-distortion criterion

C(x, Q, A) = D(x, Q) + 'AR(x, Q) (2)

Given a set of quantizers Q, the rate R(x, Q) is estimated with the first-order approximation of

the entropy H(Q(x)), and the distortion D(x, Q) is defined as the mean square error (MSE).

The selection of the best basis involves three embedded nonlinear optimization problems. The

overall complexity of the approach in [9] is, therefore, quite high.

Since a scalar quantizer is used to quantize the transform coefficients, we chose to select the

best wavelet packet basis by simply using entropy as a criterion for the split/merge decisions.
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This also enables to reduce substantially the computational complexity of the algorithm. We

experimented with three additive entropy-based cost functions: the CW-entropy h(x), the lp

norm (where p = I) given by

and the energy entropy given by

C2(x) = L log(x/)
k

3 THE CODER ALGORITHM

3.1 Quantization

(3)

(4)

Within each subband, distribution of the wavelet packet coefficients can be approximated by a

Laplacian distribution (I] . We used the optimal entropy constrained scalar quantizer for

Laplacian distribution presented in [13]. It is a uniform scalar quantizer with a symmetric

dead-zone [-~+o, ~-o] , and a step size ~. The optimal reconstruction offset in the sense of

MSE is: 0 = 1_~(e-6/1 - e-6). A dichotom ic search is employed to find the optimal value of ~

that uses up the bit budget.

3.2 Stack-Run Representation

The stack-run representation of [14] partitions the quantized transform coefficients into two

groups containing zero valued and nonzero valued, referred to as significant, coefficients.

Each significant coefficient is represented in binary notation as a stack or a column of bits

with the MSB at the top and the LSB at the bottom. A subband is encoded by starting in one

comer of the subband and performing a raster scan described in terms of stack and run

representations, where ' stack' is the magnitude and sign of the significant coefficient- and

'run' is the number of zero valued coefficients encountered before the next significant

coefficient.

The most significant bit in each stack is replaced by "+" if the corresponding coefficient is

positive, and by "-" if the coefficient is negative. For example, the binary representation of25

with MSB replaced with the symbol "+" is shown in Figure I.
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MSB

LSB

Figure I. The binary representation of 25 with MSB
replaced with the symbol '+'

For decoding purposes that will be explained below, the binary representation is incremented

by one with respect to the absolute value of the coefficients. For example, decimal value 25 is

incremented by one to 26 and then ordered from LSB to MSB to give the representation

"0101+", as shown in Figure 2.

MSB _I~

LSB - 0

Figure 2. The binary representation of25 as a stack

--+- 25
o
-8
o

o 0
o 0
I 0
o 0

o
o
o
4

Figure 3. Quantized transform coefficients. Arrow shows the initial point and direction

of raster scan. The values of the significant coefficients are +25, -8, +I and +4. The run

lengths are 7 and 5.

A 4 by 4 array of quantized transform coefficients with four significant coefficients, having

values 25, -8, I and 4, is shown in Figure 3. The subband can be described by starting from

the top left comer as shown by arrow in the figure, and performing a raster scan described in

terms of stack and run representations.
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In stack-run coding, runs and levels are mapped into symbols independently. The symbol-set

S consists of four symbols; S = {O, 1, +, -}, with the symbols having the following meanings

in their respective contexts:

"0" is used to signify a binary bit value of 0 in encoding significant coefficients.

"1/1 is used for binary I in significant coefficients, but it is not used for the MSB.

/1+/1 is used to represent the MSB of a significant positive coefficient; in addition "+/1 is

used for binary I in representing run lengths.

/I /I is used for the MSB of negative significant coefficients, and for binary 0 in

representing run lengths.

However, one can also use some other four symbols but with the same meanings to get the

same efficiency. Nevertheless, this symbol-set S is better for having added advantage of

readability.

On the decoder side, the use of the symbols in the symbol-set removes any ambiguity between

run lengths and coefficient values. In representing coefficient values, the symbols /1+/1 and /1_/1

are used simultaneously to encode the sign of the coefficient, to identify the bit plane location

of the MSB, and to terminate the sequence of symbols for that particular coefficient. The

significant coefficients are represented, ordered from LSB to MSB. Whenever a /1+/1 or /1_/1 is

encountered subsequent to /11/1 or /10/1, the decoder interprets it as the MSB of the significant

coefficient. If, after the MSB of the significant coefficient, a /11/1 or /10/1 symbol is encountered,

it is taken as the LSB of the next subsequent significant coefficient.

The values of the run lengths, also ordered from LSB to MSB, are represented using the

symbols /1+/1 and /1_/1. If, after the MSB of a significant coefficient, a /1+/1 or /1_/1 symbol is

encountered, it is the LSB of the run-length value. The run-length representations are

terminated by the presence of a /10/1 or /11/1, which is the LSB of the next significant

coefficient. That is why no explicit "end-of-subband" symbol is needed since the decoder can

track the locations of coefficients as the decoding progresses.

As all binary run lengths start with 1, one can omit the final (i.e. MSB) /1+/1 from most run

length representations without any loss of information or ambiguity. A problem occurs in

representation of a run of length 'one' which would not be representable if its MSB /1+"

symbol, i.e. the only symbol, is eliminated. For tackling this, it is necessary to retain the MSB

/1+" symbol for all runs of length 2j
- 1, where j is an integer.

Since the symbols /1+/1 and /1_/1 are used to code both run lengths and MSB of levels, a level of

magnitude one, which would be represented only by the symbol "+/1 or /1_/1 that is its MSB,
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would not be distinguishable from a run. Because the presence of" 1" or "0" before "+" or "-"

will show that it is a significant coefficient. This is handled by incrementing the absolute

value of all levels by one prior to performing the symbol mapping.

This symbol mapping is illustrated in Figure 3. If the raster scan is begun as indicated by the

arrow in the figure, first of all a significant coefficient with decimal value 25 is encountered.

This is incremented by one to 26 and then ordered from LSB to MSB to give the binary

representation "010 1+". After the significant coefficient 25, 7 zero-valued coefficients will be

encountered. This string of 7 zeros corresponds to binary run length Ill, which by one-to-one

mapping with the symbols "+" and "-" would lead to the symbol string representation "+++".

As discussed before, since the run length of 7 satisfies "2i - 1", the final "+" (i.e. the MSB of

7) is not dropped. The next significant coefficient after the run of 7 zeros has decimal value -8

and is decremented to decimal -9 and represented in binary as "100-", ordered from LSB to

MSB. The next significant coefficient has value 1, and occurs immediately after -8 (i.e. there

is no run of zero-valued coefficients). This is incremented to 2 and accordingly represented by

appending "0+" to the encoded symbol stream. The run of length 5 that follows this

coefficient could be represented using "+-+", corresponding to binary 101 ordered from LSB

to MSB. In this case, however, the final "+" in this sequence is redundant because the run of

length 5 does not satisfy "2J - 1", so this run is represented as "+-". The last coefficient has

value 4 and accordingly represented by "10+". Therefore, the complete symbol stream for the

coefficients in the 4 by 4 array or subband in Figure 3 is "0101++++100-0++-1 0+".

3.3 Entropy Coding

Both the geometry of the best wavelet packet basis selected and the quantized coefficients are

converted into a stream of symbols from S using stack-run representation described above.

This symbol stream is entropy coded using an order-S arithmetic coder [7] to give actual

bitstream.

4 EXPERIMENTAL RESULTS

We implemented the stack-run wavelet packet (SRWP) image coder, generating an actual

bitstream, and decoder. Nine different variations of the SRWP coder were tested on six

standard 256-level greyscale images each having a resolution of 512x512: Barbara, Houses,

Lighthouse, Fingerprints, Goldhill, and Lena. The coder variations were based on three

different filters: symmlet-8, biorthogonal 17111, and biorthogonal 9/7 filters. Each of these

variations employed three cost functions given in equations (1), (3), and (4) - denoted
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respectively by CW, log, and lp- for basis selection purposes. Compression results in terms of

the peak-signal-to-noise-ratio (PSNR) in decibels (dB) are given in Tables 1-6. Comparisons

are provided for two state-of-the-art image coders: the wavelet based SPIHT coder [10] and

the fast adaptive wavelet packet (FAWP) coder [6]; results for these algorithms were not

available for last two images used for evaluating SRWP. The experimental results show that

the compression performance of our SRWP coder is comparable to and often better than that

of SPIHT and FAWP. Coding gains achieved by the SRWP coder over both other coders are

noticeable, especially for Barbara (1.2dB over SPIHT and O.4dB over FAWP) and

Fingerprints (1.1dB over SPIHT and nearly 0.2dB over FAWP). Empirical rate-distortion

curves for the best SRWP coder variation, SPIHT, and FAWP are given in Figure 4. Visual

results for four test images compressed at 0.25 bits per pixel (bpp.) are provided in Figures 6,

8, 10 and 12.

5 CONCLUSIONS

An adaptive wavelet packet image coding algorithm based on stack-run representation of the

quantized transform coefficients is presented. Our coder is relatively simple and does not need

to maintain any list of coefficients, as is the case with EZW [11] and SPIHT. Decent coding

gains over SPIHT and FAWP coders demonstrate the successful exploitation of intra-subband

redundancies. Experimental results also show that the [I-norm and energy cost functions

typically result in the best wavelet packet basis whose coefficients are more efficiently

encoded by our algorithm. Another interesting result is the consistently better performance of

the symmlet-8 filters over filters in popular use. Future work on this coder may focus on the

development of a cost function that takes into account the Laplacian distribution of wavelet

packet coefficients.
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Table 1. Compression results (PSNR values in dB) for 512x512 Barbara image

Bil SRWP (symm-8) SRWP (/7//1) SRWP(9/7)
rate SPIHT FAWP

(hnn'
ew log t, ew log t, ew log Ip

1.0 37.13 37.65 37.53 37.00 37.39 37.28 36.04 36.41 36.26 36.41 37.24

0.50 32.43 31.87 32.81 32.28 32.59 32.51 31.34 31.53 31.49 31.39 32.82

0.25 28.80 28.97 18.98 28.60 28.73 28.72 27.84 27.78 27.87 27.58 29.12

Table 2. Compression results (PSNR values in dB) for 512x512 Houses image

Bit SRWP (symm-8) SRWP (/7//1) SRWP (9/7)
rate SPIHT FAWP

(bpp.) ew log t, ew log t, ew log t,
1.0 30.61 30.88 30.89 30.39 30.61 30.62 30.14 30.23 30.22 30.84 30.64

0.50 26.41 26.56 16.58 26.22 26.19 26.26 25.84 25.87 25.85 26.15 26.48

0.25 13.37 23.31 23.31 23.16 22.94 23.03 22.71 22.71 22.70 23.17 23.41

Table 3. Compression results (PSNR values in dB) for 512x512 Lighthouse image

Bit rate SRWP (symm-8) SRWP (/7//1) SRWP(9/7)
SPIHT FAWP

(bpp.) ew log t, ew log Ip ew log t,

1.0 H.98 34.16 34.07 33.60 33.93 33.74 33.34 33.51 33.42 34.03 34.06

0.50 30.27 30.40 30.35 30.01 30.15 30.05 29.68 29.80 29.77 30.25 30.44

0.25 27.70 27.75 17.78 27.50 27.55 27.54 27.17 27.20 27.27 27.43 27.98

Table 4. Compression results (PSNR values in dB) for 512x512 Fingerprints image

Bit rate SRWP (symm-8) SRWP(/7//1) SRWP(9/7)
SPIHT FAWP

(bpp.) ew log t, ew log t, ew log Ip

1.0 37.11 36.48 37.11 36.57 36.01 36.64 34.82 33.57 35.02 36.01 36.85

0.50 31.92 31.70 31.95 31.51 31.36 31.58 30.25 29.14 30.26 31.27 31.79

0.25 27.84 17.90 27.86 27.54 27.60 27.49 26.51 25.48 26.52 27.12 27.59
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Table 5. Compression results (PSNR values in dB) for 512x512 Goldhill image

Bit rate SRWP (svmm-Bi SRWP (17111) SRWP (917)
(bpp.) CW log 10 CW log 10 CW log 10

1.0 36.2 36.3 36.3 35.98 36.12 36.10 35.72 35.77 35.77
0.50 32.8 32.8 32.8 32.57 32.65 32.64 32.28 32.33 32.33
0.25 30.1 30.1 30.2 29.95 29.94 29.96 29.61 29.64 29.65

Table 6. Compression results (PSNR values in dB) for 512x512Lena image

Bit rate SRWP (svmm-Bi SRWP (17111) SRWP (917)
(bpp.) CW log /0 CW log /0 CW log /0

1.0 39.8 39.8 39.8 39.52 39.66 39.66 39.10 39.13 39.12
0.50 36.4 36.4 36.4 36.06 36.18 36.19 35.41 35.43 35.45
0.25 32.9 33.0 32.9 32.75 32.71 32.70 31.94 31.96 31.98
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Figure 4. Comparative rate-distortion curves
(a) Barbara, (b) Lighthouse, (c) Houses, and (d) Fingerprints
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Figure 5. Barbara: original image

Figure 7. Houses: original image
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Figure 6. Decoded image ofBarbara compressed by SRWP at 0.25 bpp, PSNR=
28.98 dB

Figure 8. Decoded image of Houses compressed by
SRWP at 0.25 bpp, PSNR= 23.37 dB
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Figure 9. Lighthouse: original image

Figure 11. Fingerprints: original image
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Figure 10. Decoded image of Lighthouse compressed by SRWPat 0.25 bpp, PSNR=
27.78 dB

Figure 12. Decoded image ofFingerprints compressed by SRWP at 0.25 bpp, PSNR=
27.90 dB
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