
 VOT79029

SMARTANTENNA DESIGN

(REKA BENTUK ANTENNA PINTAR)

THAREK ABD.RAHMAN

REZA ABDOLEE

RESEARCH VOTE NO:

79029

FAKULTI KEJURUTERAAN ELEKRIK

UNIVERSITI TEKNOLOGI MALAYSIA

2008

 ii

The lord has blessed me with a family

to whom this research project report is dedicated.

 iii

ACKNOWLEDGEMENTS

This project is sponsored by Ministry of Science, Technology and Innovation of

Malaysia under the Escience Fund with VOT number 79029.

 iv

ABSTRACT

SMART ANTENNA DESITGN

(Keywords: Smart antennas, digital beamforming, DSP and FPGA implementation)

Smart antenna technologies are emerging as an innovative way to meet the

growing demand for more powerful, cost-effective and highly efficient wireless

communication systems. In this project, from broad category of smart antenna

techniques, the switch beam digital-beamforming technique in the downlink is deployed

to improve the fidelity and performance of WiMax application. In this regards, the

designed system forms and steer the beam according to the user location which is known

to the system. In addition, the system performs sidelobe cancellation base on the

chebyshev algorithm to optimize the antenna radiation pattern. The design and

implementation steps are as follow: the system is firstly modeled by MATLAB software.

After modeling, the algorithm is implemented in DSP by using C and Code Composer

Studio. After DSP hardware implementation, the signal management is performed in

DSP before transmission to the FPGA board. This management is necessary, in order to

make processed signal in DSP suitable for channel separation process in FPGA. FPGA

is deployed to split the data stream into sixteen channels corresponding to number of

antenna elements. Next, the FPGA and DSP are integrated together to form the

baseband switch beam smart antenna system. After integration process, the hardware is

tested; the results prove that the system functions properly as we expected from

simulation model. In this project, lastly, the initial design of IF, RF-front-end and their

necessary circuits are also portrayed to be used in the next smart antenna research

project.

Key researchers:

Prof.Tharek Abd Rahman

Dr.Razali Ngah

Reza Abdolee

Vida Vakilian

Email: tharek@fke.utm.my

Tel.No: 07-5536601

Vote No: 79029

 v

Reka Bentuk Antenna Pintar

Teknologi antena pintar telah muncul sebagai satu inovasi untuk memenuhi permintaan

sistem yang berkuasa tinggi, kos berpatutan dan berkecekapan tinggi dalam system

perhubungan tanpa wayar. Bagi projek ini, dari pelbagai kategori dalam teknik antenna

pintar, teknik suis alur berdigital rangkaian bawah telah digunakan untuk memperbaiki

kualiti dan mutu dalam penggunaan WiMax. Dengan itu, sistem direkabentuk bagi

membentuk alur dan dipandu ke kedudukan pengguna yang telah diketahui oleh sistem.

Sebagai tambahan untuk mendapatkan bentuk sinaran antena yang optima, pembatalan

cuping sisi dilakukan berdasarkan kepada algoritma chebyshev. Langkah-langkah bagi

merekabentuk dan perlaksanaan projek ini adalah seperti berikut: Pada mulanya, perisian

MATLAB digunakan untuk mendapatkan model bagi sistem tersebut dan seterusnya

algoritma dilakukankan dalam DSP menggunakan bahasa C and ‘Code Composer

Studio’. Setelah perkakasan DSP dilaksanakan, adalah perlu memastikan pengurusan

isyarat dibuat sebelum signal ini dihantar ke papan FPGA. Ini adalah perlu untuk

membolehkan data yang sesuai sahaja yang akan di hantar ke papan FPGA tersebut.

Setelah itu, saluran perlu dipisahkan kepada enam belas unsur tatasusunan antenna

menggunakan papan FPGA. Berikutnya adalah menyatukan FPGA dengan DSP

bersama-sama untuk menghasilkan jalur asas alur suis sistem antenna pintar. Perkakasan

hasil dari penyatuan diatas telah diuji dan keputusan menunjukkan sistem telah berfungsi

dengan baik seperti yang dijangkan dari penyelakuan model. Diakhir projek ini,

rekabentuk awal bagi IF, RF ‘front-end’ dan litar yang bersesuaian telah diberikan bagi

tujuan untuk penggunaan penyelidikan antenna pintar di masa hadapan.

Key researchers:

Prof.Tharek Abd Rahman

Dr.Razali Ngah

Reza Abdolee

Vida Vakilian

Email: tharek@fke.utm.my

Tel.No: 07-5536601

Vote No: 79029

 vi

Table of Contents

CHAPTER

1

2

 TITLE

DEDICATION

ACKNOWLEDGEMENT

ABSTRACT

ABSTRAKT

TABLES OF CONTENTS

LIST OF TABLES

LIST OF FIGURES

LIST OF ABBREVIATIONS

LIST OF APPENDICES

INTRODUCTION

1.1 Introduction

1.2 Objective

1.3 Scope of Research Project

1.4 Report Outline

SMART ANTENNA SYSTEMS

2.1 Introduction

2.2 Smart Antenna Definition

2.3 Smart Antenna Operation

2.4 Classification of Smart Antenna

 2.4.1 Switched Beam Systems

 2.4.2 Adaptive Array System

2.5 Advantages of Smart Antennas

2.6 Disadvantages of Smart Antennas

PAGE

ii

iii

iv

v

vi

ix

x

xii

xiii

1

2

3

3

5

6

7

9

10

11

12

14

 vii

3

4

5

2.7 Smart Antenna design in wireless Communication Center

2.8 Design of downlink smart antenna system

2.9 Expansion board design

 2.9.1 The possible designs for expansion board

 2.9.1.1 Interfacing a DAC8534 with a TMS320C6713B

DIGITAL BEAMFORMING WITH DSP BOARD

3.1 Introduction

3.2 Beamforming

3.3 DSP Design (Beamforming and sidelobe cancellation)

3.4 DSP system design

3.5 DSP speed and real time constraints

3.6 DSP implementation of smart antenna system

3.7 Beamforming matrix

3.8 Sidelobe cancellation by using DSP

CHANNEL SEPARATION WITH FPGA BOARD

4.1 Introduction

4.2 Field Programmable Gate Arrays (FPGAs) Overview

 4.2.1Applications of FPGAs

 4.2.2 FPGAs Architecture

4.3 Altera Excalibur development board

4.4 FPGA Programming

INTERGRATION OF DIGITAL SIGNAL

PROCESSOR AND FPGA BOARD

5.1 Introduction

5.2 System model

5.3 Integration of DSP and FPGA

5.4 Summary

15

17

18

19

21

24

25

27

28

30

32

33

34

36

36

37

37

39

42

44

44

45

48

 viii

6

7

8

REFERENCES

Appendices A-D

IF AND RF FRONT-END DESIGN FOR SMART

ANTENNA

6.1 Introduction

6.2 Baseband glue circuit

6.3 Quadrature-modulator

6.4 local oscillators for 2.4GHz signal

6.5 Wilkinson power divider

6.6 Balun Circuits

6.7 Temperature compensated crystal oscillator (TCXO)

6.8 linear RF and IF amplifier

6.9 Second up-converter

ANTENNA ARRAY DESIGN AND FABRICATION

7.1 Introduction

7.2 Uniformly Spaced Linear Array

7.3 Antenna array design and fabrication

SIMULATION AND MEASUREMENT RESULTS AND

CONCLUSION

8.1 Introduction

8.2 Result of digital beamforming by using DSP

8.3 Sidelobe cancellation

8.4 Antenna array radiation and sidelobe cancellation results

8.5 Channel separation and synchronization by using FPGA

8.6 Integration of DSP and FPGA board

8.7 Summary and conclusion

8.8 Future works

49

50

52

54

56

56

57

58

59

62

63

67

71

72

73

75

79

80

82

82

84

 ix

LIST OF TABLES

NO

TITLE PAGE

4.1 Flash Memory Configuration of FPGA 41

6.1 Simulation parameters for beamforming 72

 x

LIST OF FIGURES

NO

TITLE PAGE

2.1 Block Diagram of a Smart Antenna System 7

2.2 Block diagram of smart antenna implementation 8

2.3 Omnidirectional and smart antennas based cellular system 12

2.4 Linear Array Structure 16

2.5 First design 17

2.6 second design 17

2.7 third design 18

2.8 baseband daughter card 19

2.9 functional block diagram of DAC8534 20

2.10 pin configuration of DAC8534 20

2.11 interfacing a DAC8534 with a TMS320C6713B 21

2.12 quadruple bus buffer gate “SN74LVC125A” 22

2.13 typical connection of DAC8830 22

2.14 typical connection of DAC8560 23

3.1 A narrowband beamformer 26

3.2 Functional block and CPU (DSP core) diagram 28

3.3 simplified DSP system design 29

3.4 software development process diagram 30

3.5 the predefined antenna beam direction 32

3.6 the beamforming flow 33

3.3 The flowchart of phase manipulation and sidelobe cancellation

3.6 The digital beamforming model

4.1 Internal structure of an FPGA 38

4.2 The Excalibur Development Board 39

4.3 The Nios Embedded Processor 40

4.4 Pin assignment of FPGA 43

5.1 Smart antenna system model 45

5.2 Integration of DSP and FPGA 46

 xi

5.3 Transferring from DSP and FPGA 48

6.1 IF and RF front end design 50

6.2 Connecting the single ended signal to balanced input of TRF3702 51

6.3 Glue circuit connecting the DAC5687 to TRF3702 52

6.4 TRF3702 pin arrangement 53

6.5 TRF3702 functional block diagram 53

6.6 Generating the LO signal for TRF3702 using TRF3750 54

6.7 The typical layout for” MAX2750” 55

6.8 The pin configuration for” MAX2750” 55

6.9 Balun circuit before ICML5824, CAC=0.1µf RG=120KΩ 56

6.10 Balun circuit configurations at 2.4 GHz 57

6.11 low profile TCXO-514 frequency range 1.2 to 100MHz 57

6.12 ML5824 top-views 58

6.13 HMC315 linear amplifier frequency range up-to 7 GHZ (C block=0.1micro,

Rbias=5k)

59

6.14 AD8353 amplifier (frequency range 1 MHZ up-to 2700 GHZ) 59

6.15 Ml5824 functional block diagram 60

6.16 ML5824 glue circuits 61

7.1 linear array antenna 64

7.2 Front-view of linear antenna array (CST) 67

7.3 Back-view of linear antenna array (CST) 68

7.4 The radiation pattern in direction of o degree 68

7.5 The 3D radiation pattern in direction of o degree 69

7.6 The simulation results for return loss 69

7.7 Fabricated linear antenna array 70

8.1 The DSP and MATLAB arrangement by PC 72

8.2 Digital beamforming with DSP board 73

8.3 Comparisons between the software simulation results (a) and hardware

implementation results (b)

74

8.4a 16-elemets zero phase, without weighting 75

8.4b 16-elemets zero phase, Kaiser weighting α=3 76

8.5a 16-elemets -30 phase, without weighting 77

8.5b 16-elemets -30 phase, Kaiser weighting

α=4

77

8.5c 16-elemets, Kaiser weighting for α=8 theta=-30 78

8.5d 16-elemets, -30 phase, Kaiser weighting α=16 78

8.6 Channel separation and synchronization with FPGA 80

8.7 Connection between DSP and FPGA 81

 xii

LIST OF ABBREVIATION

Symbol Definition

WLAN wireless local area networks

WiMax Worldwide Interoperability for Microwave Access

DSP Digital signal processor

FPGA Field-programmable gate array

FS Frame synchronization

SDRAM synchronous DRAM

EDMA Enhanced direct memory access

McBSP Multi channel buffer serial port

PLD programmable logic device

CPLD Complex programmable logic device

DIP dual in-line package

LED Light-emitting diode

 xiii

LIST OF APPENDICES

APPENDIX

 TITLE PAGE

A Digital beamforming C source code 86

B Channel separation using VHDL code 92

C Channel separation using Verilog code 96

D Source code for digital beamforming using MATLAB 98

 1

CHAPTER 1

INTRODUCTION

I. Introduction

 The demand of smart antenna for mobile communications is increased

recently and the main purpose for applying smart antennas is feasibility for

increasing in capacity and efficiency. The application of smart-antenna arrays

has been suggested for mobile-communication systems, to overcome the

problem of limited channel bandwidth, satisfying a growing demand for a large

number of mobiles on communications channels. Smart antennas, when used

appropriately, help in improving the system performance by increasing channel

capacity and spectrum efficiency, extending range coverage, steering multiple

beams to track many mobiles, and compensating electronically for aperture

distortion. They also reduce delay spread, multipath fading, co-channel

interference, system complexity, bit error rate (BER).

 2

1.2 Objectives

 Base on which we have stated in submitted proposal to Ministry of

Science, the main objective of the project is to design and fabricate high gain

directive antenna with beamforming capability. The methodology to achieve

this objective was to use left-handed material to implement the antenna.

Unfortunately, after doing some research, we have found out that this

methodology is impractical in the current situation. The reasons are outline here.

Firstly, these materials are very expensive to build due to expensive

manufacturing devices. Second, these areas of research presently are academic

and they have a wide room to find the place for practical implementation, so the

output of this kind of research would just be a laboratory scale. Therefore, we

had preferred to design this antenna with different methodology. So we have

chosen the signal processing technique instead of left-handed material to form

and optimize the antenna radiation pattern. To achieve this objective we define

three steps. The first step is implementation of the digital beamforming by

using the digital signal processor. More precisely, in the first step the aim is to

implement the switched beam smart antenna for downlink transmission.

According to the algorithm, the beam can steer from 0 to 180 degree in azimuth

angle base on user direction with any resolution. Second step of the project is to

manage the processed signals in DSP board after digital beamforming and

sidelobe cancellation to transmit them to the expansion board. Third and main

step of the project is to design and implement of baseband channel separation

and synchronization by using FPGA board. By completing these steps, the

main objective of the project will be achieved.

 3

1.3 Scope of research project

 The project involves both of software modeling and hardware

implementation. In the first phase of the project, the TMS320C6713B DSP

board is used for beamforming. C and Code Composer Studio software is

applied for programming this board. Also MATLAB software is chosen for

modeling because of some facilities provided, including a Link for Code

Composer Studio Development Tools and signal processing blocksets and

toolbox. By using this links, transferring information to and from Code

Composer Studio is possible. In the second phase of the project FPGA board is

applied for performing the channel separation and synchronization and Quartus

II software is used to program this board. In the third phase of the project

integration of DSP and FPGA is done by programming the EDMA and McBSP

of DSP.

1.4 Report outline

This report is organized as follows. In Chapter 2, background

information and basic principle in smart antenna system is explained. In

addition, the project structure and block diagram are discusses as well. In

Chapter 3, digital beamforming by using DSP board is fundamentally discussed.

Moreover, the hardware structure of DSP board shortly reviewed. Also, the

model for beamforming is illustrated. In Chapter 4, after FPGA hardware

description, channel separation for the project is explained. In this respect,

FPGA programming and pin assignment are reviewed as well. In Chapter 5,

 4

integration of DSP and FPGA is discussed and also the system model used in

this project is given. The IF and RF-front-end design are reviewed in chapter 6.

The antenna array design and implementation are presented in chapter 7.

Lastly, in Chapter 8, simulation results for digital beamforming and the channel

separation are discussed. In this chapter a comparison between hardware and

software simulation results is made between DSP and MATLAB software. At

the end of this chapter, final conclusion of the work is presented, and some

possible future works are suggested.

 5

CHAPTER 2

SMART ANTENNA SYSTEMS

2.1 Introduction

The receiver and transmitter antennas are one of the most critical

components in the design of wireless communication systems. A good design

of the antenna can relax system requirements, improve overall system

performance and greatly reduce the infrastructure costs [1]. It has been

demonstrated that using a beamforming antenna instead of an omni-directional

antenna in the wireless communication systems can increase the system

capacity and improve the overall system performance [2]. This performance

enhancement is due to the reduction in the interference by attenuating the

interference signals which have different directions of arrivals than the desired

signal direction of arrival at the receiver antenna site. This is called spatial

processing because the direction of arrival is related to the mobile location.

 6

The system performance can be further improved by exploiting the delay

spread of the received signals. The signal of each mobile arrives to the base

station antenna in multi-path form. Each path usually has its own delay and

direction of arrival. Using the smart antenna alone means that we receive

(ideally) only one path and ignore the others.

2.2 Smart Antenna Definition

A smart antenna is defined as an array of antennas with a digital signal

processing unit that can change its pattern dynamically to adjust to noise,

interference and multipaths. The conceptual block diagram of a smart antenna

system is shown in Figure 2.1. The following three main blocks can be

identified: (i) array antenna (ii) complex weights and (iii) adaptive signal

processor. The array antenna comprises of a Uniform Linear Array (ULA) or

Uniform Circular Array (UCA) of antenna elements [3]. The individual antenna

elements are assumed to be identical, with omni-directional patterns in the

azimuth plane. The signals received at the different antenna elements are

multiplied with the complex weights and then summed up. The complex

weights are continuously adjusted by the adaptive signal processor which uses

all available information such as pilot or training sequences or knowledge of the

properties of the signal to calculate the weights. Such a configuration

dramatically enhances the capacity of a wireless link through a combination of

diversity gain, array gain, and interference suppression. Increased capacity

translates to higher data rates for a given number of users or more users for a

given data rate per user. This is done so that the main beam tracks the desired

user and/or nulls are placed in the direction of interferers and/or side lobes

 7

towards other users are minimized. It should be noted that the term “smart”

refers to the whole antenna system and not just the array antenna alone.

Figure-(2.1) Block Diagram of a Smart Antenna System

2.3 Smart Antenna Operation

The smart antenna works as follows; assume that there is a user sending

a signal to the base station. Then each element of smart antenna array in the

base station will receive the signal but at different time instance since the

distance between the user and each element of array is different from other

elements. By using this time delay and the distance between antenna elements

the location of the user can be calculated. Therefore, the transmitter can send a

 8

signal to the exact location of that user. This strategy can be applied for the

system with multiple users as well. A smart antenna receiver can suppress the

interference by using this strategy. The smart antenna is able to process the

signals received by the array or transmitted by the array using suitable array

algorithms to improve wireless system performance. An antenna array consists

of a set of distributed antenna elements (dipoles, monopoles or directional

antenna elements) arranged in certain geometry (e.g., linear, circular or

rectangular grid) where the spacing between the elements can vary. The signals

collected by individual elements are coherently combined in a manner that

increases the desired signal strength and reduces the interference from other

signals. Hence a smart antenna can be viewed as a combination of “regular or

conventional” antenna elements whose transmit or received signals are

processed using “smart” algorithms.

Antenna
system

RF
front
End

Digital
Frequency
Conversion

Digital
processing

Section
RF

signal IF signal Baseband
signal

Figure-(2.2) Block diagram of smart antenna implementation

 Figure-(2.2) shows a generic implementation of smart antenna system.

As shown in this figure, the antenna arrays have input or output as RF signals

in the analog domain. These signals are passed to/from the Radio Frequency

(RF) analog front end which usually consists of low noise amplifiers, mixers

and analog filters. In the receive mode, the RF signals are converted to digital

domain by analog to digital converters (ADCs) and in transmit mode, the

baseband digital signals are converted to RF using digital to analog converters

 9

(DACs). The down conversion from RF to baseband or up conversion from

baseband to RF can involve the use of IF signals. The baseband signals

received from each antenna is then combined using the “smart” algorithms in a

digital processing section. Each antenna element hence has a RF chain going

from the antenna element to RF front end to digital conversion for receiver and

vice-versa for transmitter. The digital processing section can be implemented

on a microprocessor or a DSP or FPGA. Hence the “smart” algorithm

implementation usually is a software code unless implemented in an ASIC or

FPGA.

2.4 Classification of Smart Antenna

The fundamental idea behind a smart antenna is not new but dates back

to the early sixties when it was first proposed for electronic warfare as a

counter measure to jamming [4]. Until recently, cost barriers have prevented

the use of smart antennas in commercial systems. Thus in existing wireless

communication systems, the base station antennas are either omni-directional

which radiate and receive equally well in all azimuth directions, or sector

antennas which cover slices of 60 or 90 or 120 degrees [4]. However, the

advanced of low cost Digital Signal Processors (DSPs), Application Specific

Integrated Circuits (ASICs) and innovative signal processing algorithms have

made smart antenna systems practical for commercial use [5]. The smart

antenna systems for cellular base stations can be divided into two main

categories. These are (i) switched beam system and (ii) adaptive arrays

systems. Smart antennas are a solution to capacity and interference problems

[4]-[6]. This technology is often described as dynamic sectorization, (i.e. the

 10

cells are Sectorized to reduce interference levels but in a way to enhance the

capacity of the cell) or as an adaptive antenna. In either case, most smart

antennas form narrow beams directed to each particular user in order to

enhance the received signal strength (RSS) and/or signal-to-noise ratio (SNR).

Smart antennas can be classified into two types i.e. Switched Beam Systems

and Adaptive Array Systems.

2.4.1 Switched Beam Systems

A switched beam antenna system consists of several highly directive,

fixed, pre-defined beams which can be formed by means of a beamforming

network [7] e.g., the Butler 1.2. Smart Antennas for CDMA Cellular System

[8, 9] which consists of power splitters and fixed phase shifters. The system

detects the signal strength and chooses one beam, from a set of several beams

that gives the maximum received power. A switched beam antenna can be

thought of as an extension of the conventional sector antenna in that it divides

a sector into several micro-sectors [7]. It is the simplest technique and easiest

to retro-fit to existing wireless technologies. However switched beam antenna

systems are effective only in low to moderate co-channel interfering

environments owing to their lack of ability to distinguish a desired user from

an interferer, e.g. if a strong interfering signal is at the center of the selected

beam and the desired user is away from the center of the selected beam, the

interfering signal can be enhanced far more than the desired signal with poor

quality of service to the intended user [7].

 11

2.4.2 Adaptive Array System

In an adaptive array, signals received by each antenna are weighted and

combined using complex weights (magnitude and phase) in order to maximize

a particular performance criterion e.g. the Signal to Interference plus Noise

Ratio (SINR) or the Signal to Noise Ratio (SNR). Fully adaptive system use

advanced signal processing algorithms to locate and track the desired and

interfering signals to dynamically minimize interference and maximize

intended signal reception [10]. The main difference between a phased array

and an adaptive array system is that the former uses beam steering only, while

the latter uses beam steering and nulling. For a given number of antennas,

adaptive arrays can provide greater range (received signal gain) or require

fewer antennas to achieve a given range [11]. However the receiver complexity

and associated hardware increases the implementation costs.

Through beamforming, a smart antenna algorithm can receive

predominantly from a desired direction (direction of the desired source)

compared to some undesired directions (direction of interfering sources). This

implies that the digital processing has the ability to shape the radiation pattern

for both reception and transmission [12] and to adaptively steer beams in the

direction of the desired signals and put nulls in the direction of the interfering

signals. This enables low co-channel interference and large antenna gain to the

desired signal.

Beamforming systems can be implemented in two ways; fixed

beamforming systems or fully adaptive systems. A fixed beamforming system

has a beamforming network (BFN) followed by RF switches which operate in

the RF/analog domain. The switches are controlled by a control logic which

selects a particular beam. Here the processing required is minimal as the

 12

control logic has to choose one of the predetermined set of weights to select a

beam. In adaptive beamforming, the antenna gains or weights are chosen

adaptively through running array algorithms in the digital domain.

2.5 Advantages of Smart Antennas

Primarily smart antennas were used at base stations in a cellular

network to improve user capacity. Capacity here refers to the number of

subscribers that can be simultaneously serviced in a system. Usage of

omnidirectional antennas causes co-channel interference when two users use

the same band of frequency that eventually limits the user capacity in a system.

Since smart antennas can focus their beams towards desired user reducing

interference to other users using the same frequency band, the user capacity in

a system can be improved using spatial division multiple access (SDMA).

Figure-(2.3) shows this advantage of SDMA compared to the omnidirectional

case, which can reduce co-channel interference using beamforming.

Figure-(2.3) Omnidirectional and smart antennas based cellular system

 13

Other advantages as seen from various types of smart antennas studied

include robustness against multipath fading and co-channel interference which

improves reliability of received signal; reduced power consumption for

handsets; low probability of interception and detection; enhanced location

estimates and enhanced range of reception. Because there are obstacles and

reflectors in the wireless propagation channel, the transmitted signal arrivals at

the receiver from various directions over a multiplicity of paths. Such

a phenomenon is called multipath. It is an unpredictable set of reflections

and/or direct waves each with its own degree of attenuation and delay. Recent

studies on use of smart antennas in mobile terminals have also shown to

improve network capacity in ad-hoc networks.

Smart antenna systems can improve link quality by combating the

effects of multipath propagation or constructively exploiting the different

paths, and increase capacity by mitigating interference and allowing

transmission of different data streams from different antennas. More

specifically, the benefits of smart antennas can be summarized as follows [16].

Some of the advantages of the smart antenna are as follows:

(i) Increased range/coverage

The array or beamforming gain is the average increase in signal power

at the receiver due to a coherent combination of the signals received at all

antenna elements. It is proportional to the number of receive antennas and also

allows for lower battery life.

(ii) Lower power requirements and/or cost reduction

Optimizing transmission toward the wanted user (transmit

beamforming gain) achieves lower power consumption and amplifier costs.

 14

(iii) Improved link quality/reliability

Diversity gain is obtained by receiving independent replicas of the

signal through independently fading signal components. Based on the fact that

it is highly probable that at least one or more of these signal components will

not be in a deep fade, the availability of multiple independent dimensions

reduces the effective fluctuations of the signal.

(iv) Increased spectral efficiency

Precise control of the transmitted and received power and exploitation

of the knowledge of training sequence and/or other properties of the received

signal (e.g., constant envelope, finite alphabet, cyclostationarity) allows for

interference reduction/ mitigation and increased numbers of users sharing the

same available resources (e.g., time, frequency, codes) and/or reuse of these

resources by users served by the same base station/ access point.

2.6 Disadvantages of Smart Antennas

One of the major existing disadvantages of smart antennas is in their

design and implementation in hardware. Multiple RF chains can increase the

cost and make the transceiver bulkier. Most of the baseband processing

requires coherent signals. This means that the entire mixer Local Oscillators

and Analogue to Digital Converter clocks (ADCS) need to be derived from

same sources. This can present significant design challenges. The phase

characteristics of RF components can change over time. These changes are

relatively static and hence need calibration procedures to account for phase

differences.

 15

Most of the devices such as mixers amplifiers and ADCS used are non-

linear devices. Using smart antennas can increase the number of such

components used. This can affect the performance of the array if not checked

periodically. Further more since antenna arrays use more than one source of

signal the data bandwidth required for digital processing increases linearly

with number of antenna elements used. This can limit data rates for different

applications. Note that the technological challenges in terms of hardware and

processing load can be satisfactorily met by resorting to present-day

miniaturized RF components and faster and low power processors.

The accommodation of the antenna array, itself within a small factor

device however remains a challenge. Base stations can easily host antenna

arrays of four or more elements but with existing microstrip or patch antenna

technology, up to three elements can be fitted in a handset form-factor. The

wrapping of the hand around a handheld device may diminish the performance

of a handheld smart antenna system.

2.7 Smart Antenna design in wireless Communication Center (WCC)

Base on the importance of smart antenna system in any wireless

communication system, Wireless Communication Centre (WCC), Universiti

Teknologi Malaysia started working at this project at the beginning of this

year. This centre is targeting to implement two types of smart antenna

systems. The first project is “Downlink switch beam smart antenna” for

WiMax application and second project would be the same system for uplink

transmission.

The smart antenna structure for phase one is similar to Figure-(2.4).

The antenna elements consist of 16 microstrip antenna elements with

 16

rectangular shape. The algorithm are programmed by computer using C and

Code Composer Studio and then loaded in DSP board.

Figure-(2.4) Linear Array Structure

DSP has a main role in smart antenna system. The DSP is used just for

forming and steering the beam using the calculated weights in the SDRAM

base on the user direction. The location of the user can be identified using one

of the directions of arrival algorithm. However, in this research we assume that

the location of user is known to the system.

For this project the microstrip antenna array is used. Basically,

scanning and shaping the beam is highly depend on array elements pattern.

However, any type of antenna such as dipole, monopole, horns, reflectors,

loops, aperture depend on application can be used. Compared with other type

TOthereceiver
From thetrasmitter

Antenna
elements

Circu
its

Int
erf

ac
es

DSP bo
ard

FR
OM C

ONTR
OL

PC

 17

of antenna, microstrip antenna for wireless mobile communication could be the

best option. The reason is due to its low price, ease of design and fair

efficiency rather than other types of antenna.

2.8 Design of downlink smart antenna system in WCC

Technically, there are three possible designs which can be considered for

this project as shown in Figures-(2.5), (2.6) and (2.7). However, we designed

and implement the second structure due to its versatility and performance.

 Figure-(2.5) First design

Figure-(2.6) second design

 18

Figure-(2.7) third design

2.9 Expansion board design

The difference between abovementioned designs is on the extension or

daughter cards. The expansion board design is affected by customer

application. Different application has different requirement and constraints.

For more throughput and data rate the high sample rate DAC must be used.

Technically, the high speed DAC have parallel data inputs, as an example

DAC5687 is parallel input DAC with sampling rate up-to 500MS/s. base on

these facts, the required expansion board for such an application is different.

Therefore some sort of interface matching is needed. The matching can be

achieved using FPGA programming. Other than that, sometimes in order to

decrease the price, one level of up-conversion is performed in digital domain

instead of analog domain. Of course by doing digital up-conversion, the high

speed DAC with high sampling rate must be used. Because, DAC must

transform the IF digital signal to analog and therefore base on Nyquist criteria

sampling frequency increases to double time of higher IF frequency.

 19

Base on these facts, for this project the second option design for the

expansion board is chosen Figure-(2.6). In this design, high sampling data rate

DAC such as DAC5678 could be connected to FPGA board. We will explain

this configuration in detail in FPGA chapter. The next section gives a picture

of the third design.

2.9.1 The third design using programmable DAC

In third design, the daughter card can be designed by using 4 unit of

DAC 8534 from TI as shown in Figure-(2.8).

Figure-(2.8) baseband daughter card

 20

These four D/A are 3-wire standard serial D/A which can be connected

to MCBSP through quadruple bus buffer gate “SN74LVC125A”. It means they

will share the serial channel and they can be synchronized through software

programming. The functional block diagram and pin configuration of

DAC8534 is shown in Figure-(2.9) and (2.10).

Figure-(2.9) functional block diagram of DAC8534

Figure-(2.10) pin configuration of DAC8534

 21

Figure-(2.11) interfacing a DAC8534 with a TMS320C6713B

2.9.1.1 Interfacing a DAC8534 with a TMS320C6713B

As it can be seen each DAC8534 is able to support four channels,

therefore we need to interface 4 unit of DAC8534. Of course we need to

amplify the output signal of TMS before connecting to DAC. Therefore,

quadruple bus buffer gate “SN74LVC125A” is used to drive 4 unit of DAC.

So, the baseband daughter card can be designed as shown in Figure-(2.6). VCC

for SN74LVC125A can be up-to 3.6v. This buffer can accept the signal level

of up-to 5 volt, the output current of this buffer is around 20mA. The pin

configuration of this IC is shown in figure-(2.12).

 22

Figure-(2.12) quadruple bus buffer gate “SN74LVC125A”

The first possible option for expansion board is much simpler than the

other types. For voice application which they need low sampling rate in

compare to data communication the possible design could be Figure-(2.4). In

this case we need to have 16 number of serial single channel DAC which can

directly connect to McASP. The DAC in this case can be DAC8830 shown in

Figure-(2.13) which can support up to 50Mb/s.

Figure-(2.13) typical connection of DAC8830

 23

Another DAC option for this case could be DAC8560 shown in Figure-

(2.14) which can be clocked at 30MHz. The difference between these two is in

control part, DAC8560 can be selected using a chip-select pin, however

DAC8830 is enabled by SYNCH pin, also there is some sort of control in input

serial data.

 Figure-(2.14) typical connection of DAC8560

 24

CHAPTER 3

DIGITAL BEAMFORMING WITH DSP BOARD

3.1 Introduction

The digital beamforming is integration between antenna technology and

digital technology. DBF is based on converting signals into two streams of

binary baseband I and Q signals, which represent the amplitudes and phases of

signals. The beamforming is carried out by weighting these digital signals,

thereby adjusting their amplitudes and phases such that when added together

they form the desired beam. In this chapter the digital beamforming by using

DSP board is briefly explained fundamentally. First, a general overview on

beamforming theory is provided then the DSP board used in this project is

introduced. Finally the algorithm of digital beamforming is explained.

 25

3.2 Beamforming

Beamforming is one type of processing used to form beams to

simultaneously receive a signal radiating from a specific location and attenuate

signals from other locations [17]. Systems designed to receive spatially

propagating signals often encounter the presence of interference signals. If the

desired signal and interference occupy the same frequency band, unless the

signals are uncorrelated, e. g., CDMA signals, the temporal filtering often

cannot be used to separate signal from interference. However, the desired and

interfering signals usually originate from different spatial locations. This spatial

separation can be exploited to separate signal from interference using a spatial

filter at the receiver. Implementing a temporal filter requires processing of data

collected over a temporal aperture. Similarly, implementing a spatial filter

requires processing of data collected over a spatial aperture.

 A beamformer is a processor used in conjunction with an array of

antennas to provide a versatile form of spatial filtering. The antenna array

collects spatial samples of propagating wave fields, which are processed by the

beamformer. Typically a beamformer linearly combines the spatially sampled

time series from each antenna to obtain a scalar output time series in the same

manner that an FIR filter linearly combines temporally sampled data. There are

two types of beamformers, narrowband beamformer, and wideband

beamformer. A narrowband beamformer is shown in Figure-(3.2).

In Figure-(3.1), the output at time M, y (M), is given by a linear

combination of the data at the K sensors at time M:

 26

*() ()

1

K
y M w x M

i i
i

= ∑
=

 (3.16)

Where * denotes complex conjugate [18]. Since we are now using the

complex envelope representation of the received signal, both and ()
i

w x M
i

 are

complex. The weight
i

w is called the complex weight.

*
1

w

*
2

w ∑

()
1

x M

()x M
k

()
2

x M

*w
k

()y M

Figure-(3.1) A narrowband beamformer

In this project, for any directions weights are computed for sixteen

antenna arrays. In consequence, there are 7 16 112× = weights for seven

directions. These weights are complex number, so they can change the phase

and amplitude of the original signal. The weights can be expressed as:

2
[(1) sin]j k d

w e
k

π
θ

λ
− −

= (3.17)

 27

With replacing the , the equation (3.17) is became:

[(1) sin]j k

w e
k

π θ− −
= (3.18)

For example for DOA= 30� , weights can be computed as below:

exp(* * (1 1) *sin(30)) 1
1

w j π= − − =

exp(* *(2 1)*sin(30))
2

w j jπ= − − = −

exp(* *(3 1)*sin(30)) 1
3

w j π= − − = −

�

 exp(* *(16 1)*sin(30))
16

w j jπ= − − = −

The matrix of weights for 30θ =
� :

 (3.19)

3.3 DSP Design (Beamforming and sidelobe cancellation)

Digital signal processor can be considered as the brain of smart antenna

systems. In the other words, the smartness of smart antenna system is

originated from this part. For this project 225 MHz DSP, built on the SDK

1

2

3

4

1 6

1

1

W

W j

W

jW

jW

   
   

−   
   −

=   
   
   
   

−    

��

2
d

λ
=

 28

TMS320C6713B Figure-(3.2) is considered to use. For academicals and

researches purposes usually the SDK module (Starter Development Kit) which

is a unified kit consists of CPU, memories modules with some extension

connector is technically adequate. The dominant advantages of the SDK

version over the EVM (evaluation Module) is that the JTAG emulator is built

onboard therefore the overall system cost decreases. Although SDK DSP

board is designed to ease the academicals researches, it needs to be extended

for the desired specific application.

Figure-(3.2) Functional block and CPU (DSP core) diagram

3.4 DSP system design

Real time DSP system design is very challenging engineering task.

The different group of specialist must work together in order to design the

 29

professional DSP system to apply in the real world application. In wide

category, the implementation process is divided into software and hardware

sections. These two sections as shown in the Figure-(3.3) must progress in

parallel.

Figure-(3.3) simplified DSP system design

 30

The block diagram of software development process of DSP design is

given in Figure-(3.4).

Figure-(3.4) software development process diagram

As it is cleared from the Figure-(3.4), firstly the algorithm is designed

according to beamforming and sidelobe cancellation algorithms. Then the

algorithms are implemented using MATLAB source code, and then these

codes are converted to C language code. In the next step using code composer

studio which is software capable of generating assembly code will do the rest

of process for DSP programming. Then the digital input signal after ADC

come to the system and it save as an input file. The loaded program in DSP

manipulates the incoming digital signal. Finally, the results save in the output

buffer or memory to be ready to send in the next step which is usually digital

to analog transformation.

3.5 DSP speed and real time constraints

 A limitation of DSP systems for real time application is that the

bandwidth of the system is limited by the sampling rate. The processing speed

determines the rate at which the analog signal can be sampled. For example, a

real-time DSP system demands that the signal processing time, tp, must be less

 31

than the sampling period T, in order to complete the processing task before the

new sample comes in. That is,

p
t T<

This real time constraint limits the highest frequency signal can be

processed by a DSP system. This is given

1

2 2

s

M

p

f
f

t
< <

It is clear that the longer the processing the lower the signal bandwidth.

Or in the other word to perform the wideband signal we need the high speed

DSP processor with small amount of processing time for each sample of

incoming data. However, this problem can be solved partially using rate

converter or CIC filter as long as the quality of the processing is acceptable for

that specific application. The DSP processor used for this project is from 6000

series. The specification is given as below:

1. Floating point processor

2. 2000 million instructions per second (MIPS) at 225 MHz

3. One analogue input/output

4. Memory module expansion

5. Host port interface (HPI)

6. Peripheral expansion

7. Embedded USB JTAG controller with plug and play drivers, USB

cable included

8. TI TLV320AIC23 codec

9. 16MB SDRAM

10. 512K bytes of on board Flash ROM

11. On board IEEE 1149.1 JTAG connection

 32

3.6 DSP implementation of smart antenna system

In smart antenna DSP perform just two functions, DOA estimation and

beamforming. However, in this project to simplify the implementation process,

it is assumed that the direction of the user has been identified before. So, we

just need to perform the beamforming process for known direction. By having

this assumption in mind, to steer the beam to pre-calculate user direction, the

multiplication process of baseband signal to complex number is technically

adequate enough. In addition the system is just able to produce one beam

toward one single user. It means that to support multiple users simultaneously,

the system must produce multiple beams which is out of the project scope.

Moreover, to demonstrate the concept of digital beamforming in smart

antenna, it is assumed that the application requires having seven beams at the

seven desired angle shown in Figure-(3.5) each with 20 degree apart.

Figure-(3.5) the predefined antenna beam direction

 By using computer programming, the antenna can steered the beam to these

directions at predefined time interval called T. The radiation pattern of the

system is optimized by conventional Chebyshev window weighting. By doing

so, the side lobes are minimized and also the radiated power toward the desired

-60°

-40°

-20° 0° 20°
40°

60°

 33

user is maximized. It means the total system interference is minimized

therefore the SNR increases.

After this introduction, now it is clear that that the main important task

in baseband processing is just multiplication process of coming signal from

conventional wireless transmitter to complex weights. This process is shown in

Figure-(3.6).

Figure-(3.6) the beamforming flow

3.7 Beamforming matrix

For each direction, there are 2×2×16=64 multiplication operations. This

can be simplified by calculating beamforming matrix before applying in the

program. It means that the multiplication process for phase and amplitude is

manually performed for each direction before programming. Then the results

are stored in the memory called lookup table. It means for the direction of θ we

would have following operation.

 Wkaiser ×COSθ = Wreal ; for 7 directions 7×16 matrix

 34

 Wkaiser × SINθ = Wimag ; for 7 directions 7×16 matrix

If A=[Wreal]7×16 and B=[Wimag]7×16 then beamformer matrix=[A ;B]

14×16 , therefore it can be saved at the onboard SDRAM on the starter kit

(DSK6713) , So the RAM expansion is not needed.

3.8 Sidelobe cancellation by using DSP

The Kaiser window is a window function w
k

 used for digital signal

processing, and is defined by the formula:

Kaiser Window function for N=100 and α= 0.5,1,2,4,8,16

Where I0 is the zeroth order modified Bessel function of the first kind,

α is an arbitrary real number that determines the shape of the window, and the

 35

integer N gives the length of the window (N+ 1 point).By construction, this

function peaks at unity for k = N/2, i.e. at the center of the window, and decays

exponentially towards the window edges.

The larger the value of |α|, the narrower the window becomes; α = 0

corresponds to a rectangular window. Conversely, for larger |α| the width of

the main lobe increases in the Fourier transform of wk, while the side lobes

decrease in amplitude. Thus, this parameter controls the tradeoff between

main-lobe width and side-lobe area, as is illustrated in the plot of the frequency

spectra below. For large α, the shape of the Kaiser window (in both time and

frequency domain) tends to a Gaussian curve. The Kaiser window is nearly

optimal in the sense of its peak's concentration around ω=0 (Oppenheim et al.,

1999).

Frequency spectra of Kaiser Windows for α=2 and α=4.

The sharp minima in the side lobes are places where the amplitude goes

all the way to zero, but does not here because of the finite plotting resolution.

 36

CHAPTER 4

CHANNEL SEPARATION WITH FPGA BOARD

4.1 Introduction

In this chapter the channel separation for smart antenna project is briefly

explained. First, a general overview on FPGA board is provided then channel

separation is shortly discussed.

4.2 Field Programmable Gate Arrays (FPGAs) Overview

A field-programmable gate array (FPGA) is an integrated circuit (IC)

that can be programmed in the field after manufacture. It is containing

programmable logic components called "logic blocks", and programmable

interconnects. Logic blocks can be programmed to perform the function of basic

logic gates such as AND, and XOR, or more complex combinational functions

 37

such as decoders or simple mathematical functions. In most FPGAs, the logic

blocks also include memory elements, which may be simple flip-flops or more

complete blocks of memories. DSP algorithms may also be implemented using

field-programmable gate arrays (FPGAs).

Advantages of FPGAs:

1. A shorter time to market

2. Ability to re-program in the field to fix bugs

3. Lower non-recurring engineering costs.

4.2.1Applications of FPGAs

Applications of FPGAs include digital signal processor DSP, software-

defined radio, aerospace and defense systems, ASIC prototyping, medical

imaging, computer vision, speech recognition, cryptography, bioinformatics,

computer hardware emulation and a growing range of other areas.

4.2.2 FPGAs Architecture

There are three key parts of its structure: logic blocks, interconnect, and

I/O blocks. Figure-(4.1) illustrates a typical FPGA architecture. The I/O blocks

form a ring around the outer edge of the part. Each of these provides

individually selectable input, output, or bi-directional access to one of the

general-purpose I/O pins on the exterior of the FPGA package.

 38

Inside the ring of I/O blocks lies a rectangular array of logic blocks. And

connecting logic blocks to logic blocks and I/O blocks to logic blocks is the

programmable interconnect wiring.

Figure-(4.1) internal structure of an FPGA

The logic blocks within an FPGA can be as small and simple as the

macrocells in a Programmable Logic Devices (PLD) or larger and more

complex (coarse-grained). However, they are never as large as an entire PLD, as

the logic blocks of a Complex Programmable Logic Devices (CPLDs) are.

Remember that the logic blocks of a CPLD contain multiple macrocells. But the

logic blocks in an FPGA are generally nothing more than a couple of logic gates

or a look-up table and a flip-flop.

Because of all the extra flip-flops, the architecture of an FPGA is much

more flexible than that of a CPLD. This makes FPGAs better in register-heavy

and pipelined applications. They are also often used in place of a processor-

plus-software solution, particularly where the processing of input data streams

must be performed at a very fast pace. In addition, FPGAs are usually denser

(more gates in a given area) and cost less than their CPLD cousins, so they are

the de facto choice for larger logic designs.

 39

4.3 Altera Excalibur development board

In this project the Altera Excalibur development board is used. . It

contains an APEX EP20K200E FPGA, 8Mbits (512K x 16) of internal Flash

RAM, two 1Mbit (64K x 16) internal SRAM devices, an RS-232

communication port, a JTAG port, a parallel port, multiple expansion ports, two

LEDs, two 7-Segment displays, and miscellaneous other switches and

components [19]. Figure 4.2 shows a diagram of the Excalibur board.

Figure-(4.2) the Excalibur Development Board

Contained within the APEX EP20K200E device is a Nios embedded

processor. This soft core processor contains a 16 bit instruction set and is

 40

capable of operating with a 16 or 32 bit data bus. It can perform 50 million

instructions per second with one instruction per clock cycle. With a Nios

processor added to the EP20K200E device (as well as a Fast Fourier Transform

block), there are still 150K spare gates of the 200K total gates available for use

[19].The structure of the Nios processor resembles Figure 4.3:

Figure-(4.3) the Nios Embedded Processor

The memory on the Excalibur board is set up as follows. The two

internal SRAM devices can be used with 16 or 32 bit applications, but if the

Nios processor is operating at 16 bits, only one of the two SRAM devices can

be used. A 144 pin SODIMM memory expansion socket is also provided on the

board if needed. Both the Nios processor and the APEX device share the flash

memory [19].

 41

The flash memory is organized as follows:

 Flash Address Size Comments

0x1C0000 – 0x1FFFFF 256 Kbytes Factory-default APEX

 Configuration

0x180000 – 0x1BFFFF 256 Kbytes User-defined

APEX Configuration data

0x100000 – 0x17FFFF 512 Kbytes Nios instruction and

 Nonvolatile data

 Space

Table 4.1 – Flash Memory Configuration of FPGA

A factory programmed controller chip is contained on the board, a

MAX7064 device that loads data from the flash and clocks it into the APEX

device. It is possible to use user defined configurations by shorting J2 (normally

open), and also to reprogram the device, but it is not recommended as it can

result in an unusable board. The beginning address for the factory default is

0x1C0000, and for user defined configurations, the starting address is 0x180000

[19].

For expansion purposes, the Excalibur board provides 5 volt and 3.3 volt

daughter cards. For 5 volt cards, a 40 pin connector (JP11), a 20 pin connector

(JP13), and a 14 pin connector (JP12) are provided. The same applies to 3.3 volt

cards, using JP8, JP10, and JP9, respectively [19].In this project the JP8 is used

for transferring data from the DSP to FPGA board. Also, JP10 is used for clock

and frame synchronization signals from DSP to FPGA.

 42

There are three devices available for programming on the Excalibur

board: the APEX device, the configuration controller, and the PMC (devices for

JNC1 and JNC2). The ability to program each is determined by SW8, SW9, and

SW10, respectively. If a switch is positioned to the left (marked connect on the

board), then the corresponding device is added to the JTAG chain; each switch

positioned to bypass will remove the device from the chain [19].

There are seven remaining switches on the board. SW1 is an eight pin

user defined DIP switch. SW2 is a special button for resetting the board. Upon a

reset, the configuration controller reloads the flash memory into the APEX

device. SW3 is the clear function, which is defined by the configuration

controller (a CPU reset by factory default). SW4-SW7 is user defined and may

perform any function necessary. When pressed, the signals provided are logic

zero [19].

There are two clocks for use on the Excalibur board. The first one is a

33.3333MHz signal provided by an onboard oscillator. The second one utilizes

the phase locked loop circuitry on the board so the user can create their own

clock [19]. In this research, the external clock which is come from DSP board is

used.

4.4 FPGA programming

In this project, the Quartus II software is used for programming the

FPGA. This program is written by verilog. After programming the pins of

FPGA must be assigned for transferring data to the next part. Figure-(4.4)

shows the pins assignment of FPGA.

 43

Figure-(4.4) Pin assignment of FPGA

 44

CHAPTER 5

INTERGRATION OF DIGITAL SIGNAL PROCESSOR AND FPGA

BOARD

5.1 Introduction

One of the limitations of DSP board is the number of high data rate

output port. This board only has two high data rate ports called Multi channel

Buffer Serial Port (McBSP). Because of this limitation, the expansion board is

needed. In this project, FPGA board is used as an expansion board.

5.2 System design

Figure-(5.1) shows the design for the expansion board is chosen for this

project. In this design, high sampling data rate DAC such as DAC5678 can be

connected to FPGA for digital to analog conversion.

 45

Figure-(5.1) Smart antenna system model

5.3 Integration of DSP and FPGA

For connecting the DSP to FPGA, the TMS320C6713 DSK supports

three expansion connectors that follow the Texas Instruments interconnection

guidelines. The expansion connector used in this project is called Peripheral

Expansion Connector (Figure-5.2). It is an 80 pin 0.050 x 0.050 inches

connector. This connector provides both +12V and -12V to the daughter card

[20].

 46

Figure-(5.2) Integration of DSP and FPGA

DSP
Board

FPGA
Board

 47

In this research, firstly for transferring data to device peripherals,

EDMA and MCBSP must be programmed. The enhanced DMA (EDMA)

controller of the TMS320C6713B device is a highly efficient data transfer

engine, capable of maintaining up to 1200 Mbytes per second (MB/s) of data

throughput during operation. The EDMA handles all data movement between

the level-two memory and the device peripherals (in this project is FPGA),

including cache-servicing, non-cacheable memory accesses, user-programmed

data transfers, and host accesses (Figure-5.3).

Another part used for transferring data to the FPGA is McBSP ((Figure-

5.3). This part provides the following functions:

 48

• Full-duplex communication

• Double-buffered data registers

• Independent framing and clocking for receive and transmit

• External shift clock or an internal

Figure-(5.3) Transferring from DSP and FPGA

5.4 Summary

In this chapter, the integration of DSP and FPGA is explained. For

providing this connection, the EDMA and McBSP must be programmed. And

these programming is done by using the code composer studio software.

 49

CHAPTER 6

IF AND RF FRONT-END DESIGN FOR SMART ANTENNA

6.1 Introduction

In all above three designs which are discussed in chapter two, we need

to have our own design for the IF and RF part because there is no on-the-shelf

device RF chain for smart antenna. Although some companies have fabricated

IF and RF part, it is very costly and in addition there is no 16 channel IF and

RF part! A 16-channel IF and RF chain can be designed as shown in Figure-

(6.1).

 50

D
S
P
&
F
P
G
A
b
o
a
rd

&
D
A
C

Figure-(6.1) IF and RF front end design

This RF-front-end can transform the baseband data to 5.8GHz RF

signal. This design is integration of TI and Micro linear devices companies.

The single channel IF part comes from TI and the single channel RF part is

designed by Micro linear company.

6.2 Baseband glue circuit

The design is started from multi-channel baseband data which come to

the glue circuit in the first step. The data then transform to balanced type using

this circuit shown in Figure-(6.2). By using differential signal the noise effect

in the IF part can be highly mitigated. This circuit is necessary since the IF

transformation is done by TRF3702 is balanced input device.

 51

Figure-(6.2) connecting the single ended signal to balanced input of

TRF3702

The glue circuit for the second expansion board shown in Figure-(2.10)

can be similar to Figure-(6.3) because in this case we do not need to design

Balun circuit. Therefore, the Glue circuit as shown in dash-line in Figure-(6.3)

could be very simple.

 52

Figure-(6.3) glue circuit connecting the DAC5687 to TRF3702

6.3 Quadrature-modulator

TRF3702 is an IF to RF up-converter, the pin arrangement shown in

Figure-(6.4) this IC can up-convert the baseband or IF signal to 2.4GHz

signals.

 53

Figure-(6.4) TRF3702 pin arrangement

The functional block diagram of the TRF3702 is shown in Figure-(6.5). This

component is able to work with I and Q signals. However, in our project the

signal is just real signal therefore the Q signal must be grounded.

Figure-(6.5) TRF3702 functional block diagram

 54

Figure-(6.6) Generating the LO signal for TRF3702 using TRF3750

6.4 local oscillators for 2.4GHz signal

If the modulator need to works with multi carrier system, the TRF3750

shown in Figure 4.6, can be used as a frequency synthesizer. This PLL can

generate different frequency components for the system. However, in our

system the single RF frequency at is needed. Therefore, we can use a VCO to

generate 2.4 RF sin frequencies. The VCO is considered for this project is

“MAX2750” from MAXIM Company.

Figures 6.7 and 6.8 are shown the typical layout and pin configurations of for

MAX2750. The MAX2750/MAX2751/MAX2752 VCOs are implemented as

an LC oscillator topology, integrating all of the tank components on-chip. This

fully monolithic approach provides an extremely easy-to-use VCO, equivalent

 55

to a VCO module. The frequency is controlled by a voltage applied to the

TUNE pin, which is internally connected to a varactor.

Figure-(6.7) the typical layout for” MAX2750”

The VCO core uses a differential topology to provide a stable frequency versus

supply voltage and improve the immunity to load variations. In addition, there

is a buffer amplifier following the oscillator core to provide added isolation

from load variations and to boost the output power.

Figure-(6.8) the pin configuration for” MAX2750”

 56

6.5 Wilkinson power divider

A 2.4GHz and 10.368 MHz Wilkinson power divider also need to be

designed to equally divide the LO and reference frequency of IF and RF part to

their counterparts.

6.6 Balun Circuits

Since, the output of TRF3702 is single ended, the either Balun circuit

of in Figure 3.13 by using AD8352 or a Balun chip shown in Figure 6.9 circuit

can be used. The Balun prior to ML5824 circuit is needed since the input of

ML5824 is differential input.

Figure 6.9 Balun circuit before ICML5824, CAC=0.1µf RG=120KΩ

This Balun figure 6.10 circuit functions at 2GHZ, the better choice could be

2450BL15B200 from Ceramic solution which is simple solution for this

purpose at the frequency of 2.4. The pin configuration can be seen in figure

below.

 57

Figure 6.10 Balun circuit configurations at 2.4 GHz

6.7 Temperature compensated crystal oscillator (TCXO)

The Temperature compensated crystal oscillator (TCXO 514) from

Oscillant Company can be used in RF part as a reference frequency. The value

of reference RF reference frequency value is 10.368MHz.

Figure-(6.11) low profile TCXO-514 frequency range 1.2 to 100MHz

 58

The oscillator for the RF part is a built in oscillator which is built on

ML 5824. However, for the IF part the oscillator is voltage controlled

oscillator (VCO).

Figure-(6.12) ML5824 top-views

6.8 linear RF and IF amplifier

The Wilkinson power divider divide the power in 16 branch, therefore

power amplification is necessary prior to LO in TRF3702. Either of amplifiers

in figure 6.13 and 6.14 can be used for this project for the 2.4GHz. However,

for the second power Wilkinson AD8353 should be used.

 59

Figure-(6.13) HMC315 linear amplifier frequency range up-to 7 GHZ (C

block=0.1micro, Rbias=5k)

Figure-(6.14) AD8353 amplifier (frequency range 1 MHZ up-to 2700

GHZ)

6.9 Second up-converter

The Ml5824 is a cost effective solution to up-convert 2.4 signals to 5.8

RF signals, in this project to simplify the RF design we used, this IC following

by ML5803 a power amplifier. The functional block diagram of ML5824 is

shown in figure 6.15.

 60

Figure-(6.15) Ml5824 functional block diagram

 61

Figure-(6.16) ML5824 glue circuits

 62

CHAPTER 7

ANTENNA ARRAY DESIGN AND FABRICATION

7.1 Introduction

An antenna array consists of a set of antenna elements that are spatially

distributed at known locations with reference to a common fixed point [21]. By

changing the phase and amplitude of the exciting currents in each of the antenna

elements, it is possible to electronically scan the main beam and/or place nulls

in any direction.

The antenna elements can be arranged in various geometries, with linear,

circular and planar arrays being very common. In the case of a linear array, the

centers of the elements of the array are aligned along a straight line. If the

spacing between the array elements is equal, it is called a uniformly spaced

linear array. A circular array is one in which the centers of the array elements lie

on a circle. In the case of a planar array, the centers of the array elements lie on

 63

a single plane. Both the linear array and circular array are special cases of the

planar array. Arrays whose element locations conform to a given non-planar

surface are called conformal arrays.

The radiation pattern of an array is determined by the radiation pattern

of the individual elements, their orientation and relative positions in space, and

the amplitude and phase of the feeding currents. If each element of the array is

an isotropic point source, then the radiation pattern of the array will depend

solely on the geometry and feeding current of the array, and the radiation

pattern so obtained is called the array factor. If each of the elements of the array

is similar but non-isotropic, by the principle of pattern multiplication, the

radiation pattern can be computed as a product of the array factor and the

individual element pattern [22].

7.2 Uniformly Spaced Linear Array

Consider a K-element uniformly spaced linear array which is illustrated

in Figure-(7.1). In Figure-(7.1), the array elements are equally spaced by a

distance d, and a plane wave arrives at the array from a direction θ of the array

broadside. The angle θ is called the direction-of-arrival (DOA) or angle-of-

arrival (AOA) of the received signal, and is measured clockwise from the

broadside of the array [23]. The received signal at the first element may be

expressed as:

 1() ()cosy t m t wt= (7.1)

 1() () cos(2)y t m t f t
c

π= (7.2)

 64

Figure-(7.1) linear array antenna

Where the carrier frequency of the modulated signal is
c

f and ()m t is the

amplitude of the signal. The complex envelope of 1()y t is given by:

 1() ()
jwt

y t m t e= (7.3)

And the received signal of the second element may be expressed as

 2 () ()cos ()y t m t w tτ τ= − − (7.4)

If the carrier frequency
c

f is large compared to the bandwidth of the

signal (tτ �), then the modulating signal in above equation reduces to:

 2 () ()cos ()y t m t w t τ= − (7.5)

 65

The complex envelope of 2()y t is therefore given by

2

2

() ()
() () ()

(2 2)
() ()

jw t j wt w
y t m t e m t e

j f t f
c cy t m t e

τ τ

π π τ

− −
= =

−
=

 2

2 2
() ()

j f t j f
c cy t m t e e

π π τ−
= (7.6)

Comparing (7.6) with (7.3):

 2 1

2
() ()

j f
cy t y t e

π τ−
= (7.7)

We have used the relation between c and
c

f , that is,
c

f
c λ

=

 2 1

2

() ()

c
j

y t y t e

π
τ

λ
−

= (7.8)

The signal arrives at second element after sind θ compare to first

element so, the time delay is given by

sind

c

θ
τ = (7.9)

The received signal, at the second element is written as equation (7.10)

 66

 2 1

2 sin
()

() ()

c d
j

cy t y t e

π θ

λ
−

=

 2 1

2
(sin)

() ()
j d

y t y t e

π
θ

λ
−

= (7.10)

Similarly, for element i , the complex envelope of the received signal

may be expressed as

2
((1) sin)

() ()
1

j i d
y t y t e
i

π
θ

λ
− −

= 1,..., .i k= (7.11)

Adding all the element outputs together gives what is commonly

referred to as array factor F :

2 2
sin (1) sin

() ...
1 2

1

j d j k dk
F y y e y e

k
k

π π
θ θ

λ λθ

− − −

= + + = ∑
=

 (7.12)

The equation (7.12) can be expressed in terms of vector inner product:

 () () ()F y t vθ θ= (7.13)

Where

 () 1 RM
H z z

C
−

= − (7.14)

 67

1

2
sin

()

2
(1) sin

j d
e

v

j k d
e

π
θ

λ

θ

π
θ

λ

 
 
 −
 
 =
 
 
 − −
 
 

�

 (7.15)

The vector ()F θ is often referred to as the array input data vector, and

()v θ is called the steering vector. In the equation (7.15), the signal is assumed to

be narrowband.

7.3 Antenna array design and fabrication for smart antenna project

The required linear array antenna firstly designed by Microwave

software. However, the software were not able to calculate return loss for 16

linear patches properly although it is able to calculate the radiation pattern

correctly. Therefore, the CST software with higher reliability is used for array

designs.

Figure-(7.2) front-view of linear antenna array (CST)

 68

Figure-(7.3) back-view of linear antenna array (CST)

Figure-(7.4) the radiation pattern in direction of o degree

 69

Figure-(7.5) the 3D radiation pattern in direction of o degree

Figure-(7.6) the simulation results for return loss

 70

Figure-(7.7) fabricated linear antenna array

The experimental results for return loss for each patch are around 21dB

which is not exactly the same as simulation results. However, it can work well

in real situation.

 71

CHAPTER 8

SIMULATION RESULTS

8.1 Introduction

In this chapter the simulation results of the project are presented. The

results can be classified to the parts as follow: (8.2) result of digital

beamforming by using DSP, (8.3) sidelobe cancellation, (8.4) comparisons

between the simulation software results and hardware implementation results,

(8.5) Channel separation and synchronization by using FPGA, (8.6) the

integration of DSP and FPGA board, (8.7) the simulation results of antenna

array, (8.8) the conclusion is specifically given for each above part separately.

Finally at the end of this chapter discussion and future work are presented.

 72

8.2 Result of digital beamforming by using DSP

The digital beamforming specification can be summarized in table-(8.1).

The following result in Figure-(8.1) has been achieved.

Figure 8.1 the DSP and MATLAB arrangement by PC

Table-(8.1) simulation parameters for beamforming

DSP board TMS320C6713B

Azimuth angle 30 degree

channel 16

Sidelobe cancellation technique Chebyshev algorithms

Antenna array Uniform linear

 73

Figure-(8.2) Digital beamforming with DSP board

The model for this simulation is available in chapter three. The

simulation can be done for each direction. Figure-(8.1) is the output of the

beamforming model. The corresponding source code for these is available in

Appendix D. As it can be seen from the graph, channels in the middle and in the

corner have maximum and minimum amplitude respectively. As an example,

the channels number 8 and 9 have maximum amplitudes and channels number 1

and 16 have minimum amplitude. This fact refers to chebyshev algorithm. Also,

if you have a look to each wave, you can differentiate the phase difference

between them which justify the beamforming process.

8.3 The simulation software results and hardware implementation results

One of the main facilities of DSP board is called Hardware-In-Loop

used for comparison between hardware and software results. By using this

property of DSP, the correctness of the results can be verified.

 74

(a) MATLAB Result

 (b) DSP Result

Figure-(8.3) Comparisons between the software simulation results (a) and

hardware implementation results (b)

In this section, the simulation results of digital beamforming algorithm

by using MATAB software and the DSP implementation result are compared.

Figure-(8.2) indicates that the hardware and software results are the same in

 75

terms of amplitude and phases for each channel. So, digital beamforming in

DSP board is implemented successfully.

8.4 Antenna array radiation and sidelobe cancellation results

 The simulation results below show the antenna array radiation

pattern with and without weighting techniques. For beam steering of smart

antenna prototype, following simulation results for 16-elements array has been

achieved. The beamforming has been performed using signal processing

technique. It means that, the required phase delay for each patch for the

particular direction has been calculated, and then the signal with different

phase feeds to each antenna elements. Fortunately, the results have been

accomplished as it has been expected.

Figure 8.4a 16-elemets zero phase, without weighting

 76

Figure 8.4b 16-elemets zero phase, Kaiser weighting α=3

Figure 8.4b and 8.4a show the antenna pattern with and without sidelobe

cancellation respectively. Using Kaiser Technique we can reduce the sidelobe

to the desire level. The beamwidth of 16 elements microstrip patch is around 6

degree. Therefore the requirement for 10 degree resolution for the smart

antenna project is met. Base on this information we can apply this array to the

linear array smart antenna project. Although we need more interfaces and

higher DSP processor, there is no alternative unless we go to lower degree of

resolution for the system.

 77

Figure 8.5a 16-elemets -30 phase, without weighting

Figure 8.5b 16-elemets -30 phase, Kaiser weighting

α=4

 78

Figure 8.5c 16-elemets, Kaiser weighting for α=8 theta=-30

Figure 8.5d 16-elemets, -30 phase, Kaiser weighting α=16

 79

Figure 8.5 shows the results of beamforming for -30 degree azimuth

angle. As you can see from this graph the sidelobe can decrease to any desire

level at the expense of having wider beamwidth. The weights are calculated

using Kaiser formula. As an example base on Kaiser Equation weights for α=8

and α=16 can be calculated as below:

Kaiser weighting for α=8:

W= [14.2604 19.8265 23.6283 26.3342 28.2179 29.4163 30.0000

30.000 29.4163 28.2179 26.3342 23.6283 19.8265 14.2604 3.7623]

Kaiser weighting for α=16:

W= [3.762 14.2604 19.8265 23.6283 26.3342 28.2179 29.4163 30.0000

30.000 29.4163 28.2179 26.3342 23.6283 19.8265 14.2604 3.7623]

8.5 Channel separation and synchronization by using FPGA

In Figure-(8.6), DATA in, clock and FS signals come from DSP to

FPGA for splitting data to the channels. After sixteen clocks one sample which

has sixteen bits is transferred to FPGA. The VHDL code for this simulation is

available in the appendix.

 80

Figure-(8.6) Channel separation and synchronization with FPGA

8.6 Integration of DSP and FPGA board

Figure-(8.7) shows the connection between DSP and FPGA. CPU of

DSP processes the data and save them to the SDRAM. Then these data are

transferred to the FPGA as it is shown in Figure-(8.4) (blue wire) to split to the

sixteen channels. Also clock and FS (Frame Synchronization) go to the FPGA

 81

with green and white wires respectively. In addition, four LEDS are used as an

indicator. The C source code for the digital beamforming is available in the

appendix at end of the report.

Figure-(8.7) Connection between DSP and FPGA

 82

8.7 Summary and conclusion

In this research, the single-beam switch-beam smart antenna in the

baseband frequency is implemented. The popular, up-to-date hardware

technology which is integrated DSP and FPGA for this purpose is used. More

precisely, the system uses integration of a TMS320C6713B and an Apex-

20k200E board for baseband processing. In this respect, baseband processing

parts including sidelobe cancellation and digital beamforming is simulated using

computer modeling. After modeling, the algorithm is implemented in DSP

board. The simulation results and hardware signal measurement prove that

digital beamforming and sidelobe cancellation can be done by using DSP board.

Regardless of DSP efficiency, it has only two high data rate serial ports.

Because of this, the FPGA is used to split the channels into sixteen antenna

array elements. For splitting channels into sixteen antenna array elements,

channel separation and synchronization is successfully implemented by

programming the FPGA. By connecting this system to a multi-channel RF

chain, narrower beams are formed towards the desired user and nulls towards

interfering users.

8.8 Future works

One part of this project is about the implementation of digital

beamforming and sidelobe cancellation for single user on the downlink

transmission. The future work can be defined as the digital beamforming on the

uplink transmission and Multiple-beam digital beamforming for smart antenna

system. In hardware implementation part for baseband processing, the FPGA

 83

board can be used instead of DSP for beamforming to decrease the cost and

complexity of the system. In addition, the IF and RF implementation are very

challenging and essential to research. Antenna array part is another area in smart

antenna system which should be taken into the account. In overall, there are lots

of open fields in smart antenna systems which are attractive to research.

 84

References

[1] N. Herscovici and chr.Christodoulou “smart antennas.” lEEE Antennas and

Propagation Magazine, Vol. 42, No. 3, June 2000.

[2] N. Herscovici and chr.Christodoulou “Smart-Antenna Systems for Mobile

Communication Networks Part I: Overview and Antenna Design.” IEEE

Antenna’s and Propagation Magazine, Vol. 44, No. 3, June 2002.

[3] Ramesh Chembil Palat, Dr. Raqibul Mostafa, Dr. Jeffrey H. Reed,”Smart

Antennas: A System Level Overview for Software Defined Radios for

Creating an API”, SDRF-04-I -0057-V0.00 2004.

[4] K. Raith and J. Uddenfeldt, “Capacity of digital cellular TDMA systems,”

IEEE Trans. Veh. Technolog,,vol. 40, pp. 323-332, 1991.

[5] K. S. Gilhousen, I. M. Jacobs, R. Padovani, A. J. Viterbi, L. A. Weaver, Jr.,

and C. E. Wheatley 111, “On the capacity of cellular CDMA system,”

IEEE Trans. Veh. Technol., vol. 40, pp. 303-312, 1991

[6] S. Sivanand, “On adaptive arrays in mobile communication,” in Proc. IEEE

Nut. Telesystems ConJ, Atlanta, GA, 1993, pp. 55-58.

[7] R. Janaswamy, Radiowave Propagation and Smart Antennas for Wireless

Communications. Kluwer Academic Publishers, 2001.

[8] J. L. Butler, “Digital, matrix and intermediate frequency scanning,” in

Microwave Scanning Antennas, R. C. Hansen, Ed. Academic Press, 1966,

vol. 3, ch. 3.

[9] B. Pattan, Robust Modulations Methods and Smart Antennas in Wireless

Communications. Prentice Hall PTR, 2000.

[10] I. Stevanovic, A. Skrivervik, and J. R. Mosig, “Smart antenna systems for

mobile communications,” Ecole Polytechnique Federale De Lausanne,

Tech. Rep., Jan. 2003.

[11] J. H.Winters and M. J. Gans, “The range increase of adaptive versus

phased arrays in mobile radio systems,” IEEE Transactions on Vehicular

Technology, vol. 48, no. 2, pp. 353–362, Mar. 1999.

[12] Raqibul Mostafa, “Feasibility of Smart Antennas for Small Wireless

Terminals”, dissertation submitted to Virginia Tech, April 2003.

 85

[13] Sheikh, K.; Gesbert, D.; Gore, D.; Paulraj, A, “Smart antennas for

broadband wireless access networks,” IEEE Communications Magazine,

Volume: 37 , Issue: 11 , Nov. 1999, Pages:100 – 105.

[14] Kaizhi Huang; Jing Wang; Guoan Chen; Youzheng Wang “Smart antenna

and spatial diversity-combining,” 55
th

Vehicular Technology Conference,

2002. Volume: 1 , 6-9 May 2002 Pages:340 – 344.

[15] Shafi, M.; Gesbert, D.; Da-shan Shiu; Smith, P.J.; Tranter, W.H. “Guest

editorial MIMO systems and applications. II,” Selected Areas in

Communications, IEEE Journal on , Volume: 21 , Issue: 5 , June 2003

Pages:681 – 683.

[16] A. Paulraj, R. Nabar, and D. Gore, “Introduction to Space-Time Wireless

Communications”, Cambridge Univ. Press, 2003.

[17] G. J. Foschini, G. D. Golden, P. W. Wolnianshy and R. A. Valenzuela, “

Simplified processing for high spectral efficiency wireless communication

employing multi-element arrays,” IEEE Journal of Selected Areas in

Communications, vol. 17, no. 11, pp. 1841-1852, Nov. 1999.

[18] LAL C. Godara., “Application of Antenna Arrays to Mobile

Communications, Part II: Beam-Forming and Direction-of-Arrival

Considerations,” Selected Areas in Communications, IEEE Trans. vol. 85, No.

8, August 1997.

[19] Altera Corporation. Nios Embedded Processor Development Board Data

Sheet v1.1. March 2001.

[20] Spectrum Digital. Inc. “TMS320C6713 DSK Reference Technical” May

2003

[21] S. U. Pillai “Array Signal Processing.” Springer-Verlag, New York,

1989.

[22] W. L. Stutzman and G. A. Thiele, “Antenna Theory and Design.” John

Wiley & Sons, New York, 1981.

[23] Darren S. Goshi, Yuanxun Wang, and Tatsuo Itoh, “Simulation of

Adaptive Array Algorithms for CDMA Systems,” IEEE Transactions on

microwave theory and techniques, vol. 52, No. 12, December 2004.

 86

Appendix A

Digital beamforming C source code:

(i) Main.C

1

/**/

/* baseband switch beam smart antenna */

/* date: 20.05.08 */

/* written by: Reza Abdolee and Vida Vakilian*/

5 /* wireless communication centre */

/* University Technology of Malasia */

/**/

/* FILENAME: main.c */

/* DESCRIPTION: This program performs single-beam digital */

10 /* beamforming for any user location in azimuth angle, with

*/

/* desired resolution.In addition, the program performs */

/* sidelobe cancellation as much as 30dB to optimize */

/* antenna radiation pattern. The program uses ISR and */

/* McBSP1 to transmit user data countinuesly. */

15 /* All right are reserved. */

/**/

/* Header file */

#include <stdio.h>

20 #include <math.h>

#include "BeamFormcfg.h"

#include "csl.h"

#include "mat.h"

#include "csl_irq.h"

25 #include "csl_mcbsp.h"

#include "csl_timer.h"

#include "dsk6713.h"

#include "dsk6713_led.h"

#include "dsk6713_dip.h"

30

/*Declarations*/

#define Num_Antenna ((int)16)

35 #define Num_Sample ((int)256)

/*Global variables*/

Uint16 CH[Num_Antenna][Num_Sample];

void McBSP1Xmt(void);

40

/**

*****\

* Function: main()

* Description: Enables McBSP1 transmit interrupt

**

*****/

45 void main()

 87

{

/* Call BSL init */

DSK6713_init();

DSK6713_rset(DSK6713_MISC, 0x03);

50 DSK6713_LED_init();

DSK6713_DIP_init();

init();

55 EDMA_clearChannel(hEdmaCha14);

EDMA_enableChannel(hEdmaCha14);

EDMA_intDisable(14);

EDMA_intClear(14);

EDMA_intEnable(14);

60

MCBSP_start(hMcbsp1, MCBSP_XMIT_START | MCBSP_SRGR_START|

MCBSP_SRGR_FRAMESYNC,

IRQ_enable(IRQ_EVT_XINT1);

}

65

/**

*******\

* Function: McBSP1Xmt()

* Description: McBSP1 Transmit Interrupt Service Routine.

* Write all channel user data out to the FPGA board.

70

**

*******/

void McBSP1Xmt(void)

{

75

/* Wait until a value is received then write it */

while (!MCBSP_xrdy(hMcbsp1));

{

80

DSK6713_LED_toggle(1);

DSK6713_waitusec(200000);

}

85

}

/**

*******\

* End of main.c

90

**

*******/

 88

(ii) Beamformcfg.C

1 /* Do *not* directly modify this file. It was */

/* generated by the Configuration Tool; any */

/* changes risk being overwritten. */

5 /* INPUT BeamForm.cdb */

/* Include Header File */

#include "BeamFormcfg.h"

10

#ifdef __cplusplus

#pragma CODE_SECTION(".text:CSL_cfgInit")

#else

#pragma CODE_SECTION(CSL_cfgInit,".text:CSL_cfgInit")

15 #endif

#ifdef __cplusplus

#pragma FUNC_EXT_CALLED()

20 #else

#pragma FUNC_EXT_CALLED(CSL_cfgInit)

#endif

extern far Uint16 CH[];

25

/* Config Structures */

EDMA_Config edmaCfg14 = {

0x2B000001, /* Option */

(Uint32) CH, /* Source Address - Extern Decl.Obj */

30 0x00010010, /* Transfer Counter - Numeric */

0x00000000, /* Destination Address - Numeric */

0x00200002, /* Index register - Numeric */

0x00000000 /* Element Count Reload and Link Address */

};

35

MCBSP_Config mcbspCfg1 = {

0x00200080, /* Serial Port Control Reg. (SPCR) */

0x00000000, /* Receiver Control Reg. (RCR) */

0x00400F40, /* Transmitter Control Reg. (XCR) */

40 0x30FF0002, /* Sample-Rate Generator Reg. (SRGR) */

0x00000000, /* Multichannel Control Reg. (MCR) */

0x00000000, /* Receiver Channel Enable(RCER) */

0x00000000, /* Transmitter Channel Enable(XCER) */

0x00000A00 /* Pin Control Reg. (PCR) */

45 };

/* Handles */

EDMA_Handle hEdmaCha14;

MCBSP_Handle hMcbsp1;

50

/*

* ======== CSL_cfgInit() ========

*/

void CSL_cfgInit()

55 {

 89

hEdmaCha14 = EDMA_open(EDMA_CHA_XEVT1, EDMA_OPEN_RESET);

hMcbsp1 = MCBSP_open(MCBSP_DEV1, MCBSP_OPEN_RESET);

edmaCfg14.dst = EDMA_DST_RMK(hMcbsp1->dxrAddr);

EDMA_config(hEdmaCha14, &edmaCfg14);

60 E

0x00000000, /* Transmitter Channel Enable(XCER) */

0x00000A00 /* Pin Control Reg. (PCR) */

};

65 /* Handles */

EDMA_Handle hEdmaCha14;

MCBSP_Handle hMcbsp1;

50

/*

* ======== CSL_cfgInit() ========

*/

void CSL_cfgInit()

55 {

hEdmaCha14 = EDMA_open(EDMA_CHA_XEVT1, EDMA_OPEN_RESET);

hMcbsp1 = MCBSP_open(MCBSP_DEV1, MCBSP_OPEN_RESET);

edmaCfg14.dst = EDMA_DST_RMK(hMcbsp1->dxrAddr);

EDMA_config(hEdmaCha14, &edmaCfg14);

60 EDMA_enableChannel(hEdmaCha14);

MCBSP_config(hMcbsp1, &mcbspCfg1);

}

 90

(iii) temp.C

1 #include <stdio.h>

#include <stdlib.h>

#include <math.h>

#include "mat.h"

5 #include "dsk6713_led.h"

#include "dsk6713_dip.h"

/*#include <log.h>, it is used when the standard IO for print

and scanf is not used

/*#include "BeamFormcfg.h", this header file is needed since

the log is adjusted in

10

#define Num_Antenna ((int)16)

/**

***********/

15

void init()

{

20 /* The led indicated that the subroutin executed*/

DSK6713_LED_on(0);

puts("Enter the user location base on azimuth angle in degree

:");

scanf("%d", &user_doa);

25

/*Verifying the user location*/

printf("The entered user location in angle is : %d\n",

user_doa);

/* base on radian*/

30 doa_rad=(PI*user_doa)/180;

/*calculating the array factor both real and imaginary part*/

35 for (c = 0;c < Num_Antenna; c++)

{

w_rl[c]=cos((c-1)*PI*sin(doa_rad));

w_img[c]=-sin((c-1)*PI*sin(doa_rad));

40 }

/* generating the user data, assume that is a sinosoidal data

streem*/

/*alike data=sin(2*pi*f*n/fs)=cos(2*pi*n/fs-

pi/2)=real(exp(j(2*pi*f*n/fs-pi/

45

for (b=0;b<Num_Sample;b++)

{

data_rl[b]=sin(2*PI*f*b/fs);

50 data_img[b]=-cos(2*PI*f*b/fs);

}

/*sidelobe cancellation and digital beamforming */

55 for (k=0;k<Num_Antenna;k++)

{for (n = 0;n< Num_Sample;n++)

 91

60 CH[k][n]=(Uint16)((cheb_coeff[k]*(w_rl[k]*data_rl[n]-

w_img[k]*data_img[n])

/* CH[k][n]= (Uint16) ((sample+1)* data_max);*/

}

65

}

95 /********************End of

temp************************************/

 92

Appendix B

 Channel separation using VHDL code:

Date: May 23, 2008 ch_sep.vhd Project: ch_sep
Page 1 of 4 Revision: ch_sep
1 --

2 -- Channel Separtion Module

3 -- By Reza Abdolee & Vida Vakilian, 04/2008

4

5

6 ---

7

8 library ieee ;

9 use ieee.std_logic_1164.all;

10 use ieee.std_logic_arith.all;

11 use ieee.std_logic_unsigned.all;

12

13 ---

14

15 entity ch_sep is

16 port(datain: in std_logic;

17 clock: in std_logic;

18 FS: in std_logic;

19 CH1,CH2,CH3,CH4,CH5,CH6,CH7,CH8,CH9: out std_logic;

20 CH10,CH11,CH12,CH13,CH14,CH15,CH16 : out std_logic;

21 led_CH_TEST,led_clock,led_datain,led_FS : out std_logic;

22 count_in_value: out std_logic_vector(

8 downto 0)

23

24);

25 end ch_sep;

26

27 ---

28

29 architecture behv of ch_sep is

30

31 -- initialize the declared signal

32 signal S: std_logic_vector(255 downto 0);

33 signal shift_in: std_logic;

34 signal count_in: std_logic_vector(8 downto 0);

35 signal count_out: std_logic_vector(7 downto 0);

36 signal Q1,Q2,Q3,Q4,Q5,Q6,Q7,Q8,Q9 : std_logic_vector(15

downto 0

);

37 signal Q10,Q11,Q12,Q13,Q14,Q15,Q16: std_logic_vector(15

downto 0

);

38 signal shift_out,CH_TEST: std_logic;

39

40 --

41 component FS_signal

 93

42 port(fs: in std_logic;

43 clk: in std_logic;

44 trig: out std_logic

45

46);

47 end component;

48

49 --

50 component puls_show

Date: May 23, 2008 ch_sep.vhd Project: ch_sep
Page 2 of 4 Revision: ch_sep
51 port(

52 P: in std_logic;

53 led_p: out std_logic

54

55

56);

57 end component;

58

59 --

60 component shift_reg_16

61 port(

62 data: in std_logic_vector(15 downto 0);

63 clock: in std_logic;

64 load: in std_logic;

65 ch_out: out std_logic

66

67

68);

69 end component;

70

71 --

72 begin

73

74

75

76 process(datain, clock, shift_in)

77 begin

78

79 -- everything happens upon the clock changing

80 if clock'event and clock='1' then

81

82 if shift_in = '1' then

83

84 if (count_in <= x"0FF") then

85

86 S <= datain & S(255 downto 1);

87 count_in <=count_in+1;

88 count_in_value <=count_in;

89 shift_out <='0';

90 else

91 Q1<=S(15 downto 0);

92 Q2<=S(31 downto 16);

93 Q3<=S(47 downto 32);

 94

94 Q4<=S(63 downto 48);

95 Q5<=S(79 downto 64);

96 Q6<=S(95 downto 80);

97 Q7<=S(111 downto 96);

98 Q8<=S(127 downto 112);

99 Q9<=S(143 downto 128);

100 Q10<=S(159 downto 144);

101 Q11<=S(175 downto 160);

102 Q12<=S(191 downto 176);

103 Q13<=S(207 downto 192);

Date: May 23, 2008 ch_sep.vhd Project: ch_sep
Page 3 of 4 Revision: ch_sep
104 Q14<=S(223 downto 208);

105 Q15<=S(239 downto 224);

106 Q16<=S(255 downto 240);

107

108 count_in<="000000000";

109 shift_out<='1';

110

111 end if;

112

113

114

115

116 end if;

117 end if;

118

119 end process;

120

121 U_FS_signal:FS_signal

122 port map(FS,clock,shift_in);

123

124 ---

125

126 U_led_datain: puls_show

127 port map(datain,led_datain);

128

129 U_led_FS: puls_show

130 port map(FS,led_FS);

131

132 U_led_clock: puls_show

133 port map(clock,led_clock);

134

135 CH_TEST<=Q1(0);

136

137 U_led_ch_out: puls_show

138 port map(CH_TEST,led_CH_TEST);

139 ---

140

141 U_CH1: shift_reg_16

142 port map(Q1,clock,shift_out,CH1);

143

144 U_CH2: shift_reg_16

145 port map(Q2,clock,shift_out,CH2);

 95

146

147 U_CH3: shift_reg_16

148 port map(Q3,clock,shift_out,CH3);

149

150 U_CH4: shift_reg_16

151 port map(Q4,clock,shift_out,CH4);

152

153 U_CH5: shift_reg_16

154 port map(Q5,clock,shift_out,CH5);

155

156 U_CH6: shift_reg_16

Date: May 23, 2008 ch_sep.vhd Project: ch_sep
Page 4 of 4 Revision: ch_sep
157 port map(Q6,clock,shift_out,CH6);

158

159 U_CH7: shift_reg_16

160 port map(Q7,clock,shift_out,CH7);

161

162 U_CH8: shift_reg_16

163 port map(Q8,clock,shift_out,CH8);

164

165 U_CH9: shift_reg_16

166 port map(Q9,clock,shift_out,CH9);

167

168 U_CH10: shift_reg_16

169 port map(Q10,clock,shift_out,CH10);

170

171 U_CH11: shift_reg_16

172 port map(Q11,clock,shift_out,CH11);

173

174 U_CH12: shift_reg_16

175 port map(Q12,clock,shift_out,CH12);

176

177 U_CH13: shift_reg_16

178 port map(Q13,clock,shift_out,CH13);

179

180 U_CH14: shift_reg_16

181 port map(Q14,clock,shift_out,CH14);

182

183 U_CH15: shift_reg_16

184 port map(Q15,clock,shift_out,CH15);

185

186 U_CH16: shift_reg_16

187 port map(Q16,clock,shift_out,CH16);

188 --

189

190

191 end behv;

 96

Appendix C:

Channel separation using Verilog code:

 97

 98

Appendix D

1 /*

2 * File: rtdx_com_16mul_main.c

3 *

4 * Real-Time Workshop code generated for Simulink model

rtdx_com_16mul.

5 *

6 * Model version : 1.184

7 * Real-Time Workshop file version : 6.6 (R2007a) 01-Feb-2007

8 * Real-Time Workshop file generated on : Wed May 14 12:14:40 2008

9 * TLC version : 6.6 (Jan 16 2007)

10 * C source code generated on : Wed May 14 12:14:41 2008

11 */

12

13 #include "rtdx_com_16mul.h"

14 #include "rtdx_com_16mul_private.h"

15 #include "rtdx_com_16mulcfg.h"

16 #include "rtwtypes.h"

17 #include "MW_c6xxx_csl.h"

18 #include "c6000_main.h"

19 #include <stdio.h>

20 #define DSK_CPLD_BASE 0x90080000

21 #define DSK_USER_REG 0

22

23 /* Function: exitprocessing ----------------------------------

24 *

25 * Abstract:

26 * Perform various tasks at program exit.

27 */

28 void exitprocessing()

 99

29 {

30 disable_interrupts();

31 UTL_halt();

32 }

33

34 extern void TSK_prolog(TSK_Handle hTask);

35 extern void TSK_epilog(TSK_Handle hTask);

36

37 //

38 // TSK prolog/epilog functions.

39 //

40 void TSK_prolog(TSK_Handle hTask)

41 {

42

43 #ifdef ENET_SOCKET_CALLS

44

45 fdOpenSession(hTask);

46

47 #endif

48

49 }

50

51 void TSK_epilog(TSK_Handle hTask)

52 {

53

54 #ifdef ENET_SOCKET_CALLS

55

56 fdCloseSession(hTask);

57

58 #endif

 100

59

60 }

61

62 //

63 // This task is run at the highest priority. It is used to

64 // initialize the model and also to monitor stopping conditions.

65 // OS executes this task immidiatey after falling out of main().

66 //

67 void initTerminateTSK_fcn(void)

68 {

69 rtdx_com_16mul_initialize(1);

70 enable_interrupts();

71 configureTimers();

72

73 /* Wait for a stopping condition. */

74 SEM_pend(&stopSEM, SYS_FOREVER);

75

76 /* We have acquired the STOP semaphore. Perform model

termination. */

77 /* Suspend syncronous tasks */

78 {

79 TSK_epilog(&tBaseRateTSK);

80 TSK_setpri(&tBaseRateTSK, -1);

81 }

82

83 LOG_printf(&LOG_MW1, "**stopping the model**");

84

85 /* Disable rt_OneStep() here */

86

87 /* Terminate model */

 101

88 rtdx_com_16mul_terminate();

89 targetTerminate();

90 }

91

92 void tBaseRateTSK_fcn(void)

93 {

94 volatile boolean_T noErr;

95 TSK_prolog(TSK_self());

96 noErr =

97 rtmGetErrorStatus(rtdx_com_16mul_M) == NULL;

98 while (noErr) {

99 /* Wait for the next timer interrupt */

100 SEM_pend(&rtClockSEM, SYS_FOREVER);

101 rtdx_com_16mul_step();

102 noErr =

103 rtmGetErrorStatus(rtdx_com_16mul_M) == NULL;

104 } /* while */

105

106 SEM_post(&stopSEM);

107 }

108

109 void main(void)

110 {

111 turnOn_L2Cache();

112 LOG_printf(&LOG_MW1, "**starting the model**");

113

114 /* Drop out of main() and enter DSP/BIOS Kernel */

115 }

 102

1 /*

2 * File: rtdx_com_16mul_data.c

3 *

4 * Real-Time Workshop code generated for Simulink model

rtdx_com_16mul.

5 *

6 * Model version : 1.184

7 * Real-Time Workshop file version : 6.6 (R2007a) 01-Feb-2007

8 * Real-Time Workshop file generated on : Wed May 14 12:14:40 2008

9 * TLC version : 6.6 (Jan 16 2007)

10 * C source code generated on : Wed May 14 12:14:41 2008

11 */

12

13 #include "rtdx_com_16mul.h"

14 #include "rtdx_com_16mul_private.h"

15

16 /* Block parameters (auto storage) */

17

18 #pragma DATA_ALIGN(rtdx_com_16mul_P, 8)

19

20 Parameters_rtdx_com_16mul rtdx_com_16mul_P = {

21 0.0F, /* FromRTDX1_IC : '<Root>/From RTDX1'

22 */

23

24 { 'a', 'a', 'a', 'a' }, /* FromRTDX1_IC : '<Root>/From RTDX1'

25 */

26 0.0F, /* FromRTDX3_IC : '<Root>/From RTDX3'

27 */

 103

28

29 { 'a', 'a', 'a', 'a' }, /* FromRTDX3_IC : '<Root>/From RTDX3'

30 */

31 0.0F, /* FromRTDX2_IC : '<Root>/From RTDX2'

32 */

33

34 { 'a', 'a', 'a', 'a' }, /* FromRTDX2_IC : '<Root>/From RTDX2'

35 */

36 0.0F, /* FromRTDX4_IC : '<Root>/From RTDX4'

37 */

38

39 { 'a', 'a', 'a', 'a' } /* FromRTDX4_IC : '<Root>/From RTDX4'

40 */

41 };

1 /*

2 * File: rtdx_com_16mul.c

3 *

4 * Real-Time Workshop code generated for Simulink model

rtdx_com_16mul.

5 *

6 * Model version : 1.184

7 * Real-Time Workshop file version : 6.6 (R2007a) 01-Feb-2007

8 * Real-Time Workshop file generated on : Wed May 14 12:14:40 2008

9 * TLC version : 6.6 (Jan 16 2007)

10 * C source code generated on : Wed May 14 12:14:41 2008

11 */

12

 104

13 #include "rtdx_com_16mul.h"

14 #include "rtdx_com_16mul_private.h"

15

16 RTDX_CreateInputChannel(sin_real); /* Channel sin_real for block

<Root>/From RTDX1 */

17 RTDX_CreateInputChannel(real_); /* Channel real_ for block

<Root>/From RTDX3 */

18 RTDX_CreateInputChannel(sin_img); /* Channel sin_img for block

<Root>/From RTDX2 */

19 RTDX_CreateInputChannel(img_); /* Channel img_ for block

<Root>/From RTDX4 */

20 RTDX_CreateOutputChannel(r1); /* Channel r1 for block <S3>/To

RTDX1 */

21 RTDX_CreateOutputChannel(i1); /* Channel i1 for block <S3>/To

RTDX2 */

22 RTDX_CreateOutputChannel(r2); /* Channel r2 for block <S3>/To

RTDX3 */

23 RTDX_CreateOutputChannel(i2); /* Channel i2 for block <S3>/To

RTDX4 */

24 RTDX_CreateOutputChannel(r3); /* Channel r3 for block <S3>/To

RTDX5 */

25 RTDX_CreateOutputChannel(i3); /* Channel i3 for block <S3>/To

RTDX6 */

26 RTDX_CreateOutputChannel(r4); /* Channel r4 for block <S3>/To

RTDX7 */

27 RTDX_CreateOutputChannel(i4); /* Channel i4 for block <S3>/To

RTDX8 */

28 RTDX_CreateOutputChannel(r5); /* Channel r5 for block <S3>/To

RTDX9 */

 105

29 RTDX_CreateOutputChannel(i5); /* Channel i5 for block <S3>/To

RTDX10 */

30 RTDX_CreateOutputChannel(r6); /* Channel r6 for block <S3>/To

RTDX11 */

31 RTDX_CreateOutputChannel(i6); /* Channel i6 for block <S3>/To

RTDX12 */

32 RTDX_CreateOutputChannel(r7); /* Channel r7 for block <S3>/To

RTDX13 */

33 RTDX_CreateOutputChannel(i7); /* Channel i7 for block <S3>/To

RTDX14 */

34 RTDX_CreateOutputChannel(r8); /* Channel r8 for block <S3>/To

RTDX15 */

35 RTDX_CreateOutputChannel(i8); /* Channel i8 for block <S3>/To

RTDX16 */

36 RTDX_CreateOutputChannel(r9); /* Channel r9 for block <S3>/To

RTDX17 */

37 RTDX_CreateOutputChannel(i9); /* Channel i9 for block <S3>/To

RTDX18 */

38 RTDX_CreateOutputChannel(r10); /* Channel r10 for block <S3>/To

RTDX19 */

39 RTDX_CreateOutputChannel(i10); /* Channel i10 for block <S3>/To

RTDX20 */

40 RTDX_CreateOutputChannel(r11); /* Channel r11 for block <S3>/To

RTDX21 */

41 RTDX_CreateOutputChannel(i11); /* Channel i11 for block <S3>/To

RTDX22 */

42 RTDX_CreateOutputChannel(r12); /* Channel r12 for block <S3>/To

RTDX23 */

43 RTDX_CreateOutputChannel(i12); /* Channel i12 for block <S3>/To

RTDX24 */

 106

44 RTDX_CreateOutputChannel(r13); /* Channel r13 for block <S3>/To

RTDX25 */

45 RTDX_CreateOutputChannel(i13); /* Channel i13 for block <S3>/To

RTDX26 */

46 RTDX_CreateOutputChannel(r14); /* Channel r14 for block <S3>/To

RTDX27 */

47 RTDX_CreateOutputChannel(i14); /* Channel i14 for block <S3>/To

RTDX28 */

48 RTDX_CreateOutputChannel(r15); /* Channel r15 for block <S3>/To

RTDX29 */

49 RTDX_CreateOutputChannel(i15); /* Channel i15 for block <S3>/To

RTDX30 */

50 RTDX_CreateOutputChannel(r16); /* Channel r16 for block <S3>/To

RTDX31 */

51 RTDX_CreateOutputChannel(i16); /* Channel i16 for block <S3>/To

RTDX32 */

52

53 /* Block signals (auto storage) */

54 #pragma DATA_ALIGN(rtdx_com_16mul_B, 8)

55

56 BlockIO_rtdx_com_16mul rtdx_com_16mul_B;

57

58 /* Real-time model */

59 RT_MODEL_rtdx_com_16mul rtdx_com_16mul_M_;

60 RT_MODEL_rtdx_com_16mul *rtdx_com_16mul_M =

&rtdx_com_16mul_M_;

61

62 /* Model step function */

63 void rtdx_com_16mul_step(void)

64 {

 107

65 /* local block i/o variables */

66 real32_T rtb_multiply[16];

67 real32_T rtb_Subtract[16];

68

69 /* S-Function Block: <Root>/From RTDX1 (rtdx_src) */

70 RTDX_read(&sin_real, (void*) rtdx_com_16mul_B.FromRTDX1,

16*sizeof(real32_T));

71

72 /* S-Function Block: <Root>/From RTDX3 (rtdx_src) */

73 RTDX_read(&real_, (void*) rtdx_com_16mul_B.FromRTDX3,

16*sizeof(real32_T));

74

75 {

76 int32_T i;

77 for (i = 0; i < 16; i++) {

78 /* Product: '<S4>/multiply' */

79 rtb_multiply[i] = rtdx_com_16mul_B.FromRTDX1[i] *

80 rtdx_com_16mul_B.FromRTDX3[0];

81 }

82 }

83

84 /* S-Function Block: <Root>/From RTDX2 (rtdx_src) */

85 RTDX_read(&sin_img, (void*) rtdx_com_16mul_B.FromRTDX2,

16*sizeof(real32_T));

86

87 /* S-Function Block: <Root>/From RTDX4 (rtdx_src) */

88 RTDX_read(&img_, (void*) rtdx_com_16mul_B.FromRTDX4,

16*sizeof(real32_T));

89

90 {

 108

91 int32_T i;

92 for (i = 0; i < 16; i++) {

93 /* Sum: '<S4>/Subtract' incorporates:

94 * Product: '<S4>/multiply1'

95 */

96 rtb_Subtract[i] = rtb_multiply[i] - rtdx_com_16mul_B.FromRTDX2[i]

*

97 rtdx_com_16mul_B.FromRTDX4[0];

98 }

99 }

100

101 /* S-Function Block: <S3>/To RTDX1 (rtdx_snk) */

102 if (RTDX_isOutputEnabled(&r1)) {

103 while (RTDX_writing != NULL) {

104 } /* waiting for rtdx write to complete */

105

106 RTDX_write(&r1, (void*) rtb_Subtract, 16*sizeof(real32_T));

107 }

108

109 {

110 int32_T i;

111 for (i = 0; i < 16; i++) {

112 /* Sum: '<S4>/Subtract1' incorporates:

113 * Product: '<S4>/multiply2'

114 * Product: '<S4>/multiply3'

115 */

116 rtb_Subtract[i] = rtdx_com_16mul_B.FromRTDX2[i] *

117 rtdx_com_16mul_B.FromRTDX3[0] +

rtdx_com_16mul_B.FromRTDX1[i] *

118 rtdx_com_16mul_B.FromRTDX4[0];

 109

119 }

120 }

121

122 /* S-Function Block: <S3>/To RTDX2 (rtdx_snk) */

123 if (RTDX_isOutputEnabled(&i1)) {

124 while (RTDX_writing != NULL) {

125 } /* waiting for rtdx write to complete */

126

127 RTDX_write(&i1, (void*) rtb_Subtract, 16*sizeof(real32_T));

128 }

129

130 {

131 int32_T i;

132 for (i = 0; i < 16; i++) {

133 /* Sum: '<S5>/Subtract' incorporates:

134 * Product: '<S5>/multiply'

135 * Product: '<S5>/multiply1'

136 */

137 rtb_Subtract[i] = rtdx_com_16mul_B.FromRTDX1[i] *

138 rtdx_com_16mul_B.FromRTDX3[1] -

rtdx_com_16mul_B.FromRTDX2[i] *

139 rtdx_com_16mul_B.FromRTDX4[1];

140 }

141 }

142

143 /* S-Function Block: <S3>/To RTDX3 (rtdx_snk) */

144 if (RTDX_isOutputEnabled(&r2)) {

145 while (RTDX_writing != NULL) {

146 } /* waiting for rtdx write to complete */

147

 110

148 RTDX_write(&r2, (void*) rtb_Subtract, 16*sizeof(real32_T));

149 }

150

151 {

152 int32_T i;

153 for (i = 0; i < 16; i++) {

154 /* Sum: '<S5>/Subtract1' incorporates:

155 * Product: '<S5>/multiply2'

156 * Product: '<S5>/multiply3'

157 */

158 rtb_Subtract[i] = rtdx_com_16mul_B.FromRTDX2[i] *

159 rtdx_com_16mul_B.FromRTDX3[1] +

rtdx_com_16mul_B.FromRTDX1[i] *

160 rtdx_com_16mul_B.FromRTDX4[1];

161 }

162 }

163

164 /* S-Function Block: <S3>/To RTDX4 (rtdx_snk) */

165 if (RTDX_isOutputEnabled(&i2)) {

166 while (RTDX_writing != NULL) {

167 } /* waiting for rtdx write to complete */

168

169 RTDX_write(&i2, (void*) rtb_Subtract, 16*sizeof(real32_T));

170 }

171

172 {

173 int32_T i;

174 for (i = 0; i < 16; i++) {

175 /* Sum: '<S12>/Subtract' incorporates:

176 * Product: '<S12>/multiply'

 111

177 * Product: '<S12>/multiply1'

178 */

179 rtb_Subtract[i] = rtdx_com_16mul_B.FromRTDX1[i] *

180 rtdx_com_16mul_B.FromRTDX3[2] -

rtdx_com_16mul_B.FromRTDX2[i] *

181 rtdx_com_16mul_B.FromRTDX4[2];

182 }

183 }

184

185 /* S-Function Block: <S3>/To RTDX5 (rtdx_snk) */

186 if (RTDX_isOutputEnabled(&r3)) {

187 while (RTDX_writing != NULL) {

188 } /* waiting for rtdx write to complete */

189

190 RTDX_write(&r3, (void*) rtb_Subtract, 16*sizeof(real32_T));

191 }

192

193 {

194 int32_T i;

195 for (i = 0; i < 16; i++) {

196 /* Sum: '<S12>/Subtract1' incorporates:

197 * Product: '<S12>/multiply2'

198 * Product: '<S12>/multiply3'

199 */

200 rtb_Subtract[i] = rtdx_com_16mul_B.FromRTDX2[i] *

201 rtdx_com_16mul_B.FromRTDX3[2] +

rtdx_com_16mul_B.FromRTDX1[i] *

202 rtdx_com_16mul_B.FromRTDX4[2];

203 }

204 }

 112

205

206 /* S-Function Block: <S3>/To RTDX6 (rtdx_snk) */

207 if (RTDX_isOutputEnabled(&i3)) {

208 while (RTDX_writing != NULL) {

209 } /* waiting for rtdx write to complete */

210

211 RTDX_write(&i3, (void*) rtb_Subtract, 16*sizeof(real32_T));

212 }

213

214 {

215 int32_T i;

216 for (i = 0; i < 16; i++) {

217 /* Sum: '<S13>/Subtract' incorporates:

218 * Product: '<S13>/multiply'

219 * Product: '<S13>/multiply1'

220 */

221 rtb_Subtract[i] = rtdx_com_16mul_B.FromRTDX1[i] *

222 rtdx_com_16mul_B.FromRTDX3[3] -

rtdx_com_16mul_B.FromRTDX2[i] *

223 rtdx_com_16mul_B.FromRTDX4[3];

224 }

225 }

226

227 /* S-Function Block: <S3>/To RTDX7 (rtdx_snk) */

228 if (RTDX_isOutputEnabled(&r4)) {

229 while (RTDX_writing != NULL) {

230 } /* waiting for rtdx write to complete */

231

232 RTDX_write(&r4, (void*) rtb_Subtract, 16*sizeof(real32_T));

233 }

 113

234

235 {

236 int32_T i;

237 for (i = 0; i < 16; i++) {

238 /* Sum: '<S13>/Subtract1' incorporates:

239 * Product: '<S13>/multiply2'

240 * Product: '<S13>/multiply3'

241 */

242 rtb_Subtract[i] = rtdx_com_16mul_B.FromRTDX2[i] *

243 rtdx_com_16mul_B.FromRTDX3[3] +

rtdx_com_16mul_B.FromRTDX1[i] *

244 rtdx_com_16mul_B.FromRTDX4[3];

245 }

246 }

247

248 /* S-Function Block: <S3>/To RTDX8 (rtdx_snk) */

249 if (RTDX_isOutputEnabled(&i4)) {

250 while (RTDX_writing != NULL) {

251 } /* waiting for rtdx write to complete */

252

253 RTDX_write(&i4, (void*) rtb_Subtract, 16*sizeof(real32_T));

254 }

255

256 {

257 int32_T i;

258 for (i = 0; i < 16; i++) {

259 /* Sum: '<S14>/Subtract' incorporates:

260 * Product: '<S14>/multiply'

261 * Product: '<S14>/multiply1'

262 */

 114

263 rtb_Subtract[i] = rtdx_com_16mul_B.FromRTDX1[i] *

264 rtdx_com_16mul_B.FromRTDX3[4] -

rtdx_com_16mul_B.FromRTDX2[i] *

265 rtdx_com_16mul_B.FromRTDX4[4];

266 }

267 }

268

269 /* S-Function Block: <S3>/To RTDX9 (rtdx_snk) */

270 if (RTDX_isOutputEnabled(&r5)) {

271 while (RTDX_writing != NULL) {

272 } /* waiting for rtdx write to complete */

273

274 RTDX_write(&r5, (void*) rtb_Subtract, 16*sizeof(real32_T));

275 }

276

277 {

278 int32_T i;

279 for (i = 0; i < 16; i++) {

280 /* Sum: '<S14>/Subtract1' incorporates:

281 * Product: '<S14>/multiply2'

282 * Product: '<S14>/multiply3'

283 */

284 rtb_Subtract[i] = rtdx_com_16mul_B.FromRTDX2[i] *

285 rtdx_com_16mul_B.FromRTDX3[4] +

rtdx_com_16mul_B.FromRTDX1[i] *

286 rtdx_com_16mul_B.FromRTDX4[4];

287 }

288 }

289

290 /* S-Function Block: <S3>/To RTDX10 (rtdx_snk) */

 115

291 if (RTDX_isOutputEnabled(&i5)) {

292 while (RTDX_writing != NULL) {

293 } /* waiting for rtdx write to complete */

294

295 RTDX_write(&i5, (void*) rtb_Subtract, 16*sizeof(real32_T));

296 }

297

298 {

299 int32_T i;

300 for (i = 0; i < 16; i++) {

301 /* Sum: '<S15>/Subtract' incorporates:

302 * Product: '<S15>/multiply'

303 * Product: '<S15>/multiply1'

304 */

305 rtb_Subtract[i] = rtdx_com_16mul_B.FromRTDX1[i] *

306 rtdx_com_16mul_B.FromRTDX3[5] -

rtdx_com_16mul_B.FromRTDX2[i] *

307 rtdx_com_16mul_B.FromRTDX4[5];

308 }

309 }

310

311 /* S-Function Block: <S3>/To RTDX11 (rtdx_snk) */

312 if (RTDX_isOutputEnabled(&r6)) {

313 while (RTDX_writing != NULL) {

314 } /* waiting for rtdx write to complete */

315

316 RTDX_write(&r6, (void*) rtb_Subtract, 16*sizeof(real32_T));

317 }

318

319 {

 116

320 int32_T i;

321 for (i = 0; i < 16; i++) {

322 /* Sum: '<S15>/Subtract1' incorporates:

323 * Product: '<S15>/multiply2'

324 * Product: '<S15>/multiply3'

325 */

326 rtb_Subtract[i] = rtdx_com_16mul_B.FromRTDX2[i] *

327 rtdx_com_16mul_B.FromRTDX3[5] +

rtdx_com_16mul_B.FromRTDX1[i] *

328 rtdx_com_16mul_B.FromRTDX4[5];

329 }

330 }

331

332 /* S-Function Block: <S3>/To RTDX12 (rtdx_snk) */

333 if (RTDX_isOutputEnabled(&i6)) {

334 while (RTDX_writing != NULL) {

335 } /* waiting for rtdx write to complete */

336

337 RTDX_write(&i6, (void*) rtb_Subtract, 16*sizeof(real32_T));

338 }

339

340 {

341 int32_T i;

342 for (i = 0; i < 16; i++) {

343 /* Sum: '<S16>/Subtract' incorporates:

344 * Product: '<S16>/multiply'

345 * Product: '<S16>/multiply1'

346 */

347 rtb_Subtract[i] = rtdx_com_16mul_B.FromRTDX1[i] *

 117

348 rtdx_com_16mul_B.FromRTDX3[6] -

rtdx_com_16mul_B.FromRTDX2[i] *

349 rtdx_com_16mul_B.FromRTDX4[6];

350 }

351 }

352

353 /* S-Function Block: <S3>/To RTDX13 (rtdx_snk) */

354 if (RTDX_isOutputEnabled(&r7)) {

355 while (RTDX_writing != NULL) {

356 } /* waiting for rtdx write to complete */

357

358 RTDX_write(&r7, (void*) rtb_Subtract, 16*sizeof(real32_T));

359 }

360

361 {

362 int32_T i;

363 for (i = 0; i < 16; i++) {

364 /* Sum: '<S16>/Subtract1' incorporates:

365 * Product: '<S16>/multiply2'

366 * Product: '<S16>/multiply3'

367 */

368 rtb_Subtract[i] = rtdx_com_16mul_B.FromRTDX2[i] *

369 rtdx_com_16mul_B.FromRTDX3[6] +

rtdx_com_16mul_B.FromRTDX1[i] *

370 rtdx_com_16mul_B.FromRTDX4[6];

371 }

372 }

373

374 /* S-Function Block: <S3>/To RTDX14 (rtdx_snk) */

375 if (RTDX_isOutputEnabled(&i7)) {

 118

376 while (RTDX_writing != NULL) {

377 } /* waiting for rtdx write to complete */

378

379 RTDX_write(&i7, (void*) rtb_Subtract, 16*sizeof(real32_T));

380 }

381

382 {

383 int32_T i;

384 for (i = 0; i < 16; i++) {

385 /* Sum: '<S17>/Subtract' incorporates:

386 * Product: '<S17>/multiply'

387 * Product: '<S17>/multiply1'

388 */

389 rtb_Subtract[i] = rtdx_com_16mul_B.FromRTDX1[i] *

390 rtdx_com_16mul_B.FromRTDX3[7] -

rtdx_com_16mul_B.FromRTDX2[i] *

391 rtdx_com_16mul_B.FromRTDX4[7];

392 }

393 }

394

395 /* S-Function Block: <S3>/To RTDX15 (rtdx_snk) */

396 if (RTDX_isOutputEnabled(&r8)) {

397 while (RTDX_writing != NULL) {

398 } /* waiting for rtdx write to complete */

399

400 RTDX_write(&r8, (void*) rtb_Subtract, 16*sizeof(real32_T));

401 }

402

403 {

404 int32_T i;

 119

405 for (i = 0; i < 16; i++) {

406 /* Sum: '<S17>/Subtract1' incorporates:

407 * Product: '<S17>/multiply2'

408 * Product: '<S17>/multiply3'

409 */

410 rtb_Subtract[i] = rtdx_com_16mul_B.FromRTDX2[i] *

411 rtdx_com_16mul_B.FromRTDX3[7] +

rtdx_com_16mul_B.FromRTDX1[i] *

412 rtdx_com_16mul_B.FromRTDX4[7];

413 }

414 }

415

416 /* S-Function Block: <S3>/To RTDX16 (rtdx_snk) */

417 if (RTDX_isOutputEnabled(&i8)) {

418 while (RTDX_writing != NULL) {

419 } /* waiting for rtdx write to complete */

420

421 RTDX_write(&i8, (void*) rtb_Subtract, 16*sizeof(real32_T));

422 }

423

424 {

425 int32_T i;

426 for (i = 0; i < 16; i++) {

427 /* Sum: '<S18>/Subtract' incorporates:

428 * Product: '<S18>/multiply'

429 * Product: '<S18>/multiply1'

430 */

431 rtb_Subtract[i] = rtdx_com_16mul_B.FromRTDX1[i] *

432 rtdx_com_16mul_B.FromRTDX3[8] -

rtdx_com_16mul_B.FromRTDX2[i] *

 120

433 rtdx_com_16mul_B.FromRTDX4[8];

434 }

435 }

436

437 /* S-Function Block: <S3>/To RTDX17 (rtdx_snk) */

438 if (RTDX_isOutputEnabled(&r9)) {

439 while (RTDX_writing != NULL) {

440 } /* waiting for rtdx write to complete */

441

442 RTDX_write(&r9, (void*) rtb_Subtract, 16*sizeof(real32_T));

443 }

444

445 {

446 int32_T i;

447 for (i = 0; i < 16; i++) {

448 /* Sum: '<S18>/Subtract1' incorporates:

449 * Product: '<S18>/multiply2'

450 * Product: '<S18>/multiply3'

451 */

452 rtb_Subtract[i] = rtdx_com_16mul_B.FromRTDX2[i] *

453 rtdx_com_16mul_B.FromRTDX3[8] +

rtdx_com_16mul_B.FromRTDX1[i] *

454 rtdx_com_16mul_B.FromRTDX4[8];

455 }

456 }

457

458 /* S-Function Block: <S3>/To RTDX18 (rtdx_snk) */

459 if (RTDX_isOutputEnabled(&i9)) {

460 while (RTDX_writing != NULL) {

461 } /* waiting for rtdx write to complete */

 121

462

463 RTDX_write(&i9, (void*) rtb_Subtract, 16*sizeof(real32_T));

464 }

465

466 {

467 int32_T i;

468 for (i = 0; i < 16; i++) {

469 /* Sum: '<S19>/Subtract' incorporates:

470 * Product: '<S19>/multiply'

471 * Product: '<S19>/multiply1'

472 */

473 rtb_Subtract[i] = rtdx_com_16mul_B.FromRTDX1[i] *

474 rtdx_com_16mul_B.FromRTDX3[9] -

rtdx_com_16mul_B.FromRTDX2[i] *

475 rtdx_com_16mul_B.FromRTDX4[9];

476 }

477 }

478

479 /* S-Function Block: <S3>/To RTDX19 (rtdx_snk) */

480 if (RTDX_isOutputEnabled(&r10)) {

481 while (RTDX_writing != NULL) {

482 } /* waiting for rtdx write to complete */

483

484 RTDX_write(&r10, (void*) rtb_Subtract, 16*sizeof(real32_T));

485 }

486

487 {

488 int32_T i;

489 for (i = 0; i < 16; i++) {

490 /* Sum: '<S19>/Subtract1' incorporates:

 122

491 * Product: '<S19>/multiply2'

492 * Product: '<S19>/multiply3'

493 */

494 rtb_Subtract[i] = rtdx_com_16mul_B.FromRTDX2[i] *

495 rtdx_com_16mul_B.FromRTDX3[9] +

rtdx_com_16mul_B.FromRTDX1[i] *

496 rtdx_com_16mul_B.FromRTDX4[9];

497 }

498 }

499

500 /* S-Function Block: <S3>/To RTDX20 (rtdx_snk) */

501 if (RTDX_isOutputEnabled(&i10)) {

502 while (RTDX_writing != NULL) {

503 } /* waiting for rtdx write to complete */

504

505 RTDX_write(&i10, (void*) rtb_Subtract, 16*sizeof(real32_T));

506 }

507

508 {

509 int32_T i;

510 for (i = 0; i < 16; i++) {

511 /* Sum: '<S6>/Subtract' incorporates:

512 * Product: '<S6>/multiply'

513 * Product: '<S6>/multiply1'

514 */

515 rtb_Subtract[i] = rtdx_com_16mul_B.FromRTDX1[i] *

516 rtdx_com_16mul_B.FromRTDX3[10] -

rtdx_com_16mul_B.FromRTDX2[i] *

517 rtdx_com_16mul_B.FromRTDX4[10];

518 }

 123

519 }

520

521 /* S-Function Block: <S3>/To RTDX21 (rtdx_snk) */

522 if (RTDX_isOutputEnabled(&r11)) {

523 while (RTDX_writing != NULL) {

524 } /* waiting for rtdx write to complete */

525

526 RTDX_write(&r11, (void*) rtb_Subtract, 16*sizeof(real32_T));

527 }

528

529 {

530 int32_T i;

531 for (i = 0; i < 16; i++) {

532 /* Product: '<S6>/multiply3' */

533 rtdx_com_16mul_B.Subtract1[i] =

rtdx_com_16mul_B.FromRTDX1[i] *

534 rtdx_com_16mul_B.FromRTDX4[10];

535

536 /* Sum: '<S6>/Subtract1' incorporates:

537 * Product: '<S6>/multiply2'

538 */

539 rtdx_com_16mul_B.multiply3[i] =

rtdx_com_16mul_B.FromRTDX2[i] *

540 rtdx_com_16mul_B.FromRTDX3[10] +

rtdx_com_16mul_B.Subtract1[i];

541 }

542 }

543

544 /* S-Function Block: <S3>/To RTDX22 (rtdx_snk) */

545 if (RTDX_isOutputEnabled(&i11)) {

 124

546 while (RTDX_writing != NULL) {

547 } /* waiting for rtdx write to complete */

548

549 RTDX_write(&i11, (void*) rtdx_com_16mul_B.multiply3,

16*sizeof(real32_T));

550 }

551

552 {

553 int32_T i;

554 for (i = 0; i < 16; i++) {

555 /* Product: '<S7>/multiply' */

556 rtdx_com_16mul_B.multiply3[i] =

rtdx_com_16mul_B.FromRTDX1[i] *

557 rtdx_com_16mul_B.FromRTDX3[11];

558

559 /* Product: '<S7>/multiply1' */

560 rtdx_com_16mul_B.Subtract1[i] =

rtdx_com_16mul_B.FromRTDX2[i] *

561 rtdx_com_16mul_B.FromRTDX4[11];

562

563 /* Sum: '<S7>/Subtract' */

564 rtdx_com_16mul_B.multiply2[i] = rtdx_com_16mul_B.multiply3[i] -

565 rtdx_com_16mul_B.Subtract1[i];

566 }

567 }

568

569 /* S-Function Block: <S3>/To RTDX23 (rtdx_snk) */

570 if (RTDX_isOutputEnabled(&r12)) {

571 while (RTDX_writing != NULL) {

572 } /* waiting for rtdx write to complete */

 125

573

574 RTDX_write(&r12, (void*) rtdx_com_16mul_B.multiply2,

16*sizeof(real32_T));

575 }

576

577 {

578 int32_T i;

579 for (i = 0; i < 16; i++) {

580 /* Product: '<S7>/multiply2' */

581 rtdx_com_16mul_B.multiply2[i] =

rtdx_com_16mul_B.FromRTDX2[i] *

582 rtdx_com_16mul_B.FromRTDX3[11];

583

584 /* Product: '<S7>/multiply3' */

585 rtdx_com_16mul_B.multiply3[i] =

rtdx_com_16mul_B.FromRTDX1[i] *

586 rtdx_com_16mul_B.FromRTDX4[11];

587

588 /* Sum: '<S7>/Subtract1' */

589 rtdx_com_16mul_B.Subtract1[i] = rtdx_com_16mul_B.multiply2[i] +

590 rtdx_com_16mul_B.multiply3[i];

591 }

592 }

593

594 /* S-Function Block: <S3>/To RTDX24 (rtdx_snk) */

595 if (RTDX_isOutputEnabled(&i12)) {

596 while (RTDX_writing != NULL) {

597 } /* waiting for rtdx write to complete */

598

 126

599 RTDX_write(&i12, (void*) rtdx_com_16mul_B.Subtract1,

16*sizeof(real32_T));

600 }

601

602 {

603 int32_T i;

604 for (i = 0; i < 16; i++) {

605 /* Product: '<S8>/multiply' */

606 rtdx_com_16mul_B.multiply2[i] =

rtdx_com_16mul_B.FromRTDX1[i] *

607 rtdx_com_16mul_B.FromRTDX3[12];

608

609 /* Product: '<S8>/multiply1' */

610 rtdx_com_16mul_B.multiply3[i] =

rtdx_com_16mul_B.FromRTDX2[i] *

611 rtdx_com_16mul_B.FromRTDX4[12];

612

613 /* Sum: '<S8>/Subtract' */

614 rtdx_com_16mul_B.Subtract1[i] = rtdx_com_16mul_B.multiply2[i] -

615 rtdx_com_16mul_B.multiply3[i];

616 }

617 }

618

619 /* S-Function Block: <S3>/To RTDX25 (rtdx_snk) */

620 if (RTDX_isOutputEnabled(&r13)) {

621 while (RTDX_writing != NULL) {

622 } /* waiting for rtdx write to complete */

623

624 RTDX_write(&r13, (void*) rtdx_com_16mul_B.Subtract1,

16*sizeof(real32_T));

 127

625 }

626

627 {

628 int32_T i;

629 for (i = 0; i < 16; i++) {

630 /* Product: '<S8>/multiply2' */

631 rtdx_com_16mul_B.multiply2[i] =

rtdx_com_16mul_B.FromRTDX2[i] *

632 rtdx_com_16mul_B.FromRTDX3[12];

633

634 /* Product: '<S8>/multiply3' */

635 rtdx_com_16mul_B.multiply3[i] =

rtdx_com_16mul_B.FromRTDX1[i] *

636 rtdx_com_16mul_B.FromRTDX4[12];

637

638 /* Sum: '<S8>/Subtract1' */

639 rtdx_com_16mul_B.Subtract1[i] = rtdx_com_16mul_B.multiply2[i] +

640 rtdx_com_16mul_B.multiply3[i];

641 }

642 }

643

644 /* S-Function Block: <S3>/To RTDX26 (rtdx_snk) */

645 if (RTDX_isOutputEnabled(&i13)) {

646 while (RTDX_writing != NULL) {

647 } /* waiting for rtdx write to complete */

648

649 RTDX_write(&i13, (void*) rtdx_com_16mul_B.Subtract1,

16*sizeof(real32_T));

650 }

651

 128

652 {

653 int32_T i;

654 for (i = 0; i < 16; i++) {

655 /* Product: '<S9>/multiply' */

656 rtdx_com_16mul_B.multiply2[i] =

rtdx_com_16mul_B.FromRTDX1[i] *

657 rtdx_com_16mul_B.FromRTDX3[13];

658

659 /* Product: '<S9>/multiply1' */

660 rtdx_com_16mul_B.multiply3[i] =

rtdx_com_16mul_B.FromRTDX2[i] *

661 rtdx_com_16mul_B.FromRTDX4[13];

662

663 /* Sum: '<S9>/Subtract' */

664 rtdx_com_16mul_B.Subtract1[i] = rtdx_com_16mul_B.multiply2[i] -

665 rtdx_com_16mul_B.multiply3[i];

666 }

667 }

668

669 /* S-Function Block: <S3>/To RTDX27 (rtdx_snk) */

670 if (RTDX_isOutputEnabled(&r14)) {

671 while (RTDX_writing != NULL) {

672 } /* waiting for rtdx write to complete */

673

674 RTDX_write(&r14, (void*) rtdx_com_16mul_B.Subtract1,

16*sizeof(real32_T));

675 }

676

677 {

678 int32_T i;

 129

679 for (i = 0; i < 16; i++) {

680 /* Product: '<S9>/multiply2' */

681 rtdx_com_16mul_B.multiply2[i] =

rtdx_com_16mul_B.FromRTDX2[i] *

682 rtdx_com_16mul_B.FromRTDX3[13];

683

684 /* Product: '<S9>/multiply3' */

685 rtdx_com_16mul_B.multiply3[i] =

rtdx_com_16mul_B.FromRTDX1[i] *

686 rtdx_com_16mul_B.FromRTDX4[13];

687

688 /* Sum: '<S9>/Subtract1' */

689 rtdx_com_16mul_B.Subtract1[i] = rtdx_com_16mul_B.multiply2[i] +

690 rtdx_com_16mul_B.multiply3[i];

691 }

692 }

693

694 /* S-Function Block: <S3>/To RTDX28 (rtdx_snk) */

695 if (RTDX_isOutputEnabled(&i14)) {

696 while (RTDX_writing != NULL) {

697 } /* waiting for rtdx write to complete */

698

699 RTDX_write(&i14, (void*) rtdx_com_16mul_B.Subtract1,

16*sizeof(real32_T));

700 }

701

702 {

703 int32_T i;

704 for (i = 0; i < 16; i++) {

705 /* Product: '<S10>/multiply' */

 130

706 rtdx_com_16mul_B.multiply2[i] =

rtdx_com_16mul_B.FromRTDX1[i] *

707 rtdx_com_16mul_B.FromRTDX3[14];

708

709 /* Product: '<S10>/multiply1' */

710 rtdx_com_16mul_B.multiply3[i] =

rtdx_com_16mul_B.FromRTDX2[i] *

711 rtdx_com_16mul_B.FromRTDX4[14];

712

713 /* Sum: '<S10>/Subtract' */

714 rtdx_com_16mul_B.Subtract1[i] = rtdx_com_16mul_B.multiply2[i] -

715 rtdx_com_16mul_B.multiply3[i];

716 }

717 }

718

719 /* S-Function Block: <S3>/To RTDX29 (rtdx_snk) */

720 if (RTDX_isOutputEnabled(&r15)) {

721 while (RTDX_writing != NULL) {

722 } /* waiting for rtdx write to complete */

723

724 RTDX_write(&r15, (void*) rtdx_com_16mul_B.Subtract1,

16*sizeof(real32_T));

725 }

726

727 {

728 int32_T i;

729 for (i = 0; i < 16; i++) {

730 /* Product: '<S10>/multiply2' */

731 rtdx_com_16mul_B.multiply2[i] =

rtdx_com_16mul_B.FromRTDX2[i] *

 131

732 rtdx_com_16mul_B.FromRTDX3[14];

733

734 /* Product: '<S10>/multiply3' */

735 rtdx_com_16mul_B.multiply3[i] =

rtdx_com_16mul_B.FromRTDX1[i] *

736 rtdx_com_16mul_B.FromRTDX4[14];

737

738 /* Sum: '<S10>/Subtract1' */

739 rtdx_com_16mul_B.Subtract1[i] = rtdx_com_16mul_B.multiply2[i] +

740 rtdx_com_16mul_B.multiply3[i];

741 }

742 }

743

744 /* S-Function Block: <S3>/To RTDX30 (rtdx_snk) */

745 if (RTDX_isOutputEnabled(&i15)) {

746 while (RTDX_writing != NULL) {

747 } /* waiting for rtdx write to complete */

748

749 RTDX_write(&i15, (void*) rtdx_com_16mul_B.Subtract1,

16*sizeof(real32_T));

750 }

751

752 {

753 int32_T i;

754 for (i = 0; i < 16; i++) {

755 /* Product: '<S11>/multiply' */

756 rtdx_com_16mul_B.multiply2[i] =

rtdx_com_16mul_B.FromRTDX1[i] *

757 rtdx_com_16mul_B.FromRTDX3[15];

758

 132

759 /* Product: '<S11>/multiply1' */

760 rtdx_com_16mul_B.multiply3[i] =

rtdx_com_16mul_B.FromRTDX2[i] *

761 rtdx_com_16mul_B.FromRTDX4[15];

762

763 /* Sum: '<S11>/Subtract' */

764 rtdx_com_16mul_B.Subtract1[i] = rtdx_com_16mul_B.multiply2[i] -

765 rtdx_com_16mul_B.multiply3[i];

766 }

767 }

768

769 /* S-Function Block: <S3>/To RTDX31 (rtdx_snk) */

770 if (RTDX_isOutputEnabled(&r16)) {

771 while (RTDX_writing != NULL) {

772 } /* waiting for rtdx write to complete */

773

774 RTDX_write(&r16, (void*) rtdx_com_16mul_B.Subtract1,

16*sizeof(real32_T));

775 }

776

777 {

778 int32_T i;

779 for (i = 0; i < 16; i++) {

780 /* Product: '<S11>/multiply2' */

781 rtdx_com_16mul_B.multiply2[i] =

rtdx_com_16mul_B.FromRTDX2[i] *

782 rtdx_com_16mul_B.FromRTDX3[15];

783

784 /* Product: '<S11>/multiply3' */

 133

785 rtdx_com_16mul_B.multiply3[i] =

rtdx_com_16mul_B.FromRTDX1[i] *

786 rtdx_com_16mul_B.FromRTDX4[15];

787

788 /* Sum: '<S11>/Subtract1' */

789 rtdx_com_16mul_B.Subtract1[i] = rtdx_com_16mul_B.multiply2[i] +

790 rtdx_com_16mul_B.multiply3[i];

791 }

792 }

793

794 /* S-Function Block: <S3>/To RTDX32 (rtdx_snk) */

795 if (RTDX_isOutputEnabled(&i16)) {

796 while (RTDX_writing != NULL) {

797 } /* waiting for rtdx write to complete */

798

799 RTDX_write(&i16, (void*) rtdx_com_16mul_B.Subtract1,

16*sizeof(real32_T));

800 }

801 }

802

803 /* Model initialize function */

804 void rtdx_com_16mul_initialize(boolean_T firstTime)

805 {

806 (void)firstTime;

807

808 /* Registration code */

809

810 /* initialize error status */

811 rtmSetErrorStatus(rtdx_com_16mul_M, (const char_T *)0);

812

 134

813 /* block I/O */

814 {

815 int_T i;

816 void *pVoidBlockIORegion;

817 pVoidBlockIORegion = (void

*)(&rtdx_com_16mul_B.FromRTDX1[0]);

818 for (i = 0; i < 112; i++) {

819 ((real32_T*)pVoidBlockIORegion)[i] = 0.0F;

820 }

821 }

822

823 /* S-Function Block: <Root>/From RTDX1 (rtdx_src) */

824 {

825 RTDX_enableInput(&sin_real);

826 }

827

828 /* S-Function Block: <Root>/From RTDX3 (rtdx_src) */

829 {

830 RTDX_enableInput(&real_);

831 }

832

833 /* S-Function Block: <Root>/From RTDX2 (rtdx_src) */

834 {

835 RTDX_enableInput(&sin_img);

836 }

837

838 /* S-Function Block: <Root>/From RTDX4 (rtdx_src) */

839 {

840 RTDX_enableInput(&img_);

841 }

 135

842

843 RTDX_enableOutput(&r1); /* S-Function Block: <S3>/To RTDX1

(rtdx_snk) */

844 RTDX_enableOutput(&i1); /* S-Function Block: <S3>/To RTDX2

(rtdx_snk) */

845 RTDX_enableOutput(&r2); /* S-Function Block: <S3>/To RTDX3

(rtdx_snk) */

846 RTDX_enableOutput(&i2); /* S-Function Block: <S3>/To RTDX4

(rtdx_snk) */

847 RTDX_enableOutput(&r3); /* S-Function Block: <S3>/To RTDX5

(rtdx_snk) */

848 RTDX_enableOutput(&i3); /* S-Function Block: <S3>/To RTDX6

(rtdx_snk) */

849 RTDX_enableOutput(&r4); /* S-Function Block: <S3>/To RTDX7

(rtdx_snk) */

850 RTDX_enableOutput(&i4); /* S-Function Block: <S3>/To RTDX8

(rtdx_snk) */

851 RTDX_enableOutput(&r5); /* S-Function Block: <S3>/To RTDX9

(rtdx_snk) */

852 RTDX_enableOutput(&i5); /* S-Function Block: <S3>/To RTDX10

(rtdx_snk) */

853 RTDX_enableOutput(&r6); /* S-Function Block: <S3>/To RTDX11

(rtdx_snk) */

854 RTDX_enableOutput(&i6); /* S-Function Block: <S3>/To RTDX12

(rtdx_snk) */

855 RTDX_enableOutput(&r7); /* S-Function Block: <S3>/To RTDX13

(rtdx_snk) */

856 RTDX_enableOutput(&i7); /* S-Function Block: <S3>/To RTDX14

(rtdx_snk) */

 136

857 RTDX_enableOutput(&r8); /* S-Function Block: <S3>/To RTDX15

(rtdx_snk) */

858 RTDX_enableOutput(&i8); /* S-Function Block: <S3>/To RTDX16

(rtdx_snk) */

859 RTDX_enableOutput(&r9); /* S-Function Block: <S3>/To RTDX17

(rtdx_snk) */

860 RTDX_enableOutput(&i9); /* S-Function Block: <S3>/To RTDX18

(rtdx_snk) */

861 RTDX_enableOutput(&r10); /* S-Function Block: <S3>/To RTDX19

(rtdx_snk) */

862 RTDX_enableOutput(&i10); /* S-Function Block: <S3>/To RTDX20

(rtdx_snk) */

863 RTDX_enableOutput(&r11); /* S-Function Block: <S3>/To RTDX21

(rtdx_snk) */

864 RTDX_enableOutput(&i11); /* S-Function Block: <S3>/To RTDX22

(rtdx_snk) */

865 RTDX_enableOutput(&r12); /* S-Function Block: <S3>/To RTDX23

(rtdx_snk) */

866 RTDX_enableOutput(&i12); /* S-Function Block: <S3>/To RTDX24

(rtdx_snk) */

867 RTDX_enableOutput(&r13); /* S-Function Block: <S3>/To RTDX25

(rtdx_snk) */

868 RTDX_enableOutput(&i13); /* S-Function Block: <S3>/To RTDX26

(rtdx_snk) */

869 RTDX_enableOutput(&r14); /* S-Function Block: <S3>/To RTDX27

(rtdx_snk) */

870 RTDX_enableOutput(&i14); /* S-Function Block: <S3>/To RTDX28

(rtdx_snk) */

871 RTDX_enableOutput(&r15); /* S-Function Block: <S3>/To RTDX29

(rtdx_snk) */

 137

872 RTDX_enableOutput(&i15); /* S-Function Block: <S3>/To RTDX30

(rtdx_snk) */

873 RTDX_enableOutput(&r16); /* S-Function Block: <S3>/To RTDX31

(rtdx_snk) */

874 RTDX_enableOutput(&i16); /* S-Function Block: <S3>/To RTDX32

(rtdx_snk) */

875 }

876

877 /* Model terminate function */

878 void rtdx_com_16mul_terminate(void)

879 {

880 RTDX_disableInput(&sin_real); /* S-Function Block: <Root>/From

RTDX1 (rtdx_src) */

881 RTDX_disableInput(&real_); /* S-Function Block: <Root>/From

RTDX3 (rtdx_src) */

882 RTDX_disableInput(&sin_img); /* S-Function Block: <Root>/From

RTDX2 (rtdx_src) */

883 RTDX_disableInput(&img_); /* S-Function Block: <Root>/From

RTDX4 (rtdx_src) */

884 RTDX_disableOutput(&r1); /* S-Function Block: <S3>/To RTDX1

(rtdx_snk) */

885 RTDX_disableOutput(&i1); /* S-Function Block: <S3>/To RTDX2

(rtdx_snk) */

886 RTDX_disableOutput(&r2); /* S-Function Block: <S3>/To RTDX3

(rtdx_snk) */

887 RTDX_disableOutput(&i2); /* S-Function Block: <S3>/To RTDX4

(rtdx_snk) */

888 RTDX_disableOutput(&r3); /* S-Function Block: <S3>/To RTDX5

(rtdx_snk) */

 138

889 RTDX_disableOutput(&i3); /* S-Function Block: <S3>/To RTDX6

(rtdx_snk) */

890 RTDX_disableOutput(&r4); /* S-Function Block: <S3>/To RTDX7

(rtdx_snk) */

891 RTDX_disableOutput(&i4); /* S-Function Block: <S3>/To RTDX8

(rtdx_snk) */

892 RTDX_disableOutput(&r5); /* S-Function Block: <S3>/To RTDX9

(rtdx_snk) */

893 RTDX_disableOutput(&i5); /* S-Function Block: <S3>/To RTDX10

(rtdx_snk) */

894 RTDX_disableOutput(&r6); /* S-Function Block: <S3>/To RTDX11

(rtdx_snk) */

895 RTDX_disableOutput(&i6); /* S-Function Block: <S3>/To RTDX12

(rtdx_snk) */

896 RTDX_disableOutput(&r7); /* S-Function Block: <S3>/To RTDX13

(rtdx_snk) */

897 RTDX_disableOutput(&i7); /* S-Function Block: <S3>/To RTDX14

(rtdx_snk) */

898 RTDX_disableOutput(&r8); /* S-Function Block: <S3>/To RTDX15

(rtdx_snk) */

899 RTDX_disableOutput(&i8); /* S-Function Block: <S3>/To RTDX16

(rtdx_snk) */

900 RTDX_disableOutput(&r9); /* S-Function Block: <S3>/To RTDX17

(rtdx_snk) */

901 RTDX_disableOutput(&i9); /* S-Function Block: <S3>/To RTDX18

(rtdx_snk) */

902 RTDX_disableOutput(&r10); /* S-Function Block: <S3>/To RTDX19

(rtdx_snk) */

903 RTDX_disableOutput(&i10); /* S-Function Block: <S3>/To RTDX20

(rtdx_snk) */

 139

904 RTDX_disableOutput(&r11); /* S-Function Block: <S3>/To RTDX21

(rtdx_snk) */

905 RTDX_disableOutput(&i11); /* S-Function Block: <S3>/To RTDX22

(rtdx_snk) */

906 RTDX_disableOutput(&r12); /* S-Function Block: <S3>/To RTDX23

(rtdx_snk) */

907 RTDX_disableOutput(&i12); /* S-Function Block: <S3>/To RTDX24

(rtdx_snk) */

908 RTDX_disableOutput(&r13); /* S-Function Block: <S3>/To RTDX25

(rtdx_snk) */

909 RTDX_disableOutput(&i13); /* S-Function Block: <S3>/To RTDX26

(rtdx_snk) */

910 RTDX_disableOutput(&r14); /* S-Function Block: <S3>/To RTDX27

(rtdx_snk) */

911 RTDX_disableOutput(&i14); /* S-Function Block: <S3>/To RTDX28

(rtdx_snk) */

912 RTDX_disableOutput(&r15); /* S-Function Block: <S3>/To RTDX29

(rtdx_snk) */

913 RTDX_disableOutput(&i15); /* S-Function Block: <S3>/To RTDX30

(rtdx_snk) */

914 RTDX_disableOutput(&r16); /* S-Function Block: <S3>/To RTDX31

(rtdx_snk) */

915 RTDX_disableOutput(&i16); /* S-Function Block: <S3>/To RTDX32

(rtdx_snk) */

916 }

1 #include "MW_c6xxx_csl.h"

2 #include "rtwtypes.h"

 140

3 #include "rtdx_com_16mul.h"

4 #include "rtdx_com_16mul_private.h"

5 #include "rtdx_com_16mulcfg.h"

6 #include <hwi.h>

7 #define _C6XCHIP_SOURCE_FILE_

8

9 void cslInitialize (void);

10 void turnOn_L2Cache(void);

11 void targetInitialize(void)

12 {

13 cslInitialize();

14 }

15

16 void targetTerminate(void)

17 {

18 }

19

20 TIMER_Handle hTimer1;

21 void configureTimers(void)

22 {

23 Uint32 timerControl = TIMER_CTL_RMK(

24 TIMER_CTL_INVINP_NO,

25 TIMER_CTL_CLKSRC_CPUOVR4,

26 TIMER_CTL_CP_PULSE,

27 TIMER_CTL_HLD_YES,

28 TIMER_CTL_GO_NO,

29 TIMER_CTL_PWID_ONE,

30 TIMER_CTL_DATOUT_0,

31 TIMER_CTL_INVOUT_NO,

32 TIMER_CTL_FUNC_GPIO

 141

33);

34 TIMER_Config timerCfg;

35 Uint32 timerEventId;

36

37 // Initialize control and count fields of

38 // the timer configuration object

39 timerCfg.ctl = timerControl;

40 timerCfg.cnt = 0x0;

41

42 // Configure timer for timer interrupt 15

43 hTimer1 = TIMER_open(TIMER_DEV1, TIMER_OPEN_RESET);

44 timerCfg.prd = 11250000U;

45 TIMER_config(hTimer1, &timerCfg);

46 timerEventId = TIMER_getEventId(hTimer1);

47 IRQ_map(timerEventId, 15);

48 IRQ_enable(timerEventId);

49 TIMER_start(hTimer1);

50 }

51

52 void Timer1_ISR(Uint32 Mailbox)

53 {

54 SEM_post(&rtClockSEM);

55 }

56

57 void cslInitialize(void)

58 {

59 }

60

61 /* Function: enable_interrupts -------------------------------

62 *

 142

63 * Abstract:

64 * Enable the all DMA and DSP interrupts

65 */

66 void enable_interrupts()

67 {

68 }

69

70 /* Function: disable_interrupts ------------------------------

71 *

72 * Abstract:

73 * Disable all DSP interrupts

74 */

75 void disable_interrupts()

76 {

77 IRQ_globalDisable();

78 }

79

80 //

81 //EOF -- MW_c6xxx_csl.c

82 void turnOn_L2Cache()

83 {

84 CACHE_setL2Mode (CACHE_64KCACHE);

85 CACHE_enableCaching (CACHE_CE00);

86 }

 143

	PART One RMC report.pdf
	PART Two RMC report.pdf

