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ABSTRACT 
 
Understanding of quantum limit in low dimensional devices helps to develop the new device types same as Carbon 
Nanotube Field Effect Transistor (CNTFET) and Naonowire. For each dimensionality the limitations on carrier drift 
velocity due to the high-field streaming of otherwise randomly velocity vector in equilibrium is reported. The results are 
based on the asymmetrical distribution function that converts randomness in zero-field to streamlined one in a very 
high electric field. The ultimate drift velocity for all dimensions is found to be appropriate thermal velocity for a non- 
degenerately doped sample of silicon, increasing with the temperature, but independent of carrier concentration. 
However, the ultimate drift velocity is the Fermi velocity for degenerately doped silicon increasing with carrier 
concentration but independent of the temperature.   

 
| Drift velocity | Low Dimensional Devices| Quantum Limit |  

 
 
1. Introduction  

 

The quest for high-speed devices and circuits for Ultra-Large-Scale-Integration (ULSI) is continuing. The 

speed is determined by the ease with which the carrier (electron or holes) can propagate through the length of the 

device. In the earlier designs, the mobility of the carrier was believed to be of paramount importance. That was 

the push for Gallium Arsenide (GaAs) considering that the mobility of an electron in GaAs is 5-6 times higher 

than that of an electron in silicon. However, as development of the devices to nanoscale dimensions continued it 

became clear that the saturation velocity plays a predominant role. The higher mobility brings an electron closer 

to saturation as a high electric field is encountered, but saturation velocity remains the same no matter what the 

mobility. Until today, there is no clear consensus on the interdependence of saturation velocity on low-field 

mobility that is scattering-limited. 

 

There are a number of theories of high-field transport to answer this interdependence. Among them are 

Monte Carlo simulations, energy-balance theories, path integral methods, green function and many others. Rigor 

of mathematics and a number of clandestine parameters that are used in these simulations present a foggy picture 

of what controls the ultimate saturation of drift velocity. In any solid state device, it is very clear that the band 

A
rtic

le
 

 

Journal of 
Fundamental 

Sciences

Available online at 

http://www.ibnusina.utm.my/jfs 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Universiti Teknologi Malaysia Institutional Repository

https://core.ac.uk/display/11783631?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


 Mohammad T. Ahmadi et al. / Journal of Fundamental Sciences 4 (2008) 403-413 404

structure parameters, doping profiles (degenerate or nondegenerate), and ambient temperatures play a variety of 

roles in limiting optoelectronic properties. The outcome that higher mobility leads to higher saturation is not 

supported by experimental observations prompting our careful study of the process controlling the ultimate 

saturation. In the following, the fundamental processes that limit drift velocity are delineated. 

 

 

2. Theory  
 

  

The distribution function of the energy Ek is given by the Fermi-Dirac distribution function: 
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where EFd is the Fermi energy at which the probability of occupation is half, d is dimension and T is the 

ambient temperature. In non- degenerately doped semiconductors the ‘1’ in the denominator of Equation (2.1) is 

negligible compared to the exponential factor, the distribution is then Maxwellian: 
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This simplified distribution function is extensively used in determining the transport parameters. This 

simplification is true for non degenerately-doped semiconductors.  However, most NANO electronic devices 

these days are degenerately doped.  Hence any design based on the Maxwellian distribution is not strictly correct 

and often leads to errors in our interpretation of the experimental results. In the other extreme, for strongly 

degenerate carriers, the probability of occupation is 1 where Ek < EF and it is zero if Ek > EF. Arora [1] modified 

the equilibrium distribution function of Equation (2.1) by replacing EFd (the chemical potential) with the 

electrochemical potential l
rr
.εqE

Fd
+ . Here ε

r
 is the applied electric field, q is the electronic charge and l

r

the 

mean free path during which carriers are collision free or ballistic. Arora’s distribution function is thus given by 
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This distribution has simpler interpretation as given in the tilted band diagram of Figure 1 the carriers at a 

point x arrive from left or right a mean-free-path l  away from either side of x. It can be seen that the Fermi level 

on left is lεqE
Fd

+ and that on the right lεqE
Fd

− . These are the two quasi Fermi levels with EFd at the point 

x. The current flow is due to the gradient of Fermi energy )(xE
Fd  when an electric field is applied. 
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Figure 1:  Partial streamlining of random motion of the drifting electrons on a tilted energy band diagram in an 

electric-field. 

 

Because of this asymmetry in the distribution of electrons, the electrons tend to drift opposite to the electric 

field ε
r
applied in the negative x-direction (right to left).  In an extremely large electric field, virtually all the 

electrons are travelling in the positive x-direction (opposite to the electric field).  This is what is meant by 

conversion of otherwise completely random motion into a streamlined one. With ultimate velocity per electron 

equal to iv .  Hence the ultimate velocity is ballistic independent of scattering interactions.  

 

The ballistic motion in a mean-free path is interrupted by the onset of a quantum emission of energy 0ωh .  

This quantum may be an optical phonon or a photon or any digital energy difference between the quantized 

energy levels with or without external stimulation present. The mean-free path with the emission of a quantum of 

energy is related to 
0l  (zero-field mean free path) by an expression [2] 
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Here )1( 0 +N gives the probability of a quantum   emission, and No is the Bose-Einstein distribution 

function. The degraded mean free path l  is now smaller than the low-field mean free path ol . oll ≈  in the 

ohmic low-field regime as expected.  In high electric field, Qll ≈ . The inelastic scattering length during which a 

quantum is emitted is given by: 
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Obviously ∞=Ql  in zero –electric field and will not modify the traditional scattering described by mean 

free path
0l  as 0ll >>Q . The low-field mobility and associated drift motion is therefore scattering-limited.  

The effect of all possible scattering interactions is now buried in the mean free path 0l .   However the presence 

of high electric field makes 0ll <<Q .   In that extreme we have: 

 

εq

EQ

Q =≈ ll                  (2.8) 

 

This itself may be enough to explain the degradation of mobility µ  in a high electric field 
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Here cτ  is the mean free time in which the electron motion is ballistic. idv  is the mean intrinsic velocity [3] 

for semiconductors. idv is the weighted average of 
*/2 mEv k= with the Fermi-Dirac distribution of 

Equation (2.1) multiplied by the density of quantum states and is given by 
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Here, )(ηjF is the Fermi-Dirac integral of order j and )1( +Γ j is a Gamma function. The Fermi integral 

with Maxwellian approximation is always an exponential for all values of j and is given by 

ηη ej ≈)(F     (Non-degenerate)                         (2.12) 

In the strongly degenerate regime, the Fermi integral transforms to 
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The ultimate average velocity per electron is now idv  and is a function of temperature and doping concentration 

[4, 5] 
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Where 22CN )(d-  is the effective density of states for the conduction band with m* now being the density-of-

states effective mass. 22n )(d-  is the carrier concentration per unit volume(area or length).  

 

 

3. Bulk Semiconductors 
 

In bulk semiconductors all three Cartesian directions are much larger than the De Broglie wavelength. 

Therefore energy spectrum is analog-type in x, y and z-direction as given by 
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Here zy,x,
k are the wave-vector components with momentum kp

r
h

r
= . Eco is the unaltered conduction band 

edge, *m  is the carrier effective mass assumed isotropic for all three dimensions, zyx LLLΩ =  is the volume 

of the samples with zy,x,
L  the length in each of the three Cartesian directions.  

 

 

Figure 2 indicates the ultimate velocity as a function of temperature for three values of concentration for 3D 

bulk silicon.  Also shown is the graph for nondegenerate approximation. The velocity for low carrier 

concentration follows 
2/1T behaviour independent of carrier concentration.  However for high concentration 

(degenerate carriers) the velocity depends strongly on concentration and becomes independent of the temperature. 

The ultimate saturation velocity is thus the thermal velocity appropriate for 3D carrier motion [6]: 
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Figure 2: Velocity versus temperature for silicon for various concentration values. 

 

Figure 3 shows the graph of ultimate intrinsic velocity as a function of carrier concentration for three 

temperatures (T= 4.2 K, 77 K, and 300 K).  As expected, at low temperature, carriers follow the degenerate 

statistics and hence their velocity is limited by appropriate average of the Fermi velocity that is a function of 

carrier concentration.  When degenerate expression for the Fermi energy as a function of carrier concentration is 

utilized, the ultimate saturation velocity for bulk semiconductor (3D) is given by [7] 
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Figure 3:  Velocity versus doping concentration for T=4.2 K (liquid helium), T = 77K (liquid nitrogen) and 

T=300 K (room temperature). The 4.2 K curve is closer to the degenerate limit. 
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4. Two Dimensional (2D) Semiconductors 

 

In 2D semiconductors only two Cartesian directions are much larger than the De - Broglie wavelength λD. 
Therefore energy spectrum is analog-type in x, y -direction as given by. 

ozeyx

e

co nkk
m

EE ∈+++= 222

*

2

)(
2

h
                  (4.1) 

2*

)(

22

)(
2 zhe

hoze
Lm

hπ
=∈                   (4.2) 

The )(hoze∈ is quantum limits in z direction for both electron and holes in which the length LZ  ≤ λD ≈ 10nm.  The 

eigen-function )(rk

r
ψ  is given by 
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This wave-function describes the propagating waves in x and y directions. For quasi-2D nanostructures d = 

2, the ultimate average velocity per electron is now 2iv  and is a function of temperature and doping 

concentration  
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Figure 4 indicates the ultimate velocity as a function of temperature.  Also shown is the graph for 

nondegenerate approximation. The velocity for low carrier concentration follows 
2/1T behaviour independent of 

carrier concentration.  However for high concentration (degenerate carriers) the velocity depends strongly on 

concentration and becomes independent of the temperature. The ultimate saturation velocity is thus the thermal 

velocity appropriate for 2D carrier motions same as 3D. 
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Figure 4:  Velocity versus temperature for silicon for various concentration values. 

 

Figure 5 shows the graph of ultimate intrinsic velocity as a function of carrier concentration for three 

temperatures (T= 4.2 K, 77 K, and 300 K).  As expected, similar to bulk semiconductor (3D) at low temperature, 

carriers follow the degenerate statistics and hence their velocity is limited by appropriate average of the Fermi 

velocity that is a function of carrier concentration.  When degenerate expression for the Fermi energy as a 

function of carrier concentration is utilized, the ultimate saturation velocity is given by  
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Figure 5:  Velocity versus doping concentration for T=4.2 K (liquid helium), T = 77K (liquid nitrogen) and 

T=300 K (room temperature). The 4.2 K curve is closer to the degenerate limit. 

 

5. One Dimensional Semiconductor 
 

In one dimensional semiconductor only one Cartesian direction are much larger than the De -Broglie 

wavelength. Therefore energy spectrum is analog-type in y, z -direction as given by. 
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This wave function describes the propagating waves in one direction. For quasi-one-dimensional d=1, the 

ultimate average velocity per electron is now 1iv  and is a function of temperature and doping concentration too.    
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Where 
1CN  is the effective density of states for the conduction band with m* now being the density-of-

states effective mass. n1 is the carrier concentration per unit length. Figure 6 indicates the ultimate velocity as a 

function of temperature.  Also shown is the graph for nondegenerate approximation. Same as 3D and 2D devices 

the velocity for low carrier concentration follows 
2/1T behaviour independent of carrier concentration.  However 

for high concentration (degenerate carriers) the velocity depends strongly on concentration and becomes 

independent of the temperature. The ultimate saturation velocity is thus the thermal velocity appropriate for 1D 

carrier motion: 
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Figure 6:  Velocity versus temperature for nanowire for various concentration values. 
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Figure 7 shows the graph of ultimate intrinsic velocity as a function of carrier concentration for three 

temperatures (T= 4.2 K, 77 K, and 300 K).  As expected, similar to 3D and 2D devices at low temperature, 

carriers follow the degenerate statistics and hence their velocity is limited by appropriate average of the Fermi 

velocity that is a function of carrier concentration.  When degenerate expression for the Fermi energy as a 

function of carrier concentration is utilized, the ultimate saturation velocity is given by  
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Figure 7:  Velocity versus doping concentration for T=4.2 K (liquid helium), T = 77K (liquid nitrogen) and 

T=300 K (room temperature). The 4.2 K curve is closer to the degenerate limit. 

 

The ultimate velocity in all dimensions may become lower when quantum emission is considered.  The 

inclusion of the quantum or optical phonon or any other similar emission will change the temperature dependence 

of the saturation velocity. 

 

6.  Conclusion  
 

Using the distribution function that takes into account the asymmetrical distribution of drifting electrons in 

an electric field is presented. This distribution function transforms the random motion of electrons into a 

streamlined one that gives the ultimate saturation velocity that is a function of temperature in nondegenerate 

regime and a function of carrier concentration in the degenerate regime.  The ultimate drift velocity is found to be 

appropriate thermal velocity for a given dimensionality for no degenerately doped samples. However, the 

ultimate drift velocity is the appropriate average of the Fermi velocity for degenerately doped samples.  
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