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Abstract 

    This paper presents a method for unsupervised 
partitioning of data for finding spatio-temporal 
patterns in climate data using kernel methods which 
offer strength to deal with complex data non-linearly 
separable in input space. This work gets inspiration 
from the notion that a non-linear data transformation 
into some high dimensional feature space increases the 
possibility of linear separability of the patterns in the 
transformed space. Therefore, it simplifies exploration 
of the associated structure in the data. Kernel methods 
implicitly perform a non-linear mapping of the input 
data into a high dimensional feature space by 
replacing the inner products with an appropriate 
positive definite function. In this paper we present a 
robust weighted kernel k-means algorithm 
incorporating spatial constraints for clustering climate 
data. The proposed algorithm can effectively handle 
noise, outliers and auto-correlation in the spatial data, 
for effective and efficient data analysis by exploring 
patterns and structures in the data. 

1. Introduction  

    Data clustering, a class of unsupervised learning 
algorithms, is an important and applications-oriented 
branch of machine learning. Its goal is to estimate the 
structure or density of a set of data without a training 
signal. It has a wide range of general and scientific 
applications such as data compression, unsupervised 
classification, image segmentation, anomaly detection, 
etc. There are many approaches to data clustering that 
vary in their complexity and effectiveness, due to the 
wide number of applications that these algorithms 
have. While there has been a large amount of research 
into the task of clustering, currently popular clustering 
methods often fail to find high-quality clusters.  

    A number of kernel-based learning methods have 
been proposed in recent years [3, 7, 8, 9, 15, 16, 21]. 
However, much research effort is being put up for 
improving these techniques and in applying these 
techniques to various application domains. Generally 
speaking, kernel function implicitly defines a non-
linear transformation that maps the data from their 
original space to a high dimensional space where the 
data are expected to be more separable. Consequently, 
the kernel methods may achieve better performance by 
working in the new space. While powerful kernel 
methods have been proposed for supervised 
classification and regression problems, the 
development of effective kernel method for clustering, 
aside from a few tentative solutions [4, 9, 17], needs 
further investigation.  
    Finding good quality clusters in spatial data (e.g, 
temperature, precipitation, pressure, etc) is more 
challenging because of its peculiar characteristics such 
as auto-correlation, non-linear separability, outliers, 
noise, high-dimensionality, and when the data has 
clusters of widely differing shapes and sizes [11, 18, 
22]. With this in view, the intention of this paper is, 
firstly, to analyze selective kernel-based clustering 
techniques in order to identify how further 
improvement can be made especially for spatial data 
clustering. Finally, we present a weighted kernel k-
means clustering algorithm incorporating spatial 
constraints bearing spatial neighborhood information 
in order to handle spatial auto-correlation and noise in 
the spatial data.  
    This paper is organized as follows. In the next 
section, a brief overview of the problem area is given. 
In section 3, it is pointed out how kernel-based 
methods can be useful for clustering non-linearly 
separable and high-dimensional spatial (climate) data. 
Two currently proposed kernel-based algorithms are 
briefly reviewed in the next section. In section 5, a 
weighted kernel k-means algorithm with spatial 
constraints is presented which could be useful for 
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handling noise, outliers and auto-correlation in the 
spatial data. In order to speed up computations, use of 
triangular inequality is described in section 6. Finally 
in section 8, brief discussion and conclusion are given. 

2. Application area and methods 

    This work is focusing on clustering spatial data, e.g. 
for finding patterns in rainfall, temperature, pressure 
data so that their impact on other objects like 
vegetation etc could be explored. A very simplified 
view of the problem domain might look like as shown 
in Figure 1. The data for the problem domain might 
consist of a sequence of snapshots of the earth areas 
taken at various points in time, as shown in the figure. 
Each snapshot might consist of measurement values for 
a number of variables e.g., temperature, pressure, 
precipitation, etc. All attribute data within a snapshot is 
represented using spatial frameworks, i.e., a 
partitioning of the study region into a set of mutually 
disjoint divisions which collectively cover the entire 
study region. This way we would be dealing with 
spatial time series data. 
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Fig. 1. A simplified view of the problem domain

    Clustering, often better known as spatial zone 
formation in this context, segments land into smaller 
pieces that are relatively homogeneous in some sense. 
While these zones can be specified directly by 
researchers, clustering provides a general data mining 
approach for automatically creating zones. Thus, our 
basic approach is to treat the zone creation problem as 
a cluster analysis problem. Cluster analysis groups 
objects (grid cells) so that the objects in a group are 
similar to one another and different from the objects in 
other groups. A goal of the work is to use clustering to 
divide areas of the land into disjoint regions in an 
automatic, but meaningful way that enables us to 
identify regions of the land whose constituent points 
have similar short-term and long-term characteristics. 
Given relatively uniform clusters we can then identify 
how various phenomena or parameters, such as 
precipitation, influence the climate and oil-palm 
produce (for example) of different areas. 

    The spatial and temporal nature of our target data 
poses a number of challenges. For instance, such type 
of earth science data is noisy. In addition, such data 
displays autocorrelation (i.e., measured values that are 
close in time and space tend to be highly correlated, or 
similar), high dimensionality (for example, if we 
consider monthly precipitation values at 1000 spatial 
points for 12 years, then each time series would be 144 
dimensional vector), clusters of non-convex shapes, 
outliers. 
    If we apply a clustering algorithm to cluster time 
series associated with points on the land, we obtain 
clusters that represent land regions with relatively 
homogeneous behavior. The centroids of these clusters 
are time series that summarize the behavior of these 
land areas, and can be represented as indices. 
Consequently, clustering is an initial and key step in 
using data mining for the discovery of indices. 
Afterwards, the correlation between the clusters we 
have found can be analyzed. 
    Next, the influence of potential indices on land 
points can be evaluated. Specifically, we are interested 
in using a time series (cluster centroid, or otherwise) as 
indices if it can be used to explain the behavior of a 
well-defined region of the land, especially with respect 
to oil palm yield. One way of evaluating impact of 
indices on the land is to compute the correlation of 
each cluster centroid with each land point, where the 
behavior of a land point is described by a time series 
which captures the time dependent behavior of some 
variable (e.g., precipitation, temperature, pressure, 
humidity, oil-palm yield) associated with the land 
point. In this fashion, we can determine, for each land 
point, the cluster centroid with which it is most highly 
correlated.  

3. Kernel-based methods 

    The kernel methods are among the most researched 
subjects within machine-learning community in recent 
years and has been widely applied to pattern 
recognition and function approximation. Typical 
examples are support vector machines [2, 6, 20], kernel 
Fisher linear discriminant analysis [14], kernel 
principal component analysis [17], kernel perceptron 
algorithm [5], just to name a few. The fundamental 
idea of the kernel methods is to first transform the 
original low-dimensional inner-product input space 
into a higher dimensional feature space through some 
nonlinear mapping where complex nonlinear problems 
in the original low-dimensional space can more likely 
be linearly treated and solved in the transformed space 
according to the well-known Cover’s theorem. 
However, usually such mapping into high-dimensional 
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feature space will undoubtedly lead to an exponential 
increase of computational time, i.e., so-called curse of 
dimensionality. Fortunately, adopting kernel functions 
to substitute an inner product in the original space, 
which exactly corresponds to mapping the space into 
higher-dimensional feature space, is a favorable option. 
Therefore, the inner product form leads us to applying 
the kernel methods to cluster complex data [9, 15].  

3.1 Support vector machines and kernel-based 
methods 

    Support vector machines (SVM), having its roots in 
machine learning theory, utilize optimization tools that 
seek to identify a linear optimal separating hyperplane 
to discriminate any two classes of interest [19, 20]. 
When the classes are linearly separable, the linear 
SVM performs adequately. 
    There are instances where a linear hyperplane 
cannot separate classes without misclassification, an 
instance relevant to our problem domain. However, 
those classes can be separated by a nonlinear 
separating hyperplane. In this case, data may be 
mapped to a higher dimensional space with a nonlinear 
transformation function. In the higher dimensional 
space, data are spread out, and a linear separating 
hyperplane may be found. This concept is based on 
Cover’s theorem on the separability of patterns. 
According to Cover’s theorem on the separability of 
patterns, an input space made up of nonlinearly 
separable patterns may be transformed into a feature 
space where the patterns are linearly separable with 
high probability, provided the transformation is 
nonlinear and the dimensionality of the feature space is 
high enough. Figure 2 illustrates that two classes in the 
input space may not be separated by a linear separating 
hyperplane, a common property of spatial data, e.g. 
rainfall patterns in a green mountain area might not be 
linearly separable from those in the surrounding plain 
area. However, when the two classes are mapped by a 
nonlinear transformation function, a linear separating 
hyperplane can be found in the higher dimensional 
feature space.  
    Let a nonlinear transformation function φ maps the 
data into a higher dimensional space. Suppose there 
exists a function K, called a kernel function, such that, 

)()(),( jiji xxxxK φφ ⋅=

A kernel function is substituted for the dot product of 
the transformed vectors, and the explicit form of the 
transformation function φ is not necessarily known. In 
this way, kernels allow large non-linear feature spaces 
to be explored while avoiding curse of dimensionality. 
Further, the use of the kernel function is less 

computationally intensive. The formulation of the 
kernel function from the dot product is a special case 
of Mercer’s theorem [16]. 

Fig. 2. Mapping nonlinear data to a higher 
dimensional feature space where a linear 
separating hyperplane can be found, eg, via the 
nonlinear map [ ] [ ] [ ] [ ]( )21
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    Examples of some well-known kernel functions are 
given below: 

• Polynomial: d
jiji xxxxK >=< ,),(

• Radial Basis Function (RBF): 
)2/exp(),( 22

σjiji xxxxK −−=

• Sigmoid: ),(tanh),( βα +><= jiji xxxxK

4. K-means and kernel methods for 
clustering 

    Clustering has received a significant amount of 
renewed attention with the advent of nonlinear 
clustering methods based on kernels as it provides a 
common means of identifying structure in complex 
data [2, 4, 9, 15]. Before discussing two kernel-based 
algorithms [2, 4] here, the popular k-means algorithm 
is described in the next subsection, which is used as 
predominant strategy for final partitioning of the data. 

4.1 K-means

    First we briefly review k-means [12] which is a 
classical algorithm for clustering. We first fix the 
notation: let X = { xi }i=1, . . .,n be a data set with xi ∈ RN

. We call codebook the set W = { wj }j=1, ., ., .,k with wj ∈
RN  and k << n. The Voronoi set (Vj ) of the codevector 
wj is the set of all vectors in X for which wj  is the 
nearest vector, i.e. 

}min{
,...,1 jikjij wxargjXxV −=∈=

=

For a fixed training set X the quantization error E(W ) 
associated to the Voronoi tessellation induced by the 
codebook W can be written as 

Input space Feature space
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    K-means is an iterative method for minimizing the 
quantization error E(W) by repeatedly moving all 
codevectors to the arithmetic mean of their Voronoi 
sets. In the case of finite data set X and Euclidean 
distance, the centroid condition reduces to 

∑
∈

=
ji Vx

i
j

j x
V

w 1     (2) 

where |Vj| denotes the cardinality of Vj . Therefore, k-
means is guaranteed to find a local minimum for the 
quantization error. However, the k-means does not 
have mechanism to deal with issues such as: 

• Outliers; one of the drawbacks of k-means is lack 
of robustness with respect to outliers, this problem 
can be easily observed by looking at the effect of 
outliers in the computation of the mean in eq. (2).  

• non-linear separability of data in input space,  
• auto-correlation in spatial data,  
• noise, and high dimensionality of data. 

4.2 One class SVM 

    Support vector clustering (SVC) [2], also called one-
class SVM, is an unsupervised kernel method based on 
support vector description of a data set consisting of 
positive examples only. In SVC, data points are 
mapped from data space to a high dimensional feature 
space using a Gaussian kernel. In feature space, SVC 
computes the smallest sphere that encloses the image 
of the input data. This sphere is mapped back to data 
space, where it forms a set of contours, which enclose 
the data points. These contours are interpreted as 
cluster boundaries.  
    The clustering level can be controlled by changes in 
the width parameter of the Gaussian kernel (σ). The 
SVC algorithm can also deal with outliers by 
employing a soft margin constant that allows the 
sphere in feature space not to enclose all points. 
    Since SVC is using a transformation to an infinite 
dimension space, it can handle clusters of practically 
any shape, form or location in space. This is probably 
its most important advantage. However, the algorithm 
has the following drawbacks: 

• One problem with the algorithm is its extreme 
dependence on σ. Finding the right value of σ is 
time-consuming and very delicate.  

• Another disadvantage of the algorithm is its 
complexity. The separation of the sphere to 
different clusters and determining the adjacency 
matrix is extremely complicated.  

• As the number of dimensions increases, the running 
time of the algorithm grows dramatically. For a 
large number of attributes, it is practically not 
feasible to use this algorithm. 

4.3 Mercer kernel k-means

    In [4], F. Camastra and A. Verri report on extending 
the SVC algorithm. The kernel k-means algorithm [4] 
uses k-means like strategy in the feature space using 
one class support vector machine. The algorithm can 
find more than one clusters. Although the algorithm [4] 
gives nice results and can handle outliers but it has 
some drawbacks:  
• The convergence of this procedure is not 

guaranteed and is an open problem. The algorithm 
does not aim at minimizing the quantization error 
because the Voronoi sets are not based on the 
computation of the centroids. 

• The algorithm requires the solution of a quite 
number of quadratic programming problems, so 
takes heavy computation time.  

• Because of the computational overheads, the 
algorithm might become unstable for high-
dimensional data. 

• Moreover, there is no mechanism for handling 
spatial auto-correlation in the data. 

5. Proposed weighted kernel k-means with 
spatial constraints 

    As we have illustrated above, there exist some 
problems in the k-means method, especially for 
handling spatial and complex data. Among these, the 
important issues/problems that need to be addressed 
are: i) non-linear separability of data in input space, ii) 
outliers and noise, iii) auto-correlation in spatial data, 
iv) high dimensionality of data. Although kernel 
methods offer power to deal with non-linearly 
separable and high-dimensional data but the current 
methods have some drawbacks as identified in section 
3. Both [2, 4] are computationally very intensive, 
unable to handle large datasets and autocorrelation in 
the spatial data. The method proposed in [2] is not 
feasible to handle high dimensional data due to 
computational overheads, whereas the convergence of 
[4] is an open problem. With regard to addressing 
these problems, we propose an algorithm—weighted 
kernel k-means with spatial constraints, in order to 
handle spatial autocorrelation, noise and outliers 
present in the spatial data. 
    The k-means clustering algorithm can be enhanced 
by the use of a kernel function; by using an appropriate 
nonlinear mapping from the original (input) space to a 
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higher dimensional feature space, one can extract 
clusters that are non-linearly separable in input space. 
Usually the extension from k-means to kernel k-means 
is realised by expressing the distance in the form of 
kernel function [16]. The kernel k-means algorithm can 
be generalized by introducing a weight for each point 
x, denoted by u(x) [24]. This generalization would be 
powerful for making the algorithm more robust to 
noise and useful for handling auto-correlation in the 
spatial data. Using the non-linear function φ, the 
objective function of weighted kernel k-means can be 
defined as: 

2

1
)()()( ∑ ∑
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The Euclidean distance from )(xφ  to center jw is 
given by (all computations in the form of inner 
products can be replaced by entries of the kernel 
matrix) the following eq.  
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In the above expression, the last term is needed to be 
calculated once per each iteration of the algorithm, and 
is representative of cluster centroids. If we write 
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With this substitution, eq (5) can be re-written as 
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    For increasing the robustness of fuzzy c-means to 
noise, an approach is proposed in [1]. Here we propose 
a modification to the weighted kernel k-means to 
increase the robustness to noise and to account for 
spatial autocorrelation in the spatial data. It can be 
achieved by a modification to eq. (3) by introducing a 
penalty term containing spatial neighborhood 
information. This penalty term acts as a regularizer and 
biases the solution toward piecewise-homogeneous 
labeling. Such regularization is also helpful in finding 
clusters in the data corrupted by noise. The objective 
function (3) can, thus, be written as: 

∑ ∑ ∑∑ ∑
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−+−=
k

j Vx Nr
jri

R

k

j Vx
jii

ji kji
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2
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where Nk stands for the set of neighbors that exist in a 
window around xi and NR is the cardinality of Nk . The 
parameter γ  controls the effect of the penalty term. 
The relative importance of the regularizing term is 
inversely proportional to the accuracy of clustering 
results. 
    For kernel functions, the following can be written 

),(),(2),()(
2

jjjiiiji wwKwxKxxKwx +−=−φ

If we adopt the Gaussian radial basis function (RBF), 
then K(x, x) = 1, so eq. (8) can be simplified as 
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The distance in the last term of eq. (8), can be 
calculated as 
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As first term of the above equation does not play any 
role for finding minimum distance, so it can be 
omitted, however.  
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For RBF, eq. (5) can be written as 
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As first term of the above equation does not play any 
role for finding minimum distance, so it can be 
omitted.  
    We have to calculate the distance from each point to 
every cluster representative. This can be obtained from 
eq. (8) after incorporating the penalty term containing 
spatial neighborhood information by using eq. (11) and 
(12). Hence, the effective minimum distance can be 
calculated using the expression: 
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    Now, the algorithm, weighted kernel k-means with 
spatial constraints, can be written as follows. 

Algorithm SWK-means: spatial weighted kernel k-
means (weighted kernel k-means with spatial 
constraints)

SWK_means (K, k, u, N, γ , ε)
Input: K: kernel matrix, k: number of clusters, u:
weights for each point, set ε > 0 to a very small value 
for termination, N: information about the set of 
neighbors around a point, γ : penalty term parameter,  
Output: w1, ...,wk: partitioning of the points 

1.   Initialize the k clusters: w1=0, ..... , wk =0 

2.   Set i = 0. 

3.   For each cluster, compute C(k) using expression (6) 

4.   For each point x, find its new cluster index as 
2

)()( jj wxminargxj −= φ  using expression (13), 

5.   Compute the updated clusters as 
)1( +i

jw = {x : j(x)=j}

6.   Repeat steps 3-4 until the following termination 
criterion is met: 

ε<− oldnew WW

     where, },....,,,{ 111 kwwwwW =  are the vectors of 
cluster centroids. 

5.1 Handling outliers 
This section briefly discusses about spatial outliers, 

i.e., observations which appear to be inconsistent with 
their neighborhoods. Detecting spatial outliers is useful 
in many applications of geographic information 
systems and spatial databases, including transportation, 
ecology, public safety, public health, climatology, 
location-based services, and severe weather prediction. 
Informally, a spatial outlier is a local instability (in 
values of non-spatial attributes) or a spatially 
referenced object whose non-spatial attributes are 
extreme relative to its neighbors, even though the 
attributes may not be significantly different from the 
entire population.  
    We can examine how eq. (13) makes the algorithm 
robust to outliers. As ),( ji xxK  measures the similarity 
between ji xx and , and when xi is an outlier, i.e., xi is 
far from the other data points, then ),( ji xxK  will be 

very small. So, the second term in the above 
expression will get very low value or, in other words, 
the weighted sum of data points will be suppressed. 
The total expression will get higher value and hence 
results in robustness by not assigning the point to the 
cluster. 

6. Scalability issue 

    The pruning procedure used in [23, 25] can be 
adapted to speed up the distance computations in the 
weighted kernel k-means algorithm. The acceleration 
scheme is based on the idea that we can use the triangle 
inequality to avoid unnecessary computations. 
According to the triangle inequality, for a point xi, we 
can write, ),(),(),( n

j
o
j

o
ji

n
ji wwdwxdwxd −≥ . The 

distances between the corresponding new and old 
centers, ),( n

j
o
j wwd for all j, can be computed. And this 

information can be stored in a k × k matrix. Similarly, 
another k × n matrix can be kept that contains lower 
bounds for the distances from each point to each 
center. The distance from a point to its cluster centre is 
exact in the matrix for lower bounds. Suppose, after a 
single iteration, all distances between each point and 
each center, ),( o

ji wxd , are computed. In the next 
iteration, after the centers are updated, we can estimate 
the lower bounds from each point xi to the new cluster 
center, n

jw , using ),( n
j

o
j wwd  calculations and the 

distances from the previous iteration, i.e., we calculate 
the lower bounds as ),(),( n

j
o
j

o
ji wwdwxd − . The distance 

from xi to n
jw is computed only if the estimation is 

smaller than distance from xi to its cluster center. This 
estimation results in sufficient saving in computational 
time. Once we have computed lower bounds and begin 
to compute exact distances, the lower bound allows us 
to determine whether or not to determine remaining 
distances exactly. 

7. System overview 

    Oil palm has become an important crop in Malaysia. 
However, oil palm production potential is reduced 
when trees are exposed to stressful weather conditions. 
Low moisture is the most common stressful condition 
oil palm faces, so monitoring rainfall and other related 
parameters (e.g. temperature, pressure, soil moisture, 
sun-shine duration, humidity, etc) is useful in 
predicting oil palm yield levels. The lagged effect of 
weather in Malaysia has implications for global 
vegetable oil prices in general and for the palm oil 
market in particular. Moreover, not enough is known 
about the daily patterns of rainfall or sunshine 
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illumination levels to determine what may mitigate the 
expected negative effects of the heavy or below-normal 
rainfall [26]. Keeping this importance in view, this 
study is aimed at investigating the impacts of 
hydrological and meteorological conditions on oil palm 
plantation using computational machine learning 
techniques. It is hoped that machine learning 
techniques would be very useful for analyzing the 
relationships between agro-hydrological parameters. 
Resulting improved understanding of the factors 
affecting oil palm yield would not only help in 
accurately predicting yield levels but would also help 
substantially in looking for mitigating solutions.  
    For this application, the yield values of oil palm 
plantation areas over a span of time constitute time 
series. The analysis of these and other time series (e.g., 
precipitation, temperature, pressure, etc) can be 
conducted using clustering technique. Clustering can 
be helpful in analyzing the impact of various 
hydrological and meteorological variables on the oil 
palm plantation. Clustering enables us to identify 
regions of the land whose constituent points have 
similar short-term and long-term characteristics. Given 
relatively uniform clusters we can then identify how 
various parameters, such as precipitation, temperature 
etc, influence the climate and oil-palm produce of 
different areas using correlation. This way clustering 
can better help in detailed analysis of our problem. 

    In this application, the data might consist of various 
agro-hydrological and meteorological parameters such 
as: rainfall, evaporation, air temperature, pressure, 
relative humidity, sunshine duration, soil temperature, 
oil palm yield, etc. The objects (observations, events) 
in a particular agro-hydrologic environment may have 
certain temporal and spatial relationships. And, the 
objects are non-static and undergo some change with 
time. The rate of change varies from object to object. 
The nature of change may also vary. For example, an 
object may change in terms of its spatial configuration 
or location and may also change in terms of attributes. 
For example, one data set contains 1 year long time 
series of daily precipitation (365 observations total) for 
100 climate divisions located in a specified region. A 
"climate division" is an (usually small) area comprising 
one or more meteorological stations. The data matrix is 
365 (days) by 100 (objects). Cluster analysis can be 
performed on these data. The intent here is to create 
"component objects" or object clusters that emphasize 
raw spatial and temporal similarity. This way we can 
get indices values for various parameters on which we 
can perform correlation analysis. It will further assist in 
pattern discovery and analysis of data, thus enabling us 
to study the impact of various parameters on 
vegetation, e.g., on oil-palm yield and also to predict 
oil-palm yield from the available data. 
    A simplified flowchart for the agro-hydrological 
system look like as shown below: 

Data Layer Information Layer Knowledge Layer User Interface 

Hydrological 

Meteorological 

Climatological 

Agricultural 

Environmental

Satellite data

…

Fig. 3: A simplified hypothetical flow chart for the agro-hydrological system 

8. Discussion and conclusions 

    In this paper, a few challenges especially related 
to clustering spatial data are pointed out. There exist 
some problems that k-means method cannot tackle, 
especially for dealing with spatial and complex data. 
Among these, the important issues/problems that need 
to be addressed are: i) non-linear separability of data in 

input space, ii) outliers and noise, iii) auto-correlation 
in spatial data, iv) high dimensionality of data.  
    The strengths of kernel methods are outlined, which 
are helpful for clustering complex and high 
dimensional data that is non-linearly separable in input 
space. Two of the currently proposed kernel based 
algorithms are reviewed and the related research issues 
are identified. Both [2, 4] are computationally very 
intensive, unable to handle large datasets and have no 

user /  
controller 

data 
visualization 
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mechanism to deal with autocorrelation in the spatial 
data. The method proposed in [2] is not feasible to 
handle high dimensional data due to computational 
overheads, whereas the convergence of [4] is an open 
problem. With regard to addressing these problems, we 
presented weighted kernel k-means incorporating 
spatial constraints. The proposed algorithm has the 
mechanism to handle spatial autocorrelation, noise and 
outliers in the spatial data. We are getting promising 
results on our test data sets. It is very much hoped that 
the algorithm would prove to be robust and effective 
for spatial (climate) data analysis. In future we plan to 
investigate the estimation of optimal number of 
clusters automatically. 
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