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Abstract-- An integrated General Regression Neural Network
(GRNN) adaptation scheme for dynamic plant modelling is
proposed in this paper. It possesses several distinguished
features compared to the original GRNN proposed by Specht
|1}, such as flexible pattern nodes add-in and delete-off
mechanism, dynamic initial sigma assignment using non-
statistical method, automatic target adjustment and sigma
tuning. These adaptation strategies are formulated based on
the inherent advantageous features found in GRNN, such as
highly localised pattern nodes, good interpolation capability,
instantaneous learning, etc.. Good modelling performance was
obtained when the GRNN is tested on a linear plant in a noisy
environment. It performs better than the well-known
Extended Recursive Least Squares identification algorithm. In
this paper, analysis on the effects of some of the adaptation
parameters involving a nonlinear plant is also investigated.
The results show that the proposed methodology is
computationally efficient and exhibits several attractive
features such as fast learning, flexible network sizing and good
robustness, which are suvitable for the construction of
estimators or predictors for many model-based adaptive
control strategies.

Index Terms-- General Regression neural network (GRNN),
modelling, dynamic process, adaptation, system identification.

1. INTRODUCTION

GRNN has been applied in a number of applications for
system control and identification [2-6]. There have been
some comparative studies to demonstrate the modelling
capability of the GRNN model with respect to other types
of neural networks [2, 4, 7). Although there are some
studies on GRNN adaptation methods, the assignment of
the sigmas is usually based on the overall statistical
calculation from a pre -collected batch of training data [1,
8]. This approach may not be suitable to be applied in a
continuous modelling environment as the model needs to be
updated continuously due to the changes in plant dynamics
or operating conditions. However, there is not much work
reported on adaptive GRNN for modelling of dynamical
systems, especially for online applications. Furthermore,
investigations on the adaptation aspects of GRNN
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parameters in dynamic process modelling are still lacking
and still in its infancy.

This paper proposes an integrated approach of the GRNN
adaptation scheme for dynamical plant modelling. The
adaptive GRNN modelling scheme is suitable to be applied
in a noisy and dynmical control environment. The proposed
adaptive GRNN model is equipped with some distinguished
features not found in the original GRNN model [1]}, such as
flexible pattern nodes mechanism with add-in and delete-
off features, dynarmic initial sigma assignment using a non-
statistical method, and automatic adjustment of the targets
and sigmas associated with the pattern nodes, These
proposed adaptation strategies are basically formulated
based on the inherent advantageous features of GRNN,
such as expandable and reducible network structure and the
exclusive local properties of the pattern nodes {1, 8]. The
advantages and rationale of these strategies are
experimentally investigated in modelling of linear and
nonlinear plants. Relative performance of the proposed
adaptive GRNN modelling technique is compared to the
popularly known mathematical based Extended Recursive
Least Squares identification algorithm (ERLS) [9].
Furthermore, the effects of some adaptation parameters to
the overall modelling efficiency are also investigated.

Il. GRNNFOR PROCESSPLANTMODELLING

The GRNN paradigm was proposed by Donald Specht as an
alternative to the well known back-error propagation
training algorithm for feed-forward neural networks [10]. It
is closelyrelated to the better-known probabilistic neural
network [9]. Regression in this context can be thought of as
the least-mean-squares estimation of variables based on
available data. From a computational viewpoint, the GRNN
is based on the estimation of a probability density function
from observed samples using Parzen window estimation
[11]. It utilises a probabilistic model between an
independent vector random variable X’ with dimension D,
and a dependent scalar random variable Y such that the
expected value of ¥ given x (the regression of Y on x) can
be estimated as:

. ,Y)d
E[Y |x]= ‘E"Y fl1)dy Eq2.1

E fx,Y)dy
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where x and y are measured values for X and 7Y,
respectively, and f{X)Y) represents the known joint
continuous probability density function. It is assumed that
SIXY) is also known. The computational procedures of
GRNN can be viewed as the weighted average of all the
observed data using the distance criteria in the input space

[1.

A general structure of the GRNN can be illustrated as in
Fig. 1. Input layer will simply channel in the input vector to
the GRNN, and its distances to the recorded patterns are
then calculated in each of the pattern nodes at pattern layer.

GRNN is capable of approximating any arbitrary function,
either linear or non-linear relationships between input and
output variables, drawing the function estimates directly
[2]. It is particularly advantageous with sparse data in a
real-time environment, because the regression surface is
instantly defined, even by just one sample.
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IIl. ADAPTIVEGRNNMODELLING SCHEME

Basically, the proposed adaptation methodology constitutes
four strategies. The roles of these strategies cover the scope
of creation of new pattern nodes, dynamic initialisation of
new pattern nodes, adjustment of the targets, and tuning of
the sigmas.

A. Adaptation strategy I: Creation of New Pattern Nodes

For this purpose, each of the pattern nodes is associated
with a merit index (7 : 0 < <1 ), with a value of one
assigned upon its creation. The merit indexn reflects the
accumulated firing strength of that pattern node throughout
the iterations. For prediction at the k™ sampling instant, the

y

Fig. 1. Structure of the General Regression Neural Network
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Fig. 2. Flowchart of GRNN model strategies
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index 7 for the i'! pattern node is updated as follows:
nk) =099 * ni(k-1) + f(k) Eq.3.1

where f(k) is the firing level of the /'™ pattern node, and
computed as:

PN YU | Qe

The merit index can be used to indicate the worthiness of a
particular pattern node in the network. The pattern nodes
that are seldom used or are outdated would eventually have
a comparatively lower merit index, and vice-versa. Besides
updating new knowledge to the network within a particular
network size, the replacement actions as discussed also
serve as a simple and effective strategy to gradually phase
out the out-dated pattern nodes.

B. Adaptation Strategy II: Dynamic Sigma Initialization

Finding an appropriate sigma for each of the variables of
the pattern nodes could be a difficult task [1, 7]. It depends
on the network input variables and also the plant
characteristics. This paper introduces a simple, fast and
dynamic sigma initialisation method based on the dynamic
states of the plant, and without the need for statistical
calculation. This scheme is able to assign the centre and
width of the Gaussian kernel for each of the input variables
effectively with less computation procedures compared to
other clustering method [12, 13]. The initialisation of the
sigma is based on the distance, i.e. the changing rate of the
variable at the time when the new node was created. For the
sigma of the i variable (x;) of the fh pattern node created at
the k™ sampling instant, the initialisation method can be
written as follows:

if {a; +b; | xi(k) - xik-1)| }<c
G =a; + b; | xi(k) - xi(k-1) |

else
Gij = Ci Eq,3.3

where g; and ¢; are the defined lower and upper limits of the
sigma to x; respectively, and b; is the slope rate of the
sigma. The initial value of the sigma is thus bounded, i.e.,
(a;<0;; < c;), where a; is a small positive value for the
minimum sigma allowed. The parameter c; prevents the
sigma from becoming too large which may cause prediction
inaccuracy in a finite sample modelling, such that to be
over generalised.

C. Adaptation strategy I1I: Adjustment of the targets

The idea here is to merge the existing target with the feed-
in training target. However, adjustment will only apply to
pattern nodes which have high matching degrees, i.e. the
firing levels are closed to 1. In this paper, a pattern node is
qualified for adjusting targets if its firing level is above a
“target update” threshold (). The target vector of the it
pattern node to the i output variable is then updated as
follows:

) i _ gy it _training . o |
Yinew =(-4) 1k +4- % _old £ |" it _ training < l—‘ it _ old
Yit_new = (- 4)- Yit_training Sitky+A- Yit_old else

Eq.3.4

where A is the adjustment rate of the target, and fi(k) is the
firing level of the i pattern node as in Eq(3.2). The
Parameter Vis_mqining iS the training target vector that is
associated with the current input vectors, andy;, i is the
target vector currently associated with thei™ pattern node.
The target update threshold (0 < y< 1), is set closed to 1.
Generally, the adaptation of the targets serves two
functions, firstly, it helps to improve prediction error due to
noise contamination: secondly, it helps to update the
network if the plant characteristics vary over time.

D. Adaptation Strategy IV: Tuning of Sigma

The sigma initialisation method provided by Strategy 11
serves as a convenient way to assign the sigma
appropriately, however, there are no means of generating an
optimal sigma. Although it is reported that the GRNN
algorithm does not get trapped in local minimas [2], tuning
of the sigma would be necessary to further refine the
prediction accuracy, especially in a dynamic modelling
environment. The optimisation of the sigma is intended to
minimise the prediction squared-error of the system. The
sigma of the /" variable for the i pattern node at the k™
sampling instant is then updated as follows:

qj(k)=—¢%e—m-+a,.j(k— 1} Eq.3.8

Oy

where ¢is the learning rate of the sigma, which usually is a
small constant.

While it is necessary to continuously improve the accuracy
of the GRNN model, tuning the sigmas for all the pattern
nodes in each sampling instant are rather time consuming
which could cause problems in an online adaptation. On the
other hand, the same objective can still be achieved by
tuning only a group of identified pattern nodes that
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contributed significantly to the model predicted output,
where the number of nodes is usually small. In a serial
computer, this tuning scheme can greatly save the time for
tuning of the sigmas, and this is experimentally
demonstrated in the following sections. In this paper, a
minimum significant level (y) is defined to select the
pattern nodes to be tuned. Only the pattern nodes that fire
above the y level qualify for the gradient tuning procedure.
In other words, only the sigma of those significantly
contributed nodes, i.e., which are closely related to the
input patterns, will be tuned.

In the adaptation strategies of the GRNN as discussed, the
tuning of the pattern nodes is determined and the tuning
magnitude is calculated locally based on its firing level. The
overall local adaptation action of the pattern nodes using
Strategy Il and I'V can be summarised as follows:

If the particular pattern node is fired above the target
update threshold (y), i.e. fi(k)> v, then its targets will
be adjusted without tuning its sigmas. Else, if it is
fired above the tuned sigma minimum level (y), i.e. ¥
<fi(k) > y, the sigma of the pattern node will be
tuned.

Note that, there will be no adaptation for the pattern nodes
that are fired below v, i.e. fi(k) < y. This highly localised
GRNN adaptation strategy is, therefore, computationally

" efficient and is favourable for parallel processing.

IV. EXPERIMENTS AND RESULTS

Several experiments were carried out employing all of the
proposed GRNN strategies [16] both on linear and
nonlinear plants. Comparisons to the proposed GRNN
technique in the modelling of dynamic plants are made
where a number of popular identification techniques are
also investigated on the same plants. However, due to
space, we do not discuss in this paper. The next section
discusses the application of the proposed GRNN technique
on a benchmark nonlinear plant.

Figure 3 shows a typical configuration where GRNN is
used in modelling a plant with randomly excited inputs. The
inputs of the GRNN use only the delayed value of the plant
inputs () and outputs (y¢). The parameter d is the plant time
delay. These GRNN inputs also serve as the training vector
for adaptation of the model. The parametery is the
measured plant output that is distorted by the noise, i.e. { y.
=y + € }, where € is the Gaussian noise. Although the
network takes inye, the evaluation of the prediction
performance is measured by the prediction error (€ ), which
is the difference between the predicted system response (5 )
and the actual system response (). The prediction error,
which is the accumulated normalised root mean square
error (ARMSE) is represented as follows:

L 2
ARMSE = Z[yl_ - 5’;) Eq. 4.1
i

where L is the total number of data in the pre-generated
data set. The maximum number of pattern nodes generated
allowed in all the experiments is limited to 300 nodes.

A. Modelling of a nonlinear plant

By modelling a nonlinear plant, the effects of some of the
adaptation parameters involved can be investigated, such as
the “create new node” minimum threshold (a), targets
adjustment threshold (7) and sigma tuning rate (¢), to the
overall modelling performance and the GRNN structural
growth. In these experiments, we assume the nonlinearities
of the plant are unknown.

For our investigation purposes, a dynamical process which
has been used as a benchmark for validating other neural
networks and fuzzy algorithms in plant identification [17-
19] is used. Its dynamics is modified such that ithas a
higher nonlinearity and a more complex plant dynamics and
is given as follows:

V(k)y(k=D[2.5+ y(k-1)] 420 e~ "6 1

k+1)= .
YD = ) + 2 k-1 e+ 1

+e(k)

Eq. 4.2

where u(k) and y(k) are the plant input and output signals,
respectively, and€(k) is the Gaussian noise with zero
mean. The GRNN model has four inputs and outputs.
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Fig3 Training scheme of modelling
with random plant inputs.
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The inputs consist of a single delayed value of the plant
input signal and two delayed values of the plant output.

The default adaptation parameters of the GRNN model are
selected judiciously. Figure 4 shows the effects of different
strategies in the modelling environment, which consists of
Gaussian noise with normalised amplitude of 0.05. Figure 5
indicates the progress of the GRNN learning with different
cases of noise amplitudes. It was found that the effects of
employing different GRNN adaptation strategies for the
linear (not-discussed in this paper) and nonlinear plants are
basically similar. Figure 6 shows the output by the GRNN
model when compared with that of the actual plant. It was
found that Strategy II can effectively initialise each of the
sigmas without much computation required.

V. CONCLUSION

This paper has discussed an effective methodology in using
GRNN for the modelling of dynamic plants in which four
adaptation strategies have been proposed and investigated
experimentally. The proposed GRNN model was able to
evolve from a null network to an appropriate size that can
be practically used for modelling purposes without any loss
in performance. Furthermore, the model is equipped with a
dynamic and fast adaptation algorithm. The experimental
results have shown that the GRNN is superior for modelling
in a dynamical and even a noisy environment. In
conclusion, the four strategies that have been proposed can
be summarised to have the following advantages. Strategy I
helps to create an appropriate network size as well as
maintaining the updated pattern nodes. Strategy I
overcomes the difficulty of initialising the sigma of the
pattern nodes. Strategy Il and IV further improve the
prediction accuracy by continuously tuning the targets and
sigmas of the pattern nodes, respectively. Further research
in trying to apply the methodology to real physical systems
are currently being investigated with some measurable
success.
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Fig. 4: ARSME for cases of Gaussian Noise of 0.05

0 12 25

Fig. 5: Performance of GRNN models incorporating
Strategies LILIII & IV under various noise conditions.
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Fig. 6: Performance of the GRNN predictor model of the nonlinear plant with a noise amplitude of 0.05.
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