
Available online at www.sciencedirect.com
www.elsevier.com/locate/yjbin

Journal of Biomedical Informatics 41 (2008) 65–81
A genetic similarity algorithm for searching the Gene Ontology
terms and annotating anonymous protein sequences

Razib M. Othman a,*, Safaai Deris a, Rosli M. Illias b

a Department of Software Engineering, Faculty of Computer Science and Information Systems, Universiti Teknologi Malaysia, 81310 UTM Skudai, Malaysia
b Department of Bioprocess, Faculty of Chemical and Natural Resources Engineering, Universiti Teknologi Malaysia, 81310 UTM Skudai, Malaysia

Received 22 September 2006
Available online 27 June 2007
Abstract

A genetic similarity algorithm is introduced in this study to find a group of semantically similar Gene Ontology terms. The genetic
similarity algorithm combines semantic similarity measure algorithm with parallel genetic algorithm. The semantic similarity measure
algorithm is used to compute the similitude strength between the Gene Ontology terms. Then, the parallel genetic algorithm is employed
to perform batch retrieval and to accelerate the search in large search space of the Gene Ontology graph. The genetic similarity algorithm
is implemented in the Gene Ontology browser named basic UTMGO to overcome the weaknesses of the existing Gene Ontology brows-
ers which use a conventional approach based on keyword matching. To show the applicability of the basic UTMGO, we extend its struc-
ture to develop a Gene Ontology -based protein sequence annotation tool named extended UTMGO. The objective of developing the
extended UTMGO is to provide a simple and practical tool that is capable of producing better results and requires a reasonable amount
of running time with low computing cost specifically for offline usage. The computational results and comparison with other related tools
are presented to show the effectiveness of the proposed algorithm and tools.
� 2007 Elsevier Inc. All rights reserved.
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1. Introduction

As outlined by the European Bioinformatics Institute
(EBI), annotation of an anonymous protein sequence
should be inferred from annotations of the nucleotide
sequences, analogies with already understood proteins,
plus references to patterns and motifs as characteristics of
particular protein functions. Annotation of anonymous
protein sequences is important for the preservation and
reuse of knowledge and for content-based queries. Tradi-
tional wet-lab methods are labor intensive and prone to
human error. On the other hand, sequence-similarity-based
tools like Basic Local Alignment Search Tool (BLAST) are
time intensive and require high investment in computing
facilities such as cluster server or grid computing if being
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used locally. Furthermore, for remote users, these tools
are subject to internet stability and speed to access the tools
and to get the results online. Therefore, a simple and prac-
tical method that is capable of producing better results and
requires a reasonable amount of running time with low
computing cost specifically for offline usage is needed.

In the last few years, the Gene Ontology (GO) [1] terms
have been widely used to annotate various protein sets such
as in NOPdb [2], a database of nucleolar proteome; SCOP-
PI [3], a database of protein domain–domain interactions;
DRTF [4], a database of rice transcription factor; and Mol-
MovDB [5], a database of macromolecular motions. In
addition, GO terms have been successfully implemented
in large-scale protein annotation projects involving
SWISS-PROT, TrEMBL, and InterPro databases [6]. The
GO is a collection of nearly 23 thousand terms to describe
gene and gene product attributes in any organism. The GO
terms are structured, controlled vocabularies organized as
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Fig. 1. The flowchart of the extended UTMGO.
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a Directed Acyclic Graph (DAG) in three aspects: cellular
component, biological process, and molecular function.
Let GO be a graph G = {V, E}, where V is a set of nodes
representing the GO terms and E is a set of pairs of nodes
representing relationships between the GO terms. The GO
terms can have more than one parent, as well as multiple
children. The GO terms are connected by two relation-
ships: the ‘‘is-a’’ relationship, e.g. ‘‘chromatin binding’’
(GO:0003682) and ‘‘structure-specific DNA binding’’ (GO:
0043566) are parents of ‘‘chromatin DNA binding’’ (GO:
0031490); and the ‘‘part-of’’ relationship, e.g. ‘‘cytoplasmic
part’’ (GO:0044444) is part of ‘‘cytoplasm’’ (GO:0005737).
The advantages of using the GO are as follows: the GO
data is dynamic and constantly evolves according to the
advances in current state of biological knowledge; the
GO data is publicly available and can be downloaded at
any time from the World Wide Web (WWW) in MySQL,
RDF/XML, OBO/XML, and OWL formats that can be
understandable and processable by human and machine
alike; the common GO terms shared by gene and protein
sequences in multiple organisms in different databases
can facilitate uniform queries across them; and the associ-
ation of GO terms with nearly 2.5 million gene products
supported by the evidence and citation can affirm its reli-
ability for future evaluation and use. The link between
the GO terms and gene products is provided by the Gene
Ontology Annotation (GOA) [7]. In the GOA project, elec-
tronic mappings and manual curation are used to assign
the GO terms to all proteomes existing in the UniProt,
Ensembl, and other organism databases. It covers 2.3 mil-
lion protein sequences from 0.26 million species.

However, application of the GO terms to annotate anon-
ymous protein sequences is not easy, especially for species
not yet inserted in public biological databases. Furthermore,
for bioscientists with little computational knowledge or lim-
ited facilities it is a hard task to annotate those anonymous
protein sequences. The difficulties arise because generally
the existing GO-based tools are (1) dependent on BLAST
which is computationally intensive and requires high-cost
and high-specification hardware since sequence alignment
is performed to all protein sequences but not only to protein
sequences that indicate higher similarity, (2) dependent on
Relational Database Management Systems (RDBMS)
which require the user to setup the RDBMS software and
to import the data or sources into the RDBMS format,
and (3) partially based on the GO data which requires the
user to download the GOA data or protein sequence data
sets from several sources.

Therefore, in this study, a new way of applying the GO
terms to annotate anonymous protein sequences is intro-
duced. The method consists of three main components.
In the first component, the single monolithic GO RDF/
XML file is split into smaller files. It is carried out to avoid
dependency on RDBMS format, to provide all-in-one
source by adding protein sequences and Inferred from
Electronic Annotation (IEA) evidence associations into
the files since they are not included in the original GO
RD/XML file, and to make the GO data easily accessible
and processable. In the second component, the main focus
of this paper, semantic similarity search is performed over
the smaller GO RDF/XML files. The target is to find a
group of semantically similar GO terms with higher term
similarity score to a GO term which is foreseen to have
higher relationship with the query protein sequence. Lastly,
the results obtained from the second component are veri-
fied by computing sequence alignment score between the
query protein sequence and all protein sequences attached
to those GO terms. With this method, sequence alignment
is carried out only to protein sequences with higher out-
guessed similarity. Hence, demand for high computational
facilities and execution time can be reduced. A GO-based
tool named extended UTMGO is developed to demonstrate
the method. The extended UTMGO employs a GO brow-
ser named basic UTMGO for implementing the second
component. The JAligner engine (http://jaligner.
sourceforge.net) that uses the Smith–Waterman algorithm
has been integrated and modified to perform the sequence
alignment and to comply with the extended UTMGO. The
flow of the extended UTMGO can be summarized as
shown in Fig. 1.

The semantic similarity searching is related to the prob-
lem of determining semantic relatedness between terms
either by virtue of their likeness (bank–trust company), syn-
onymy (car–automobile), meronymy (computer–keyboard),
antonymy (rich–poor), functional relationship (marker

pen–white board), or frequent association (orang utan–Bor-

neo). For finding semantically similar GO terms, the terms
are related according to the association: a table that stores
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information shared among the GO terms. Particularly, this
table provides an annotation record that is basically a link
between a gene product and a GO term provided by the
GOA. However, the existing GO browsers that support
basic needs of bioscientists for searching the GO terms still
use a conventional approach based on keyword matching.
Thus, for bioscientists, finding a group of semantically sim-
ilar GO terms is time consuming and a tedious task. For
example, the keyword matching is not capable of comput-
ing the relationship between ‘‘intracellular organelle’’
(GO:0043229) and ‘‘cytoplasm’’ (GO:0005737) even
though they share the same parent ‘‘intracellular part’’
(GO:0044424) because their names do not exactly or
approximately match. Therefore, the basic UTMGO uses
a genetic similarity algorithm that incorporates the parallel
genetic algorithm and the semantic similarity measure algo-
rithm. The parallel genetic algorithm is used to generate a
solution consisting of a group of semantically similar GO
terms that best match to the query GO term, and to accel-
erate the search in the large GO graph. The search space of
the GO graph, g(k), is astronomical and varies between:

2
kðk�1Þ

2 � gðkÞ � 3
kðk�1Þ

2 ; ð1Þ

where k is the number of nodes in the GO graph. Currently
the GO graph consists of 22,954 nodes, so the search space
of the GO graph is between 2263,431,581 and 3263,431,581. A
parallel genetic algorithm optimizes its fitness function by
utilizing the genetic operators to find an optimal solution.
It can also be executed on a low-cost PC cluster using mes-
sage passing interface libraries that are open source and
easy to install. The semantic similarity measure algorithm
is added into the parallel genetic algorithm to measure
the similitude strength between the GO terms during the
creation of initial population and calculation of fitness va-
lue. The semantic similarity measure algorithm used is a
combination of information content (node-based) and con-
ceptual distance (edge-based). The information content is
used to get the amount of information the GO terms share
in common, whereas the conceptual distance is applied to
know the depth and the local network density of the GO
terms.

The remainder of the paper consists of related work in
semantic similarity measures and genetic algorithms and
existing tools for searching the GO terms and for annotat-
ing anonymous protein sequences (Section 2), detailed
explanation of the proposed genetic similarity algorithm
(Section 3), description of the computational environment
and data used in this study including step-by-step explana-
tions of both the basic and extended versions of UTMGO
(Section 4), the results and discussion of experiments (Sec-
tion 5), and the general conclusions (Section 6).
2. Related work

Semantic similarity measures play an important role in
information retrieval and natural language processing.
Example applications include characterization of human
regulatory pathways [8], linguistic modeling [9], com-
puter-assisted inter-observer consensus [10], and semantic
feature ratings [11]. The choice of semantic similarity mea-
sure has the ability to improve the recall and precision of
information retrieval by identifying the relation between
concepts. This is done by calculating the distance or the
amount of information in common between the two
concepts being analyzed. Most of the popular measures
are based on taxonomic or ontological structure [12–15].
These measures have been analyzed by Budanitsky and
Hirst [16], and the evaluation of WordNet (http://wordnet.
princeton.edu) based semantic similarity measures in their
study shows that the Jiang and Conrath semantic similarity
measure [14] provides the best results. The Jiang and Con-
rath semantic similarity measure is a combined approach
that inherits the conceptual distance approach enhanced
with the information content approach. The basic calcula-
tion of the Jiang and Conrath semantic similarity measure
is expressed as:

distðc1; c2Þ ¼ ICðc1Þ þ ICðc2Þ � 2� simðc1; c2Þ; ð2Þ

where IC(c) = �logP(c), simðc1; c2Þ ¼ max
c2Sðc1;c2Þ

fICðcÞg, c is

some concept being studied, P(c) is the probability of
encountering an instance of concept c, and S(c1, c2) is the
set of concepts that subsume both c1 and c2.

Lord et al. [17] has studied the Resnik [15] semantic sim-
ilarity measure on the GO. They have only considered the
GO annotations in Swiss-PROT and the ‘‘is-a’’ relation-
ship. Their work has been extended by Popescu et al.
[18]. In the meantime, Sevilla et al. [19] has compared dif-
ferent semantic similarity measures proposed by Lin [13],
Jiang and Conrath, and Resnik. They conclude that the
Resnik semantic similarity measure outperforms the other
semantic similarity measures. However, their comparisons
are based on the gene products rather than the GO terms,
and they used the subsets of the GO terms and annota-
tions. Therefore, in this study we use the Jiang and Con-
rath semantic similarity measure to compute the semantic
similarity between pairs of GO terms rather than between
pairs of gene products, and we use all the GO terms and
annotations provided by the GO Consortium including
the ‘‘part-of’’ relationships. The Jiang and Conrath seman-
tic similarity measure is selected since both notions of the
shared information content and the conceptual distance
of the GO terms in the GO graph are considered as dis-
cussed in Section 3.1.

A genetic algorithm is selected because its capabilities
as a machine learning technique have been recognized in
the information retrieval field. This is due to its capabil-
ity of being adaptive, efficient, robust, and a global
search method that is suitable to address a situation
where the search space is large. The properties of the
genetic algorithm are as follows: a chromosome (a string
of symbols called genes) to represent a solution, an allele
to represent the value of the gene (it is usually a binary
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bit {0, 1}, an integer, or a real number), loci to represent
the positions of the genes in the chromosome, a popula-
tion to represent a set of chromosomes, a fitness function
to evaluate each chromosome, a set of genetic operators
to generate a new population, and a selection method to
select fitter chromosomes for the next generation. The
genetic algorithm starts with an initialization step in
which an initial population is generated at random. Then
it evolves with the following steps in each generation:
evaluation of fitness function (the value of each chromo-
some in the population is calculated according to the fit-
ness function), selection (multiple chromosomes are
stochastically selected from the current population based
on their fitness to form a new population), and a genetic
operation (modification is performed to a newly gener-
ated population). These steps are repeated until either a
maximum number of generations have been produced
or a satisfactory fitness level has been reached for the
population. Some reviews of genetic algorithms can be
found in [20–22]. Implementations of the genetic algo-
rithm in information retrieval are normally related to
web search [23], gene selection [24], spatial information
retrieval [25], and document retrieval [26].

For searching the GO terms, most of the present GO
browsers respond to user queries by retrieving relevant
GO terms based on keyword matching. A list of tools for
searching and browsing the GO terms can be found at
http://www.geneontology.org/GO.tools.browsers.shtml.
Among the popular GO browsers are:

• AmiGO is a GO browser developed by the GO Consor-
tium. The keyword-based search is executed either by
‘‘exact’’ or ‘‘contains’’ match over the GO term acces-
sion number, name, or synonyms. This tool also allows
a user to use a gene product or a protein sequence as a
search input.

• GenNav is a GO browser that uses string matching
method namely ‘‘exact’’ or ‘‘approximate’’ match that
responds to a given GO term or gene product. GenNav
is maintained by the United States National Library of
Medicine (US NLM).

• QuickGO is a GO browser that allows a user to retrieve
the GO terms by ‘‘exact’’ or ‘‘wildcard’’ search for the
GO term accession number, name, synonyms, defini-
tions, or comments. This web-based GO browser can
be found at the website of the EBI.

• TAIR Keyword Browser is a GO browser that uses the
GO term accession number or name as an input and
then performs either ‘‘contains’’, ‘‘start with’’, ‘‘end
with’’, or ‘‘exact’’ match. This tool is developed by the
Arabidopsis Information Resource (TAIR).

Moreover, DynGO [27] and FuSSiMeG [28] are recently
developed GO browsers that perform the semantic simi-
larity search over the GO terms. However, the DynGO
has only focused on the information content and has
overlooked the role of conceptual distance in finding
the significant GO terms. Whereas, the FuSSiMeG is
not capable of returning more than one GO term for
each query.

Several tools have been developed in recent years to
annotate anonymous protein sequences in accordance with
the GO terms. The generally used tools include:

• GoFigure [29] is a tool that accepts an unknown DNA
or protein sequence as an input and then uses BLAST
to predict the GO terms by identifying homologous
sequences in the GO annotated databases.

• GOtcha [30] is a tool that provides a prediction of a set
of GO terms for a given query sequence (DNA or pro-
tein). BLAST is used to get the initial score of each
GO term and the scores are calibrated against term-spe-
cific probability (P-score) to give higher accuracy.

• GOPET [31] is an automated annotation tool for assign-
ing the GO terms to cDNA or protein query sequences.
It uses BLAST to perform homology searches against
GO-mapped protein databases, and support vector
machines for the prediction and the assignment of con-
fidence values.

• JAFA [32] is a meta-server that uses several function
prediction programs such as GoFigure, GOtcha, GOb-
let [33], Phydbac [34], and InterProScan [35]. It accepts
a protein sequence and returns the predicted GO terms
with prediction score that is based on the ratio of agree-
ing servers.

However, as mentioned earlier in the previous section, for
offline usage, these tools are difficult to configure and use,
especially by bioscientists. The tools also require an expen-
sive high performance computing environment. Whereas,
for online usage, they depend on internet stability and speed.

3. Method

3.1. Semantic similarity measure algorithm

The semantic similarity measure algorithm, as shown in
Fig. 2, takes as input a set of subgraphs of the GO graph
and the query GO term. It returns a set of subgraphs of
the GO graph with assigned term similarity score for each
node in the subgraphs. The term similarity score is used for
generation of the initial population and evaluation of the
fitness function. The semantic similarity measure algorithm
described in this section is adopted from the Jiang and
Conrath. It is simplified, and a direct explanation of how
the GO is applied to their semantic similarity measure is
given.

3.1.1. Information content approach

The information content is computed according to the
association: a source that presents information shared
among the GO terms. The association is a table that stores
annotations which provide links between GO terms and
gene products that are supported by evidence codes and lit-
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end

Fig. 2. The semantic similarity measure algorithm.
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erature references. For example, gene product ‘‘rpl23-A’’
(Chloroplast 50S ribosomal protein L23, GR:P12097), an
Oryza sativa species from Gramene (http://www.gramene.
org) database, is shared among GO terms like ‘‘plastid’’
(GO:0009536), a cellular component that is supported by
an evidence code of Inferred from Curator (IC) and a
literature reference PMID:12520024; ‘‘RNA binding’’
(GO:0003723), a molecular function, is supported by an
evidence code of inferred from Reviewed Computational
Analysis (RCA) and literature reference GR.REF:8030;
and ‘‘translation’’ (GO:0006412), a biological process, is
supported by an evidence code of RCA and literature ref-
erence GR.REF:8030. These links are used to calculate
the term similarity score between these three GO terms
even though they are not directly connected by the ‘‘is-a’’
or ‘‘part-of’’ relationships, are from different categories,
and do not have similar keywords. The information con-
tent of the GO term IC(c) is represented as follows:

ICðcÞ ¼ � logðP ðcÞÞ; ð3Þ

where P(c) is the probability of occurrence of a GO term c
in the association. The probability is measured using max-
imum likelihood estimation as given below:
P ðcÞ ¼ freqðcÞ
N

; ð4Þ

where N is the total number of occurrences in the associa-
tion and freq(c) is the number of times that the GO term
c and all its descendants occur in the association. The
frequency of the GO term c is defined as follows:

freqðcÞ ¼
X

c2descendantsðciÞ
occurðciÞ; ð5Þ

where descendants(c) is a function that returns a set of GO
terms that are the descendants of the GO term c. Note
that if a GO term c1 is an ancestor of a GO term c2, then
freq(c1) P freq(c2) since the GO term c1 subsumes the GO
term c2 and all its descendants. Therefore, P(c) is larger when
the GO term c is nearer to the root term c0, and IC(c1)6 IC(c2).
3.1.2. Conceptual distance approach

The conceptual distance of a GO term is calculated
based on the depth and the local network density factors.
The depth is referred to as the distance of the GO term
in the hierarchy of the GO graph. The local network den-
sity is related to the number of children that span out from
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the GO term. The depth of the GO term D(c) is given as
follows:

DðcÞ ¼ dðcÞ þ 1

dðcÞ

� �a

; ð6Þ

where d(c) is the level of the GO term c in the GO graph.
The depth of the root term c0 is 1, and it increases as the
altitude of the GO term decreases in the hierarchy. The
parameter a controls the degree of how much the depth
factor contributes to (6), and a P 0.

The local network density of the GO term E(c) is given
by the following equation:

EðcÞ ¼ ð1� b�
�E

eðcÞ

� �
þ b; ð7Þ

where e(c) is the number of edges that begin from the GO
term c and �E is the number of edges divided by the number
of GO terms in the GO graph. The parameter b controls
the degree of how much the local network density factor
contributes to (7), and 0 6 b 6 1. The effect of multiple
inheritances is not considered in (7) since they have been
considered during calculation of the information content
as mentioned in (5). Furthermore, the term similarity score
between GO terms cm and cn is calculated according to the
shortest path that links both of the GO terms via their
nearest shared ancestor as formulated in (8) and (9).

Note that the parameters a and b become less important
when a approaches 0 and b approaches 1, since D(c) and
E(c) will reach 1, respectively. Furthermore, (6) and (7)
are equal when a = 0 and b = 1.
3.1.3. The hybrid approach

The hybrid approach is derived from the notion of the
conceptual distance, and by incorporating the information
content as a decision factor. Given a sequence of GO terms
c1, . . . ,cn representing the path from GO term c1 to cn with
length n. The hybrid approach computes the semantic dis-
tance between GO terms c1 and cn by the following
formula:

distðc1; cnÞ ¼
Xn�1

i¼0

DðciÞ � EðciÞ � ðICðciþ1Þ � ICðciÞÞ; ð8Þ

where dist(c1,cn) is the summation of edge weights along
the shortest path that links c1 with cn. Thence, the semantic
distance between GO terms cm and cn is quantified as given
below:

distðcm; cnÞ ¼ distðc1; mmÞ þ distðc1; mnÞ; ð9Þ

where GO term c1 is the nearest shared ancestor of GO
terms cm and cn. As the semantic distance is founded on
the difference between the information content, the normal-
ization of the semantic distance is given by:

distnormðcm; cnÞ ¼ min 1;
distðcm; cnÞ

maxfICðcÞg

� �
: ð10Þ
Therefore, the term similarity score between GO terms cm

and cn is measured by converting the semantic distance as
follows:

simðcm; cnÞ ¼ 1� distnormðcm; cnÞ: ð11Þ
Note that 0 6 sim(cm,cn) 6 1 because 0 6 distnorm

(cm,cn) 6 1.

3.2. Genetic similarity algorithm

An overview of the genetic similarity algorithm is shown
in Fig. 3. The genetic similarity algorithm takes the GO
graph and a query GO term as an input. The best chromo-
some representing a set of GO terms that have higher term
similarity score to the query GO term is returned by the
genetic similarity algorithm. The genetic similarity algo-
rithm uses the semantic similarity measure algorithm to
calculate the term similarity score which is the semantic
similarity measure between each GO term and the query
GO term.

3.2.1. Preprocessing

The first step of the genetic similarity algorithm is the
calculation of the term similarity score between each node
in the subgraphs of the GO graph and the query GO term.
The GO graph is partitioned into several subgraphs in
order to make calculation of the term similarity score
and generation of the initial population easier and faster.
The preprocessing step is done by the semantic similarity
measure algorithm to improve the quality of the chromo-
some. This is done by setting the positions of nodes in
the chromosome before the initialization step. Thus, the
first chromosome created contains the nodes with the high-
est term similarity score in each subgraph. The second
chromosome contains the second best and so on, as shown
in example in Fig. 4. Note that the GO term accession
number is mapped to the node number according to the
identification in the ‘‘term’’ table.

3.2.2. Chromosome representation

Based on the results returned by the semantic similarity
measure algorithm, the initial population is generated
according to the following representations: population size
is the size of the subgraph with the highest node compared
to other subgraphs; chromosome length is the number of
nodes in the GO graph; loci represent the node number;
a gene specifies whether a node in the pool of nodes is rep-
resented by a chromosome or not; and an allele is formed
by two binary elements either 0 or 1, where 1 shows pres-
ence (retrieved) and 0 shows absence (not retrieved) of a
node in a chromosome.

A chromosome is created by taking a node from each
subgraph beginning with the ones with higher term similar-
ity score, as shown in example in Fig. 5. If the cardinality
of a subgraph is smaller than the number of chromosomes
to be produced, then that subgraph will not be present in
each chromosome. An example of mapping of a GO graph
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Genetic-Similarity-Algorithm (G, q); 

Input: G (a GO graph) and q (a query GO term) 

Output: bestx  (the best chromosome representing a set of GO terms that have 

higher term similarity score to the query GO term) 

begin 

 preprocessing by semantic similarity measure algorithm; 

 : 0t = ; 

 initialize ( )Pop t ;  // note that 1( ) { , , }t t
psPop t x x= ... where ( )Pop t  and tx  

are the population and chromosome for generation t 

respectively and ps is the size of population 

 evaluate ( )Pop t ; 

 while not termination-condition do 

  : 1t t= + ; 

  select ( )Pop t  from ( 1)Pop t ; 

  alter ( )Pop t by crossover and mutation operators; 

  evaluate ( )Pop t ; 

 end-while 

end 

Fig. 3. The genetic similarity algorithm.
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into a chromosome is shown in Fig. 6. This representation
is crucial to ensure that the large GO graph can be pre-
sented with a simple and straightforward representation;
the processing time taken to converge can be shortened
since the chromosome is represented using 1D binary
string; and the evolution of the genetic similarity algorithm
is started with an initial population such that t1(xi) P
t1(xj), where t1(x) is the sum of the term similarity score
of the nodes in a chromosome x, "i,j 2{1,2, . . . ,ps}, ps is
the size of population, and i < j.
3.2.3. Crossover and mutation operators
In order to keep the genetic similarity algorithm as gen-

eric as possible, it uses normal crossover and mutation
operators. These operators are chosen since they are
formed effectively with a simple 1D binary string represen-
tation and with a fitness function that uses the semantic
similarity measure. At each generation, the genetic similar-
ity algorithm implements the fitness function as criteria to
evaluate the goodness of each chromosome of the current
population to create a new set of artificial creatures (a
new population). Thence, the fitness value of the best chro-
mosome in each generation can be maximized, as shown in
example in Fig. 7.

The above objective is attained by the crossover and
mutation operators that try to improve the total fitness
value of the current population by fixing the old ones.
Through the crossover operator, the chromosomes repro-
duced in the new mating pool are matched randomly and
afterward each couple of chromosomes, say xa and xb,
undergoes a cross change. Then, the mutation operator
plays a secondary role to forbid an irrecoverable loss of
potentially useful information which occasionally cross-
over can cause. This operator conducts a random alter-
ation of the allelic value of a chromosome.

3.2.4. Fitness function

The fitness function used focuses on maximizing the
preferences for term similarity score. The decision is
inspired by the demand of searching for a set of GO terms
with higher term similarity score that perfectly match the
query GO term. The fitness function f(x) for chromosome
x is shown below:

f ðxÞ ¼ v� t1ðxÞ þ d� t2ðxÞ; ð12Þ



Step 3: Sort the nodes in each subgraph according to their 
term similarity score. 

Subgraph 1 Subgraph 2 Subgraph 3 Subgraph 4 
Rank 1 13 (0.66) 4 (1.00) 12 (0.80) 15 (0.45) 
Rank 2 9 (0.33) 11 (0.73) 7 (0.76) 5 (0.41) 
Rank 3 1 (0.29) 17 (0.51) 18 (0.42) 8 (0.27) 
Rank 4 3 (0.13) 14 (0.28) 2 (0.38) 19 (0.20) 
Rank 5 20 (0.05) 6 (0.23) 16 (0.19) 
Rank 6 10 (0.16)  

Step 1: Given a GO graph with 4 subgraphs and 20 nodes. 
Subgraph 1 Subgraph 2 Subgraph 3 Subgraph 4 

1 4 2 5
3 6 7 8
9 10 12 15
13 11 16 19
20 14 18

17

Step 2: Calculate the term similarity score between each node 
in the subgraphs and the query GO term “4”. 

Subgraph 1 Subgraph 2 Subgraph 3 Subgraph 4 
1 (0.29) 4 (1.00) 2 (0.38) 5 (0.41) 
3 (0.13) 6 (0.23) 7 (0.76) 8 (0.27) 
9 (0.33) 10 (0.16) 12 (0.80) 15 (0.45) 

13 (0.66) 11 (0.73) 16 (0.19) 19 (0.20) 
20 (0.05) 14 (0.28) 18 (0.42) 

17 (0.51)  

Given a query 
GO term “4” 

Fig. 4. An example of preprocessing for a GO graph with 4 subgraphs and
20 nodes in which ‘‘4’’ is the query GO term.
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where v and d are control parameters so that the contribu-
tions given by factors t1(x) and t2(x) are harmonious. The
value of the fitness function is stated as a positive value that
is higher for the best chromosome.

The fitness function comprises two factors. The first fac-
tor is the sum of the term similarity score of the nodes in
chromosome x, and is given as follows:

t1ðxÞ ¼
X
ui2x

scoreðuiÞ; ð13Þ

where score(ui) is the term similarity score between the
query GO term and nodes that are present in chromosome
x. This factor considers the positive effect of having as
Subgraph 1 Subgraph 2 Sub
Rank 1 13 (0.66) 4 (1.00) 12 
Rank 2 9 (0.33) 11 (0.73) 7 (
Rank 3 1 (0.29) 17 (0.51) 18 
Rank 4 3 (0.13) 14 (0.28) 2 (
Rank 5 20 (0.05) 6 (0.23) 16 
Rank 6 10 (0.16)  

1 2 3 4 5 6 
Chromosome 1 0 0 0 1 0 0 
Chromosome 2 0 0 0 0 1 0 
Chromosome 3 1 0 0 0 0 0 
Chromosome 4 0 1 1 0 0 0 
Chromosome 5 0 0 0 0 0 1 
Chromosome 6 0 0 0 0 0 0 

Subgraphs and 
initial population 
mapping. 

Fig. 5. An example of generating initial population. Note that subgraphs ‘‘1’’ a
in chromosome ‘‘5’’ and ‘‘6’’ since their cardinality is smaller than the size of
many nodes with high term similarity score as possibly
present in a chromosome. Nonetheless, a chromosome with
many nodes with low score could create a fitness value
higher than another one with a few good nodes. To avoid
this consequence, the dimension index t2(x) is introduced as
follows:

t2ðxÞ ¼
k

absðcntðxÞ � IDÞ þ 1
; ð14Þ

where k is the number of nodes in the GO graph, cnt(x) is
the number of nodes present in chromosome x, and ideal
dimension (ID) is the number of matched GO terms that
are preferred to be returned to the user. Note that
0 < t2(x) 6 k since if the number of nodes present in chro-
mosome x is exactly equal to the ideal dimension, then
maximum k is reached. Otherwise, it is rapidly lessened
when the number of nodes present in chromosome x is
smaller or greater than the ideal dimension.
3.2.5. Parallelization process

The major computational challenge of searching a group
of semantically similar GO terms is the size of the search
space of the GO graph because the GO graph has almost
23 thousand nodes and almost 2.0 million paths. More-
over, to obtain a good solution, it requires a multitude of
chromosomes, many generations of population, and it
undergoes several iterations of the genetic operation by
crossover and mutation operators. To overcome these mat-
ters, the genetic similarity algorithm is parallelized by
exploiting the advantages of the island (coarse-grained)
model [36–38] as shown in Fig. 8. It is implemented on a
low-cost PC cluster using message passing interface
libraries. The core process of the parallelization is to divide
the population into equal size subpopulations. Hereafter,
each subpopulation is assigned to a processor where it
evolves independently. During the process, a group of best
chromosomes called emigrants are transferred to replace a
group of worst chromosomes among the subpopulations.
This migration process is performed periodically at certain
graph 3 Subgraph 4 
(0.80) 15 (0.45) 
0.76) 5 (0.41) 
(0.42) 8 (0.27) 
0.38) 19 (0.20) 
(0.19) 
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0 0 0 0 0 0 0 0 0 1 0 0 0 1
0 0 0 1 0 0 0 0 0 0 0 0 0 0

nd ‘‘3’’ are not present in chromosome ‘‘6’’ and subgraph ‘‘4’’ is not present
population.
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Fig. 6. An example of mapping of a GO graph into a chromosome. The mapping of nodes ‘‘13’’, ‘‘4’’, ‘‘12’’, and ‘‘15’’ with the highest term similarity score
from subgraphs ‘‘1’’, ‘‘2’’, ‘‘3’’, and ‘‘4’’, respectively into chromosome ‘‘1’’.

f(x)
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 value

Generation 0 0 0 0 1 0 0 0 0 0 0 0 1 1 0 1 0 0 0 0 0 145.77
Generation 10 0 0 0 0 1 0 1 0 1 0 1 0 0 1 0 0 0 0 1 0 202.71
Generation 20 0 0 0 0 1 0 1 0 1 0 1 0 0 1 0 0 0 0 1 0 202.71
Generation 30 0 0 0 0 1 0 1 0 1 0 1 0 0 1 0 0 0 0 1 0 202.71
Generation 40 0 0 0 0 1 1 1 1 1 0 1 0 0 1 0 0 0 0 1 0 336.54
Generation 50 0 0 0 0 1 1 1 1 1 0 1 0 0 1 0 0 0 0 1 0 336.54
Generation 60 0 0 0 1 1 1 1 1 1 0 1 0 0 1 0 0 0 0 0 0 337.34
Generation 70 0 0 0 1 1 1 1 1 1 0 1 0 0 1 0 0 0 0 0 0 337.34
Generation 80 0 0 0 1 1 1 1 1 1 0 1 0 0 1 0 0 0 0 0 0 337.34
Generation 90 0 1 0 1 1 1 1 1 0 0 1 0 1 1 0 0 0 0 0 0 504.72
Generation 100 0 1 0 1 1 1 1 1 1 0 1 0 1 0 0 0 0 1 0 0 1,005.19

Fig. 7. An example of the best chromosome produced by mutation and crossover operators. Note that the evolution stopped after a convergence occurred
at 100 generations, the fitness value of the best chromosome is 1005.19, and the best chromosome returns {‘‘2’’,‘‘4’’, ‘‘5’’, ‘‘6’’, ‘‘7’’, ‘‘8’’, ‘‘9’’, ‘‘11’’, ‘‘13’’,
‘‘18’’} as a set of GO terms that semantically similar to the query GO term ‘‘4’’.
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cycles of generations called isolation time. The rationale for
implementing the island model is to reduce the execution
time by decreasing the communication overhead involved
in the exchange of chromosomes between processors, and
to improve the quality of the solutions reached by increas-
ing population sizes without increasing the time
complexity.

4. Materials and implementations

4.1. Environment preparation and data sets

The testing is executed using a low-cost PC cluster that
consists of 25 Pentium IV 2.8 GHz processors with 512 MB
RAM and 100 Mbps NIC. The operating system used is
Fedora Core 5. The low-cost PC cluster is implemented
using MPICH2 libraries [39] developed by the Argonne
National Laboratory. This setup is the minimum require-
ment for offline usage if the user wants to install and use
the basic and the extended UTMGO locally. However,
for online usage, these tools can be accessed remotely via
the internet like other online bioinformatics tools. But cur-
rently these tools are not ready for online usage and will be
opened for public soon.

In this study, the GO data released in January 2007, as
shown in Table 1, is explored in the experiments. The full
GO graph that consists of 22,954 GO terms (1977 cellular
components, 12,903 biological processes, and 8074 molecu-
lar functions) is input to the genetic similarity algorithm
and it becomes the chromosome length. The parameters
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Fig. 8. The parallelization flow of the genetic similarity algorithm.

Table 1
Size of the GO data

Item No. of records

GO terms 22,954
Definitions of GO terms 22,086
Synonyms for GO terms 20,797
Relationships between GO terms 35,006
All paths in GO graph 1,970,267
External database identifier entities 5,833,963
Links from GO terms to other databases 92,670
Gene products 2,498,910
Synonyms for gene products 330,752
Link between gene product and GO term 10,380,867
Gene product counts per GO term 550,392
Evidence type and reference for an association

between gene product and GO term
11,866,795

External database links for an association
between gene product and GO term

11,436,198

Protein sequences 2,310,180
Link between gene product and protein sequence 2,315,391
External database links for a protein sequence 21,761,312
Species 268,435

Table 2
Parameters of the genetic similarity algorithm

Parameter Value

Size of population 500
Number of generations 1000
Crossover probability 0.6
Mutation probability 0.05
Length of chromosome 22,954
Replacement percentage 0.5
Type of crossover Two-point crossover
Type of mutation Swap mutation
Type of genetic algorithm Steady-state genetic

algorithm
Scaling Sigma truncation scaling
Fitness function Maximizing preferences
Isolation time 10 generations
Number of subpopulations 25
Number of emigrants 1
Type of replacement Bad by best
Type of migration Stepping stone
Parameter a for depth factor 0.5
Parameter b for local network density

factor
0.3

Parameter v for fitness function 1
Parameter d for fitness function 0.05
Ideal dimension for dimension index 20
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set for the genetic similarity algorithm are depicted in
Table 2. A total of 250 GO terms in which 20 GO terms
from cellular components, 140 GO terms from biological
processes, and 90 GO terms from molecular functions were
selected randomly as the query GO terms to evaluate the
performance of the basic UTMGO and its genetic similar-
ity algorithm. In case of the extended UTMGO, a total of
200 protein sequences from the GO annotated databases
were used as input. These protein sequences were selected
randomly with 50 protein sequences from Gramene, a
database of Oryza sativa; 50 protein sequences from
Ensembl (http://www.ensembl.org), a database of Homo

sapiens; 50 protein sequences from Saccharomyces Genome
Database (SGD; http://www.yeastgenome.org), a database
of Saccharomyces cerevisiae; and 50 protein sequences from
TAIR (http://www.arabidopsis.org), a database of Arabid-

opsis thaliana.
The effectiveness of the basic and the extended UTMGO

is validated using standard information retrieval measures:
recall and precision. Recall is the ratio of the number of rel-
evant GO terms retrieved to the total number of relevant
GO terms in the GO database. Precision is the number of
relevant GO terms retrieved to the total of irrelevant and
relevant GO terms retrieved. These are formulated as:

Recall ¼ a
ðaþ bÞ � 100 and; ð15Þ

Precision ¼ a
ðaþ cÞ � 100; ð16Þ

where a is the number of relevant GO terms retrieved (i.e.,
the system and the expert agree with the matches), b is the
number of relevant GO terms not retrieved (i.e., the system
disagrees with the matches but the expert agrees), c is the
number of irrelevant GO terms retrieved (i.e., the expert
disagrees with the matches but the system agrees), and d

is the number of irrelevant GO terms not retrieved (i.e.,
the system and the expert disagrees with the matches).
Here, the expert refers to a biologist who has knowledge
of the GO and protein sequence annotations and the sys-
tem refers to the basic and the extended UTMGO.

http://www.ensembl.org
http://www.yeastgenome.org
http://www.arabidopsis.org
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4.2. The basic and the extended UTMGO

In order to show the practicality of this study, we pres-
ent the basic UTMGO, a tool that uses genetic similarity
algorithm to find a group of semantically similar GO
terms. The structure of the basic UTMGO is extended to
demonstrate how it can be applied to annotate anonymous
protein sequences. A screenshot of the basic UTMGO is
shown in Fig. 9 wherein ‘‘DNA binding’’ (GO:0003677)
is used as an example of the query GO term. A brief expla-
nation of the processing behind the basic UTMGO is as
follows:

i. Public GO data in MySQL and RDF/XML formats
are downloaded from the GO website.

ii. The single humongous GO RDF/XML file is split
into smaller files.

iii. Corresponding gene products together with protein
sequences and evidence associations with the GO
terms, either based on IEA or non-IEA evidence
code, from the GO MySQL database are inserted into
the fragmented GO RDF/XML files.

iv. The basic UTMGO requires the user to enter a GO
term and the number of matched GO terms to be
returned Nt1.

v. The semantic similarity searching is performed by the
genetic similarity algorithm. The results return Nt1

GO terms with higher term similarity score to the
query GO term. The information displayed to the
user is the GO terms accession number, followed by
a short description of the GO term, its category
(either cellular component (C), molecular function
(F), or biological process (P)), and the term similarity
score.

The operation of the extended UTMGO is divided into
two cases: with (Option 1) or without (Option 2) a GO
term entered by the user as shown in Figs. 10 and 11,
respectively. An example of the query anonymous protein
Fig. 9. A screenshot of
sequence used to demonstrate the extended UTMGO is
as follows:

MVRGKTQMKRIENPTSRQVTFSKRRNGLLKKA
FELSVLCDAEVALIVFSPRGKLYEFASASTQKTIERY
RTYTKENIGNKTVQQDIEQVKADADGLAKKLEAL
ETYKRKLLGEKLDECSIEELHSLEVKLERSLISIRGR
KTKLLEEQVAKLREKEMKLRKDNEELREKCKNQP
PLSAPLTVRAEDENPDRNINTTNDNMDVETELFIG
LPGRSRSSGGAAEDSQAMPHS

This protein sequence belongs to ‘‘MADS50’’ (MADS-box

transcription factor 50, GR:Q9XJ60), an Oryza sativa species
obtained from the Gramene database. The extended
UTMGO, as shown in Fig. 1, consists of the following steps:

i. Get an anonymous protein sequence, the number of
GO terms to be returned Nt2, a term similarity thresh-
old, the number of protein sequences associated with
each GO term to be returned Ns, and optionally a GO
term from the user.

ii. If the GO term is null, then go to step (iii), otherwise,
go to step (vi).

iii. Get the input from the user for appropriate species,
matrix type either Blocks Substitution Matrix
(BLOSUM) or Point Accepted Mutations (PAM),
and open and extend gap penalties to restrict the search.

iv. Perform the sequence similarity search for the query
anonymous protein sequence from step (i). The
search is carried out for protein sequences from the
fragmented GO RDF/XML files that are related to
the molecular function terms. The output is a protein
sequence with the highest sequence alignment score.
The JAligner engine is used to perform the sequence
similarity search.

v. Select a molecular function term with the highest
association with the protein sequence obtained in step
(iv) for the next step. If there is more than one term,
the user has to make the selection.
the basic UTMGO.



Fig. 10. A screenshot of the extended UTMGO with a GO term entered by the user (Option 1).

Fig. 11. A screenshot of the extended UTMGO without a GO term entered by the user (Option 2).
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vi. Submit the GO term either from step (i) or step (v) to
the basic UTMGO and then perform semantic simi-
larity search.

vii. Return Nt2 GO terms with the term similarity score
higher than the term similarity threshold, as set in
step (i), together with protein sequences associated
with them.
viii. Calculate sequence alignment score between the
query anonymous protein sequence and all protein
sequences for each GO term obtained from the previ-
ous step using the JAligner engine. The information
displayed to the user is the same as in the basic
UTMGO: the GO term accession number and its
short description, category, and term similarity score.
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Additional information given is arithmetic mean,
standard deviation, and the largest value of the
sequence alignment score of Ns number of protein
sequences with higher sequence alignment score that
is attached to the GO term.
5. Results and discussion

Different semantic similarity measures proposed by Lin
(simL), Leacock and Chodorow (simLC), and Resnik (simR)
are used to assess the performance of our semantic similar-
ity measure (simO) that has been built according to the
Jiang and Conrath semantic similarity measure. The aver-
age results of the 250 query GO terms, as shown in Table
3, show that simO provides the best values of recall, preci-
sion, and maximum value of fitness function, i.e., 70.35%,
83.80%, and 1,034.02, respectively. However, the earliest
number of generations to converge is obtained by simLC

which converged as early as after 470 generations. Again,
the best processing time (0.10 s) is obtained by simLC. Table
4 shows an example of comparison of different semantic
similarity measures in which each GO term is matched with
‘‘organelle inner membrane’’ (GO:0019866): the term simi-
larity score is given in percentage. GO terms such as
‘‘infected host cell surface knob’’ (GO:0020030), ‘‘host cell
nucleus’’ (GO:0042025), and ‘‘membrane-bound orga-
nelle’’ (GO:0043227) are detected by simO whereas these
are not detected by the other semantic similarity measures.
Furthermore, the term similarity score for simO is higher
than the other semantic similarity measures.

To examine the sensitivity of parameters a and b, differ-
ent combinations of parameters a and b are analyzed.
Based on the average results of the 250 query GO terms,
the results from Table 5 confirm that the combination of
a = 0.5 and b = 0.3, used in this study as shown in Table
2, outperform other combinations. In the meantime, in
order to justify the need for executing the genetic similarity
algorithm on a low-cost PC cluster, the effect of using dif-
ferent numbers of processors in the low-cost PC cluster is
analyzed. The effects on the following factors are studied:
processing time, number of generations to converge, max-
imum value of fitness function, recall, and precision. The
average results of the 250 query GO terms, shown in Table
6, show that a cluster of 25 processors is the ideal solution
to handle the computational problem. Five factors, partic-
Table 3
Comparison of genetic similarity algorithm with different semantic
similarity measures

Item simO simL simLC simR

Processing time (s) 0.13 0.16 0.10 0.11
Number of generations to converge 540 610 470 490
Maximum value of fitness function 1034.02 945.58 889.08 827.10
Recall 70.35 66.43 64.71 62.50
Precision 83.80 78.19 74.92 69.93
ularly the processing time, were highly affected if more pro-
cessors were removed. Otherwise, additional processors
only slightly affected those factors.

To prove the capability of the basic UTMGO that uses
the genetic similarity algorithm as its intelligent engine, its
output is compared with other GO browsers. The compar-
ison is done with keyword-based GO browsers such as
AmiGO, GenNav, QuickGO, and TAIR Keyword Brow-
ser, and also with semantic similarity-based GO browsers
such as DynGO and FuSSiMeG. The performance is
shown in Table 7 for the average results of the 250 query
GO terms. Hence, the basic UTMGO showed better recall
and precision, but the AmiGO gives the best processing
time (0.11 s) which is 0.02 s faster than the basic UTMGO.
Nevertheless, the AmiGO provides the lowest recall
(54.96%) and its precision is 21.96% lower than the basic

UTMGO. The results also show that the semantic
similarity-based GO browsers outmatched the keyword-
based GO browsers in terms of recall and precision. An
example of a query that is based on ‘‘DNA binding’’
(GO:0003677) as the input GO term is shown in Table 8
(for the first 10 returned GO terms). Our semantic similar-
ity measure is used to calculate the term similarity score:
the value is given in percentage. The results from Table 8
show that all GO terms with term similarity score equal
or higher than ‘‘DNA replication origin binding’’
(GO:0003688, 8.6%) are returned and descendingly sorted
by the basic UTMGO. The results generated by the seman-
tic similarity-based GO browsers are attractive because
they return GO terms that do not comprise keywords
associated with the query GO term. For example, ‘‘tran-
scription factor activity’’ (GO:0003700), ‘‘endonuclease
activity’’ (GO:0004519), and ‘‘protein kinase activity’’
(GO:0004672) are returned by the basic UTMGO,
DynGO, and FuSSiMeG, respectively.

The comparison between the extended UTMGO and the
other GO-based protein sequence annotation tools such as
GoFigure, GOtcha, GOPET, and JAFA is shown in Table
9. The comparison is based on the average results of the
200 query protein sequences that are selected randomly
from the GO annotated databases as mentioned earlier in
Section 4.1. Thus, the extended UTMGO provides a better
precision (90.32%) and the JAFA offers a better recall
(88.80%) which is just 0.87% higher than the extended

UTMGO. However, the JAFA provides the slowest pro-
cessing time (518.22 s) and its precision is 3.55% lower than
the extended UTMGO. The best processing time is 163.79 s
that is taken by the extended UTMGO. An example query
that is based on ‘‘MADS50’’ (MADS-box transcription fac-

tor 50, GR:Q9XJ60) as the input protein sequence is shown
in Table 10 (for the top 10 predicted GO terms). The aver-
age and the maximum values of the sequence alignment
score (avg and max) for the protein sequences associated
with the predicted GO terms are used as an indicator to
assess these tools, because quality of the results depends
on the sequence alignment score between the query
anonymous protein sequence and the protein sequences



Table 4
An example of comparison of different semantic similarity measures

GO term accession no. GO term name simO simL simLC simR

GO:0005652 Nuclear lamina 5.7 4.0 3.4 2.3
GO:0005787 Signal peptidase complex 5.8 4.1 3.6 2.3
GO:0009528 Plastid inner membrane 16.1 7.7 6.5 4.3
GO:0009529 Plastid intermembrane space 1.6 1.1 0.9 0.5
GO:0009536 Plastid 9.1 5.8 2.7 0.5
GO:0016023 Cytoplasmic membrane-bound vesicle 6.5 4.3 2.1 0.5
GO:0017090 Meprin A complex 5.8 3.0 2.6 2.3
GO:0019815 B cell receptor complex 6.5 3.3 3.0 2.9
GO:0019866 Organelle inner membrane 100.0 100.0 100.0 89.0
GO:0019867 Outer membrane 7.8 7.5 6.0 4.9
GO:0020006 Parasitophorous vacuolar membrane network 4.0 2.3 1.9 1.7
GO:0020007 Apical complex 2.2 2.0 1.7 1.1
GO:0020016 Flagellar pocket 2.2 1.9 1.0 0.5
GO:0020030 Infected host cell surface knob 2.8 0.0 0.0 0.0
GO:0020031 Polar ring of apical complex 1.8 1.4 1.3 1.1
GO:0030134 ER to Golgi transport vesicle 3.9 2.8 1.4 0.5
GO:0030386 Ferredoxin:thioredoxin reductase complex 1.6 1.1 0.9 0.5
GO:0031090 Organelle membrane 12.4 10.1 8.6 3.0
GO:0031300 Intrinsic to organelle membrane 8.8 5.5 4.8 3.0
GO:0031471 Ethanolamine degradation polyhedral organelle 1.6 1.2 0.9 0.5
GO:0042025 Host cell nucleus 5.1 0.0 0.0 0.0
GO:0042601 Endospore-forming forespore 1.8 1.6 1.5 1.1
GO:0042995 Cell projection 6.4 5.0 4.2 1.1
GO:0043227 Membrane-bound organelle 12.7 0.0 0.0 0.0
GO:0043231 Intracellular membrane-bound organelle 13.8 8.2 4.0 0.5

Each GO term is matched with ‘‘organelle inner membrane’’ (GO:0019866), the term similarity score is in percentage.

Table 5
The effects of different combinations of parameters a and b on the values of the recall (r), precision (p), and maximum value of fitness function (f)

Parameter a for depth factor Parameter b for local network density factor

b = 1.0 b = 0.7 b = 0.5 b = 0.3 b = 0.0

a = 2.0 r = 67.97 r = 68.19 r = 68.63 r = 68.85 r = 67.37
p = 81.42 p = 81.64 p = 82.08 p = 82.30 p = 80.82
f = 796.70 f = 818.35 f = 862.61 f = 884.79 f = 736.53

a = 1.5 r = 68.88 r = 69.79 r = 69.80 r = 70.16 r = 68.03
p = 82.33 p = 83.24 p = 83.25 p = 83.61 p = 81.48
f = 887.32 f = 978.32 f = 979.31 f = 1015.50 f = 802.84

a = 1.0 r = 69.14 r = 69.81 r = 69.94 r = 70.27 r = 68.40
p = 82.58 p = 83.26 p = 83.39 p = 83.72 p = 81.85
f = 912.77 f = 980.03 f = 993.91 f = 1026.49 f = 839.83

a = 0.5 r = 69.35 r = 69.93 r = 70.04 r = 70.35 r = 68.66
p = 82.80 p = 83.38 p = 83.49 p = 83.80 p = 82.11
f = 934.13 f = 992.78 f = 1003.12 f = 1034.02 f = 865.45

a = 0.0 r = 67.02 r = 67.65 r = 67.76 r = 68.68 r = 66.94
p = 80.47 p = 81.10 p = 81.21 p = 82.13 p = 80.39
f = 701.46 f = 764.67 f = 775.71 f = 867.52 f = 693.96

Table 6
The effects of different number of processors used on the performance of the genetic similarity algorithm

Item Number of processors

5 10 15 20 25 30

Processing time (s) 2372.37 1053.85 374.96 68.07 0.13 0.12
Number of generations to converge 690 660 610 580 540 540
Maximum value of fitness function 717.05 781.18 836.51 898.62 1034.02 1034.09
Recall 67.26 67.72 68.40 69.53 70.35 70.39
Precision 80.22 81.08 81.69 82.55 83.80 83.86
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Table 7
Comparison of performance between basic UTMGO and other keyword-
based and semantic similarity-based GO browsers

GO Browser Recall Precision Processing time (s)

basic UTMGO 70.35 83.80 0.13
AmiGO 54.96 61.84 0.11
GenNav 56.78 60.92 0.16
QuickGO 57.39 60.43 0.22
TAIR Keyword Browser 56.08 61.12 0.15
DynGO 67.88 75.04 0.19
FuSSiMeG 70.26 79.41 0.23
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associated with the predicted GO terms. Thus, higher is
better. As depicted in Table 10, all the GO terms with
the average sequence alignment score equal or higher than
‘‘RNA polymerase II transcription factor activity’’
(GO:0003702, avg = 175.4) are returned by the extended

UTMGO. However, even though the average sequence
alignment scores for ‘‘flower development’’ (GO:0009908,
avg = 113.0) and ‘‘cytoplasm’’ (GO:0005737, avg = 93.8)
are higher than ‘‘actin binding’’ (GO:0003779,
avg = 87.8), they are out of the extended UTMGO radar
since their term similarity scores are 0.9% and 0.6%, respec-
tively. These term similarity scores are lower than the term
similarity threshold (1.0%) set for this testing session.
Moreover, as shown in Table 10, all GO terms with the
highest value of the maximum of sequence alignment score
(1153) are returned by the extended UTMGO. Note that
although GO terms such as ‘‘positive regulation of
transcription from RNA polymerase II promoter’’
(GO:0045944, max = 153), ‘‘DNA bending activity’’
(GO:0008301, max = 153), and ‘‘regulation of transcrip-
tion from RNA polymerase II promoter’’ (GO:0006357,
max = 151) have the maximum of sequence alignment
score higher than ‘‘actin binding’’ (GO: 0003779, max
= 92), but they are not ranked as the predicted GO terms
by the extended UTMGO. The reason is that their average
sequence alignment score is lower than the value for ‘‘actin
binding’’ (GO: 0003779).

Determining which GO terms are relevant from over 20
thousand GO terms is not an easy task to execute, espe-
cially when what is relevant can be very subjective. A rank-
ing function that determines the ordering of the query
results, in order to determine how relevant a GO term is,
is required for a basic calculation to accurately estimate
the recall and precision. Furthermore, an adaptive mecha-
nism that is capable of automatically determining the
optimal values of genetic algorithm parameters such as
crossover probability, mutation probability, and replace-
ment percentage is also required. This is due to the fact that
the most suitable combination of parameters for one prob-
lem or data set is not always optimal for others. In the
meantime, as the size of the GO increases, additional com-
puting resources are required to provide faster results.
Understanding of the GO terms and their properties by
the users is also required in order for them to use the basic

and the extended UTMGO efficiently.



Table 9
Comparison of performance between extended UTMGO and other GO-
based protein sequence annotation tools

GO-based protein sequence
annotation tool

Recall Precision Processing time (s)

extended UTMGO 87.93 90.32 163.79
GoFigure 83.15 84.09 195.48
GOtcha 83.62 84.63 302.11
GOPET 86.39 85.31 270.82
JAFA 88.80 86.77 518.22

80 R.M. Othman et al. / Journal of Biomedical Informatics 41 (2008) 65–81
6. Conclusions

The basic UTMGO is based on the genetic similarity
algorithm. It is a combination of genetic and semantic sim-
ilarity search, and has been presented as an alternative way
of searching the GO terms. The search is done by determin-
ing a group of semantically similar GO terms that are
related to the query GO term. The semantic similarity
search is not based on keyword matching but is based on
the degree of relationships between the GO terms. A gene
product that is associated with one or more GO terms is
used as a foundation to compute the amount of informa-
tion the GO terms share in common that gives the degree
of relationships. In the meantime, the genetic search plays
the main role in finding a set of GO terms from the large
GO graph. The search results have indicated that the basic
UTMGO is able to find a group of semantically similar GO
terms with higher recall and precision and reasonable pro-
Table 10
An example of comparison between extended UTMGO and other GO-based
sequence is ‘‘MADS50’’ (MADS-box transcription factor 50, GR:Q9XJ60), av
alignment score

Rank extended UTMGO GoFigure GOtcha

GO term
accession
no.

Sequence
alignment
score

GO term
accession
no.

Sequence
alignment
score

GO term
accession
no.

1 GO:0003700 avg = 694.8 GO:0003700 avg = 694.8 GO:000367
max = 1153 max = 1153

2 GO:0006355 avg = 686.0 GO:0003677 avg = 577.6 GO:003052
max = 1153 max = 1153

3 GO:0005634 avg = 604.0 GO:0007275 avg = 0.0 GO:000370
max = 1153 max = 0

4 GO:0003677 avg = 577.6 GO:0009908 avg = 113.0 GO:000613
max = 1153 max = 565

5 GO:0005739 avg = 526.4 GO:0006350 avg = 0.0 GO:000635
max = 1153 max = 0

6 GO:0005515 avg = 441.4 GO:0006355 avg = 686.0 GO:000635
max = 537 max = 1153

7 GO:0042802 avg = 244.8 GO:0005634 avg = 604.0 GO:000562
max = 382 max = 1153

8 GO:0003713 avg = 195.6 — — GO:000823
max = 204

9 GO:0003702 avg = 175.4 — — GO:000521
max = 204

10 GO:0003779 avg = 87.8 — — GO:000573
max = 92
cessing time as compared to other existing GO browsers.
The usefulness of the basic UTMGO has been shown by
its extended version. The extended UTMGO has the capa-
bility of annotating anonymous protein sequences with
higher precision and recall with quicker processing time.
The protein sequences associated with the predicted GO
terms that are returned by the extended UTMGO also have
higher sequence alignment score to the query anonymous
protein sequence. In addition, the extended UTMGO does
not depend on BLAST and RDBMS and is fully based on
the GO data. Future improvements in the basic and the
extended UTMGO are to provide the user with free text
typing for entering the query GO term and to develop a
thesaurus for the user to check the predicted annotation.
Specifically for the basic UTMGO, future development
direction is to implement it to predict protein function
and protein–protein interactions. For the extended

UTMGO, additional enhancement includes the ability to
support more than one protein sequence per query and to
accept DNA sequence as an input.
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protein sequence annotation tools where the query anonymous protein
g, average of sequence alignment score; and max, maximum of sequence

GOPET JAFA

Sequence
alignment
score

GO term
accession
no.

Sequence
alignment
score

GO term
accession
no.

Sequence
alignment
score

7 avg = 577.6 GO:0006355 avg = 686.0 GO:0045944 avg = 86.4
max = 1153 max = 1153 max = 153

8 avg = 0.0 GO:0003677 avg = 577.6 GO:0006657 avg = 0.0
max = 0 max = 1,153 max = 0

0 avg = 694.8 GO:0003700 avg = 694.8 GO:0004402 avg = 0.0
max = 1153 max = 1,153 max = 0

9 avg = 0.0 GO:0006139 avg = 0.0 GO:0008362 avg = 0.0
max = 0 max = 0 max = 0

0 avg = 0.0 GO:0006350 avg = 0.0 GO:0007144 avg = 0.0
max = 0 max = 0 max = 0

5 avg = 686.0 GO:0045944 avg = 86.4 GO:0007129 avg = 36.2
max = 1153 max = 153 max = 92

2 avg = 38.6 GO:0006357 avg = 85.2 GO:0007020 avg = 19.0
max = 101 max = 151 max = 95

3 avg = 29.6 GO:0003936 avg = 0.0 GO:0007004 avg = 0.0
max = 148 max = 0 max = 0

5 avg = 17.0 GO:0008301 avg = 57.4 GO:0007015 avg = 20.2
max = 85 max = 153 max = 101

7 avg = 93.8 — — GO:0006430 avg = 16.6
max = 134 max = 83
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