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ABSTRACT 

SMART ANTENNA DESITGN 

(Keywords: Smart antennas, digital beamforming, DSP and FPGA implementation) 

Smart antenna technologies are emerging as an innovative way to meet the 

growing demand for more powerful, cost-effective and highly efficient wireless 

communication systems. In this project, from broad category of smart antenna 

techniques, the switch beam digital-beamforming technique in the downlink is deployed 

to improve the fidelity and performance of WiMax application. In this regards, the 

designed system forms and steer the beam according to the user location which is known 

to the system. In addition, the system performs sidelobe cancellation base on the 

chebyshev algorithm to optimize the antenna radiation pattern.  The design and 

implementation steps are as follow: the system is firstly modeled by MATLAB software. 

After modeling, the algorithm is implemented in DSP by using C and Code Composer 

Studio. After DSP hardware implementation, the signal management is performed in 

DSP before transmission to the FPGA board. This management is necessary, in order to 

make processed signal in DSP suitable for channel separation process in FPGA. FPGA 

is deployed to split the data stream into sixteen channels corresponding to number of 

antenna elements.  Next, the FPGA and DSP are integrated together to form the 

baseband switch beam smart antenna system. After integration process, the hardware is 

tested; the results prove that the system functions properly as we expected from 

simulation model. In this project, lastly, the initial design of IF, RF-front-end and their 

necessary circuits are also portrayed to be used in the next smart antenna research 

project. 
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Reka Bentuk Antenna Pintar 

 

Teknologi antena pintar telah muncul sebagai satu inovasi untuk memenuhi permintaan 

sistem yang berkuasa tinggi, kos berpatutan dan berkecekapan tinggi dalam system 

perhubungan tanpa wayar. Bagi projek ini, dari pelbagai kategori dalam teknik antenna 

pintar, teknik suis alur berdigital rangkaian bawah telah digunakan untuk memperbaiki 

kualiti dan mutu dalam penggunaan WiMax. Dengan itu, sistem direkabentuk bagi 

membentuk alur dan dipandu ke kedudukan pengguna yang telah diketahui oleh sistem. 

Sebagai tambahan untuk mendapatkan bentuk sinaran antena yang optima, pembatalan 

cuping sisi dilakukan berdasarkan kepada algoritma chebyshev. Langkah-langkah bagi 

merekabentuk dan perlaksanaan projek ini adalah seperti berikut: Pada mulanya, perisian 

MATLAB digunakan untuk mendapatkan model bagi sistem tersebut dan seterusnya 

algoritma dilakukankan dalam DSP menggunakan bahasa C and ‘Code Composer 

Studio’. Setelah perkakasan DSP dilaksanakan, adalah perlu memastikan pengurusan 

isyarat dibuat sebelum signal ini dihantar ke papan FPGA. Ini adalah perlu untuk 

membolehkan data yang sesuai sahaja yang akan di hantar ke papan FPGA tersebut. 

Setelah itu, saluran perlu dipisahkan kepada enam belas unsur tatasusunan antenna 

menggunakan papan FPGA. Berikutnya adalah menyatukan FPGA dengan DSP 

bersama-sama untuk menghasilkan jalur asas alur suis sistem antenna pintar. Perkakasan 

hasil dari penyatuan diatas telah diuji dan keputusan menunjukkan sistem telah berfungsi 

dengan baik seperti yang dijangkan dari penyelakuan model. Diakhir projek ini, 

rekabentuk awal bagi IF, RF ‘front-end’ dan litar yang bersesuaian telah diberikan bagi 

tujuan untuk penggunaan penyelidikan antenna pintar di masa hadapan. 
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CHAPTER 1 

 

 

 

 

INTRODUCTION 

 

 

 

 

I. Introduction 

 

 

           The demand of smart antenna for mobile communications is increased 

recently and the main purpose for applying smart antennas is feasibility for 

increasing in capacity and efficiency. The application of smart-antenna arrays 

has been suggested for mobile-communication systems, to overcome the 

problem of limited channel bandwidth, satisfying a growing demand for a large 

number of mobiles on communications channels. Smart antennas, when used 

appropriately, help in improving the system performance by increasing channel 

capacity and spectrum efficiency, extending range coverage, steering multiple 

beams to track many mobiles, and compensating electronically for aperture 

distortion. They also reduce delay spread, multipath fading, co-channel 

interference, system complexity, bit error rate (BER). 
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1.2 Objectives 

 

 

 Base on which we have stated in submitted proposal to Ministry of 

Science, the main objective of the project is to design and fabricate high gain 

directive antenna with beamforming capability. The methodology to achieve 

this objective was to use left-handed material to implement the antenna. 

Unfortunately, after doing some research, we have found out that this 

methodology is impractical in the current situation. The reasons are outline here. 

Firstly, these materials are very expensive to build due to expensive 

manufacturing devices. Second, these areas of research presently are academic 

and they have a wide room to find the place for practical implementation, so the 

output of this kind of research would just be a laboratory scale. Therefore, we 

had preferred to design this antenna with different methodology. So we have 

chosen the signal processing technique instead of left-handed material to form 

and optimize the antenna radiation pattern. To achieve this objective we define 

three steps.  The first step is implementation of the digital beamforming by 

using the digital signal processor. More precisely, in the first step the aim is to 

implement the switched beam smart antenna for downlink transmission. 

According to the algorithm, the beam can steer from 0 to 180 degree in azimuth 

angle base on user direction with any resolution. Second step of the project is to 

manage the processed signals in DSP board after digital beamforming and 

sidelobe cancellation to transmit them to the expansion board. Third and main 

step of the project is to design and implement of baseband channel separation 

and synchronization by using FPGA board.  By completing these steps, the 

main objective of the project will be achieved. 
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1.3 Scope of research project 

 

 

 The project involves both of software modeling and hardware 

implementation. In the first phase of the project, the TMS320C6713B DSP 

board is used for beamforming. C and Code Composer Studio software is 

applied for programming this board. Also MATLAB software is chosen for 

modeling because of some facilities provided, including a Link for Code 

Composer Studio Development Tools and signal processing blocksets and 

toolbox. By using this links, transferring information to and from Code 

Composer Studio is possible. In the second phase of the project FPGA board is 

applied for performing the channel separation and synchronization and Quartus 

II software is used to program this board. In the third phase of the project 

integration of DSP and FPGA is done by programming the EDMA and McBSP 

of DSP. 

 

 

 

 

1.4 Report outline 

 

 

This report is organized as follows. In Chapter 2, background 

information and basic principle in smart antenna system is explained. In 

addition, the project structure and block diagram are discusses as well. In 

Chapter 3, digital beamforming by using DSP board is fundamentally discussed. 

Moreover, the hardware structure of DSP board shortly reviewed. Also, the 

model for beamforming is illustrated. In Chapter 4, after FPGA hardware 

description, channel separation for the project is explained. In this respect, 

FPGA programming and pin assignment are reviewed as well. In Chapter 5, 



 4 

integration of DSP and FPGA is discussed and also the system model used in 

this project is given. The IF and RF-front-end design are reviewed in chapter 6. 

The antenna array design and implementation are presented in chapter 7.  

Lastly, in Chapter 8, simulation results for digital beamforming and the channel 

separation are discussed. In this chapter a comparison between hardware and 

software simulation results is made between DSP and MATLAB software. At 

the end of this chapter, final conclusion of the work is presented, and some 

possible future works are suggested. 
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CHAPTER 2 

 

 

 

SMART ANTENNA SYSTEMS 

 

 

 

 

2.1 Introduction 

 

 

The receiver and transmitter antennas are one of the most critical 

components in the design of wireless communication systems. A good design 

of the antenna can relax system requirements, improve overall system 

performance and greatly reduce the infrastructure costs [1]. It has been 

demonstrated that using a beamforming antenna instead of an omni-directional 

antenna in the wireless communication systems can increase the system 

capacity and improve the overall system performance [2]. This performance 

enhancement is due to the reduction in the interference by attenuating the 

interference signals which have different directions of arrivals than the desired 

signal direction of arrival at the receiver antenna site. This is called spatial 

processing because the direction of arrival is related to the mobile location. 
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The system performance can be further improved by exploiting the delay 

spread of the received signals. The signal of each mobile arrives to the base 

station antenna in multi-path form. Each path usually has its own delay and 

direction of arrival. Using the smart antenna alone means that we receive 

(ideally) only one path and ignore the others.  

 

 

 

 

2.2 Smart Antenna Definition 

 

 

A smart antenna is defined as an array of antennas with a digital signal 

processing unit that can change its pattern dynamically to adjust to noise, 

interference and multipaths. The conceptual block diagram of a smart antenna 

system is shown in Figure 2.1. The following three main blocks can be 

identified: (i) array antenna (ii) complex weights and (iii) adaptive signal 

processor. The array antenna comprises of a Uniform Linear Array (ULA) or 

Uniform Circular Array (UCA) of antenna elements [3]. The individual antenna 

elements are assumed to be identical, with omni-directional patterns in the 

azimuth plane. The signals received at the different antenna elements are 

multiplied with the complex weights and then summed up. The complex 

weights are continuously adjusted by the adaptive signal processor which uses 

all available information such as pilot or training sequences or knowledge of the 

properties of the signal to calculate the weights. Such a configuration 

dramatically enhances the capacity of a wireless link through a combination of 

diversity gain, array gain, and interference suppression. Increased capacity 

translates to higher data rates for a given number of users or more users for a 

given data rate per user. This is done so that the main beam tracks the desired 

user and/or nulls are placed in the direction of interferers and/or side lobes 
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towards other users are minimized. It should be noted that the term “smart” 

refers to the whole antenna system and not just the array antenna alone. 

 

 

 

 

 

 

Figure-(2.1) Block Diagram of a Smart Antenna System 

 

 

2.3 Smart Antenna Operation 

 

 

The smart antenna works as follows; assume that there is a user sending 

a signal to the base station. Then each element of smart antenna array in the 

base station will receive the signal but at different time instance since the 

distance between the user and each element of array is different from other 

elements. By using this time delay and the distance between antenna elements 

the location of the user can be calculated. Therefore, the transmitter can send a 
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signal to the exact location of that user. This strategy can be applied for the 

system with multiple users as well. A smart antenna receiver can suppress the 

interference by using this strategy. The smart antenna is able to process the 

signals received by the array or transmitted by the array using suitable array 

algorithms to improve wireless system performance. An antenna array consists 

of a set of distributed antenna elements (dipoles, monopoles or directional 

antenna elements) arranged in certain geometry (e.g., linear, circular or 

rectangular grid) where the spacing between the elements can vary. The signals 

collected by individual elements are coherently combined in a manner that 

increases the desired signal strength and reduces the interference from other 

signals. Hence a smart antenna can be viewed as a combination of “regular or 

conventional” antenna elements whose transmit or received signals are 

processed using “smart” algorithms.  

 

Antenna 
system

RF
front 
End

Digital
Frequency
Conversion

Digital
processing

Section
RF 

signal IF signal Baseband
signal

 

Figure-(2.2) Block diagram of smart antenna implementation 

 

 

            Figure-(2.2) shows a generic implementation of smart antenna system. 

As shown in this figure, the antenna arrays have input or output as RF signals 

in the analog domain. These signals are passed to/from the Radio Frequency 

(RF) analog front end which usually consists of low noise amplifiers, mixers 

and analog filters. In the receive mode, the RF signals are converted to digital 

domain by analog to digital converters (ADCs) and in transmit mode, the 

baseband digital signals are converted to RF using digital to analog converters 
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(DACs). The down conversion from RF to baseband or up conversion from 

baseband to RF can involve the use of IF signals. The baseband signals 

received from each antenna is then combined using the “smart” algorithms in a 

digital processing section. Each antenna element hence has a RF chain going 

from the antenna element to RF front end to digital conversion for receiver and 

vice-versa for transmitter. The digital processing section can be implemented 

on a microprocessor or a DSP or FPGA. Hence the “smart” algorithm 

implementation usually is a software code unless implemented in an ASIC or 

FPGA. 

 

 

2.4 Classification of Smart Antenna 

 

 

The fundamental idea behind a smart antenna is not new but dates back 

to the early sixties when it was first proposed for electronic warfare as a 

counter measure to jamming [4]. Until recently, cost barriers have prevented 

the use of smart antennas in commercial systems. Thus in existing wireless 

communication systems, the base station antennas are either omni-directional 

which radiate and receive equally well in all azimuth directions, or sector 

antennas which cover slices of 60 or 90 or 120 degrees [4]. However, the 

advanced of low cost Digital Signal Processors (DSPs), Application Specific 

Integrated Circuits (ASICs) and innovative signal processing algorithms have 

made smart antenna systems practical for commercial use [5]. The smart 

antenna systems for cellular base stations can be divided into two main 

categories. These are (i) switched beam system and (ii) adaptive arrays 

systems. Smart antennas are a solution to capacity and interference problems 

[4]-[6]. This technology is often described as dynamic sectorization, (i.e. the 
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cells are Sectorized to reduce interference levels but in a way to enhance the 

capacity of the cell) or as an adaptive antenna. In either case, most smart 

antennas form narrow beams directed to each particular user in order to 

enhance the received signal strength (RSS) and/or signal-to-noise ratio (SNR). 

Smart antennas can be classified into two types i.e. Switched Beam Systems 

and Adaptive Array Systems. 

 

 

2.4.1 Switched Beam Systems 

 

A switched beam antenna system consists of several highly directive, 

fixed, pre-defined beams which can be formed by means of a beamforming 

network [7] e.g., the Butler 1.2. Smart Antennas for CDMA Cellular System 

[8, 9] which consists of power splitters and fixed phase shifters. The system 

detects the signal strength and chooses one beam, from a set of several beams 

that gives the maximum received power. A switched beam antenna can be 

thought of as an extension of the conventional sector antenna in that it divides 

a sector into several micro-sectors [7]. It is the simplest technique and easiest 

to retro-fit to existing wireless technologies. However switched beam antenna 

systems are effective only in low to moderate co-channel interfering 

environments owing to their lack of ability to distinguish a desired user from 

an interferer, e.g. if a strong interfering signal is at the center of the selected 

beam and the desired user is away from the center of the selected beam, the 

interfering signal can be enhanced far more than the desired signal with poor 

quality of service to the intended user [7]. 
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2.4.2 Adaptive Array System 

 

In an adaptive array, signals received by each antenna are weighted and 

combined using complex weights (magnitude and phase) in order to maximize 

a particular performance criterion e.g. the Signal to Interference plus Noise 

Ratio (SINR) or the Signal to Noise Ratio (SNR). Fully adaptive system use 

advanced signal processing algorithms to locate and track the desired and 

interfering signals to dynamically minimize interference and maximize 

intended signal reception [10]. The main difference between a phased array 

and an adaptive array system is that the former uses beam steering only, while 

the latter uses beam steering and nulling. For a given number of antennas, 

adaptive arrays can provide greater range (received signal gain) or require 

fewer antennas to achieve a given range [11]. However the receiver complexity 

and associated hardware increases the implementation costs. 

 

Through beamforming, a smart antenna algorithm can receive 

predominantly from a desired direction (direction of the desired source) 

compared to some undesired directions (direction of interfering sources). This 

implies that the digital processing has the ability to shape the radiation pattern 

for both reception and transmission [12] and to adaptively steer beams in the 

direction of the desired signals and put nulls in the direction of the interfering 

signals. This enables low co-channel interference and large antenna gain to the 

desired signal.  

 

 

Beamforming systems can be implemented in two ways; fixed 

beamforming systems or fully adaptive systems. A fixed beamforming system 

has a beamforming network (BFN) followed by RF switches which operate in 

the RF/analog domain. The switches are controlled by a control logic which 

selects a particular beam. Here the processing required is minimal as the 
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control logic has to choose one of the predetermined set of weights to select a 

beam. In adaptive beamforming, the antenna gains or weights are chosen 

adaptively through running array algorithms in the digital domain.  

 

 

2.5 Advantages of Smart Antennas  

 

Primarily smart antennas were used at base stations in a cellular 

network to improve user capacity. Capacity here refers to the number of 

subscribers that can be simultaneously serviced in a system. Usage of 

omnidirectional antennas causes co-channel interference when two users use 

the same band of frequency that eventually limits the user capacity in a system. 

Since smart antennas can focus their beams towards desired user reducing 

interference to other users using the same frequency band, the user capacity in 

a system can be improved using spatial division multiple access (SDMA). 

Figure-(2.3) shows this advantage of SDMA compared to the omnidirectional 

case, which can reduce co-channel interference using beamforming.  

 

 

Figure-(2.3) Omnidirectional and smart antennas based cellular system 
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Other advantages as seen from various types of smart antennas studied 

include robustness against multipath fading and co-channel interference which 

improves reliability of received signal; reduced power consumption for 

handsets; low probability of interception and detection; enhanced location 

estimates and enhanced range of reception. Because there are obstacles and 

reflectors in the wireless propagation channel, the transmitted signal arrivals at 

the receiver from various directions over a multiplicity of paths. Such 

a phenomenon is called multipath. It is an unpredictable set of reflections 

and/or direct waves each with its own degree of attenuation and delay. Recent 

studies on use of smart antennas in mobile terminals have also shown to 

improve network capacity in ad-hoc networks.  

 

Smart antenna systems can improve link quality by combating the 

effects of multipath propagation or constructively exploiting the different 

paths, and increase capacity by mitigating interference and allowing 

transmission of different data streams from different antennas. More 

specifically, the benefits of smart antennas can be summarized as follows [16]. 

Some of the advantages of the smart antenna are as follows: 

 

(i) Increased range/coverage 

  

The array or beamforming gain is the average increase in signal power 

at the receiver due to a coherent combination of the signals received at all 

antenna elements. It is proportional to the number of receive antennas and also 

allows for lower battery life. 

 

(ii) Lower power requirements and/or cost reduction 

 

Optimizing transmission toward the wanted user (transmit 

beamforming gain) achieves lower power consumption and amplifier costs. 
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(iii) Improved link quality/reliability  

 

Diversity gain is obtained by receiving independent replicas of the 

signal through independently fading signal components. Based on the fact that 

it is highly probable that at least one or more of these signal components will 

not be in a deep fade, the availability of multiple independent dimensions 

reduces the effective fluctuations of the signal.   

 

(iv) Increased spectral efficiency  

 

Precise control of the transmitted and received power and exploitation 

of the knowledge of training sequence and/or other properties of the received 

signal (e.g., constant envelope, finite alphabet, cyclostationarity) allows for 

interference reduction/ mitigation and increased numbers of users sharing the 

same available resources (e.g., time, frequency, codes) and/or reuse of these 

resources by users served by the same base station/ access point.  

            

 

 

2.6 Disadvantages of Smart Antennas 

     

One of the major existing disadvantages of smart antennas is in their 

design and implementation in hardware. Multiple RF chains can increase the 

cost and make the transceiver bulkier. Most of the baseband processing 

requires coherent signals. This means that the entire mixer Local Oscillators 

and Analogue to Digital Converter clocks (ADCS) need to be derived from 

same sources. This can present significant design challenges. The phase 

characteristics of RF components can change over time. These changes are 

relatively static and hence need calibration procedures to account for phase 

differences.  
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Most of the devices such as mixers amplifiers and ADCS used are non-

linear devices. Using smart antennas can increase the number of such 

components used. This can affect the performance of the array if not checked 

periodically. Further more since antenna arrays use more than one source of 

signal the data bandwidth required for digital processing increases linearly 

with number of antenna elements used. This can limit data rates for different 

applications. Note that the technological challenges in terms of hardware and 

processing load can be satisfactorily met by resorting to present-day 

miniaturized RF components and faster and low power processors.  

 

The accommodation of the antenna array, itself within a small factor 

device however remains a challenge. Base stations can easily host antenna 

arrays of four or more elements but with existing microstrip or patch antenna 

technology, up to three elements can be fitted in a handset form-factor. The 

wrapping of the hand around a handheld device may diminish the performance 

of a handheld smart antenna system.  

 

 

2.7 Smart Antenna design in wireless Communication Center (WCC) 

 

Base on the importance of smart antenna system in any wireless 

communication system, Wireless Communication Centre (WCC), Universiti 

Teknologi Malaysia started working at this project at the beginning of this 

year.  This centre is targeting to implement two types of smart antenna 

systems. The first project is “Downlink switch beam smart antenna” for 

WiMax application and second project would be the same system for uplink 

transmission. 

 

The smart antenna structure for phase one is similar to Figure-(2.4). 

The antenna elements consist of 16 microstrip antenna elements with 
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rectangular shape. The algorithm are programmed by computer using C and 

Code Composer Studio and then loaded in DSP board.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure-(2.4) Linear Array Structure 

 

DSP has a main role in smart antenna system. The DSP is used just for 

forming and steering the beam using the calculated weights in the SDRAM 

base on the user direction. The location of the user can be identified using one 

of the directions of arrival algorithm. However, in this research we assume that 

the location of user is known to the system. 

 

 

For this project the microstrip antenna array is used. Basically, 

scanning and shaping the beam is highly depend on array elements pattern. 

However, any type of antenna such as dipole, monopole, horns, reflectors, 

loops, aperture depend on application can be used. Compared with other type 
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of antenna, microstrip antenna for wireless mobile communication could be the 

best option. The reason is due to its low price, ease of design and fair 

efficiency rather than other types of antenna. 

                                                     

 

2.8 Design of downlink smart antenna system in WCC 

 

 

Technically, there are three possible designs which can be considered for 

this project as shown in Figures-(2.5), (2.6) and (2.7). However, we designed 

and implement the second structure due to its versatility and performance. 

 
                                              Figure-(2.5) First design 

 
Figure-(2.6) second design 
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Figure-(2.7) third design 

 

 

 

 

 

2.9 Expansion board design 

 

 

The difference between abovementioned designs is on the extension or 

daughter cards. The expansion board design is affected by customer 

application. Different application has different requirement and constraints.  

For more throughput and data rate the high sample rate DAC must be used. 

Technically, the high speed DAC have parallel data inputs, as an example 

DAC5687 is parallel input DAC with sampling rate up-to 500MS/s. base on 

these facts, the required expansion board for such an application is different. 

Therefore some sort of interface matching is needed. The matching can be 

achieved using FPGA programming. Other than that, sometimes in order to 

decrease the price, one level of up-conversion is performed in digital domain 

instead of analog domain. Of course by doing digital up-conversion, the high 

speed DAC with high sampling rate must be used. Because, DAC must 

transform the IF digital signal to analog and therefore base on  Nyquist criteria 

sampling frequency increases to double time of higher IF frequency. 
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Base on these facts, for this project the second option design for the 

expansion board is chosen Figure-(2.6). In this design, high sampling data rate 

DAC such as DAC5678 could be connected to FPGA board.  We will explain 

this configuration in detail in FPGA chapter. The next section gives a picture 

of the third design. 

 

 

2.9.1 The third design using programmable DAC 

 

In third design, the daughter card can be designed by using 4 unit of 

DAC 8534 from TI as shown in Figure-(2.8).  

  
 

 

Figure-(2.8) baseband daughter card 
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These four D/A are 3-wire standard serial D/A which can be connected 

to MCBSP through quadruple bus buffer gate “SN74LVC125A”. It means they 

will share the serial channel and they can be synchronized through software 

programming. The functional block diagram and pin configuration of 

DAC8534 is shown in Figure-(2.9) and (2.10). 

 

 
 

Figure-(2.9) functional block diagram of DAC8534 

 

 

 
Figure-(2.10) pin configuration of DAC8534 
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Figure-(2.11) interfacing a DAC8534 with a TMS320C6713B 

 

 

 

2.9.1.1 Interfacing a DAC8534 with a TMS320C6713B 

 

As it can be seen each DAC8534 is able to support four channels, 

therefore we need to interface 4 unit of DAC8534. Of course we need to 

amplify the output signal of TMS before connecting to DAC. Therefore, 

quadruple bus buffer gate “SN74LVC125A” is used to drive 4 unit of DAC. 

So, the baseband daughter card can be designed as shown in Figure-(2.6). VCC 

for SN74LVC125A can be up-to 3.6v. This buffer can accept the signal level 

of up-to 5 volt, the output current of this buffer is around 20mA. The pin 

configuration of this IC is shown in figure-(2.12). 
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Figure-(2.12) quadruple bus buffer gate “SN74LVC125A” 

 

The first possible option for expansion board is much simpler than the 

other types. For voice application which they need low sampling rate in 

compare to data communication the possible design could be Figure-(2.4). In 

this case we need to have 16 number of serial single channel DAC which can 

directly connect to McASP. The DAC in this case can be DAC8830 shown in 

Figure-(2.13) which can support up to 50Mb/s.  

 

 

 

Figure-(2.13) typical connection of DAC8830 
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Another DAC option for this case could be DAC8560 shown in Figure-

(2.14) which can be clocked at 30MHz. The difference between these two is in 

control part, DAC8560 can be selected using a chip-select pin, however 

DAC8830 is enabled by SYNCH pin, also there is some sort of control in input 

serial data.  

 

 

 
          

 Figure-(2.14) typical connection of DAC8560 
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CHAPTER 3 

 

 

 

 

DIGITAL BEAMFORMING WITH DSP BOARD 

 

 

 

 

3.1 Introduction 

 

 

The digital beamforming is integration between antenna technology and 

digital technology. DBF is based on converting signals into two streams of 

binary baseband I and Q signals, which represent the amplitudes and phases of 

signals. The beamforming is carried out by weighting these digital signals, 

thereby adjusting their amplitudes and phases such that when added together 

they form the desired beam. In this chapter the digital beamforming by using 

DSP board is    briefly explained fundamentally. First, a general overview on 

beamforming theory is provided then the DSP board used in this project is 

introduced. Finally the algorithm of digital beamforming is explained. 
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3.2 Beamforming 

 

Beamforming is one type of processing used to form beams to 

simultaneously receive a signal radiating from a specific location and attenuate 

signals from other locations [17]. Systems designed to receive spatially 

propagating signals often encounter the presence of interference signals. If the 

desired signal and interference occupy the same frequency band, unless the 

signals are uncorrelated, e. g., CDMA signals, the temporal filtering often 

cannot be used to separate signal from interference. However, the desired and 

interfering signals usually originate from different spatial locations. This spatial 

separation can be exploited to separate signal from interference using a spatial 

filter at the receiver. Implementing a temporal filter requires processing of data 

collected over a temporal aperture. Similarly, implementing a spatial filter 

requires processing of data collected over a spatial aperture. 

 

 A beamformer is a processor used in conjunction with an array of 

antennas to provide a versatile form of spatial filtering. The antenna array 

collects spatial samples of propagating wave fields, which are processed by the 

beamformer. Typically a beamformer linearly combines the spatially sampled 

time series from each antenna to obtain a scalar output time series in the same 

manner that an FIR filter linearly combines temporally sampled data. There are 

two types of beamformers, narrowband beamformer, and wideband 

beamformer. A narrowband beamformer is shown in Figure-(3.2).  

 

In Figure-(3.1), the output at time M, y (M), is given by a linear 

combination of the data at the K sensors at time M:     

 

 



 26 

*( ) ( )

1

K
y M w x M

i i
i

= ∑
=

                         (3.16) 

 

Where * denotes complex conjugate [18]. Since we are now using the 

complex envelope representation of the received signal, both  and ( )
i

w x M
i

 are 

complex. The weight 
i

w  is called the complex weight. 

*
1

w

*
2

w ∑

( )
1

x M

( )x M
k

( )
2

x M

*w
k

( )y M

 

Figure-(3.1) A narrowband beamformer 

 

 

In this project, for any directions weights are computed for sixteen 

antenna arrays. In consequence, there are 7 16 112× =  weights for seven 

directions. These weights are complex number, so they can change the phase 

and amplitude of the original signal. The weights can be expressed as: 
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With replacing the             , the equation (3.17) is became: 

 

                                   
[( 1) sin ]j k

w e
k

π θ− −
=                             (3.18) 

 

For example for DOA= 30� , weights can be computed as below: 

 

exp( * * (1 1) *sin(30)) 1
1

w j π= − − =  

exp( * *(2 1)*sin(30))
2

w j jπ= − − = −  

exp( * *(3 1)*sin(30)) 1
3

w j π= − − = −  

�  

                exp( * *(16 1)*sin(30))
16

w j jπ= − − = −  

 

The matrix of weights for 30θ =
� : 

 

 

 

                                                                                                     (3.19) 

 

                                

 

 

 

3.3 DSP Design (Beamforming and sidelobe cancellation) 

 

Digital signal processor can be considered as the brain of smart antenna 

systems. In the other words, the smartness of smart antenna system is 

originated from this part. For this project 225 MHz DSP, built on the SDK 
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TMS320C6713B Figure-(3.2) is considered to use. For academicals and 

researches purposes usually the SDK module (Starter Development Kit) which 

is a unified kit consists of CPU, memories modules with some extension 

connector is technically adequate. The dominant advantages of the SDK 

version over the EVM (evaluation Module) is that the JTAG emulator is built 

onboard therefore the overall system cost decreases.  Although SDK DSP 

board is designed to ease the academicals researches, it needs to be extended 

for the desired specific application.  

Figure-(3.2) Functional block and CPU (DSP core) diagram 

 

 

3.4 DSP system design 

 

 

Real time DSP system design is very challenging engineering task.  

The different group of specialist must work together in order to design the 
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professional DSP system to apply in the real world application. In wide 

category, the implementation process is divided into software and hardware 

sections. These two sections as shown in the Figure-(3.3) must progress in 

parallel. 

 

Figure-(3.3) simplified DSP system design 
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The block diagram of software development process of DSP design is 

given in Figure-(3.4). 

 

Figure-(3.4) software development process diagram 

 

As it is cleared from the Figure-(3.4), firstly the algorithm is designed 

according to beamforming and sidelobe cancellation algorithms. Then the 

algorithms are implemented using MATLAB source code, and then these 

codes are converted to C language code. In the next step using code composer 

studio which is software capable of generating assembly code will do the rest 

of process for DSP programming. Then the digital input signal after ADC 

come to the system and it save as an input file. The loaded program in DSP 

manipulates the incoming digital signal. Finally, the results save in the output 

buffer or memory to be ready to send in the next step which is usually digital 

to analog transformation.  

 

3.5 DSP speed and real time constraints 

 

   A limitation of DSP systems for real time application is that the 

bandwidth of the system is limited by the sampling rate. The processing speed 

determines the rate at which the analog signal can be sampled. For example, a 

real-time DSP system demands that the signal processing time, tp, must be less 
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than the sampling period T, in order to complete the processing task before the 

new sample comes in. That is, 

 

p
t T<  

This real time constraint limits the highest frequency signal can be 

processed by a DSP system. This is given  

 

1

2 2

s

M

p

f
f

t
< <  

It is clear that the longer the processing the lower the signal bandwidth. 

Or in the other word to perform the wideband signal we need the high speed 

DSP processor with small amount of processing time for each sample of 

incoming data. However, this problem can be solved partially using rate 

converter or CIC filter as long as the quality of the processing is acceptable for 

that specific application. The DSP processor used for this project is from 6000 

series. The specification is given as below: 

 

1. Floating point processor 

2.  2000 million instructions per second (MIPS) at 225 MHz 

3. One analogue input/output 

4.  Memory module expansion 

5.  Host port interface (HPI) 

6. Peripheral expansion 

7. Embedded USB JTAG controller with plug and play drivers, USB 

cable included  

8. TI TLV320AIC23 codec  

9. 16MB SDRAM  

10. 512K bytes of on board Flash ROM  

11. On board IEEE 1149.1 JTAG connection 
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3.6 DSP implementation of smart antenna system 

 

In smart antenna DSP perform just two functions, DOA estimation and 

beamforming. However, in this project to simplify the implementation process, 

it is assumed that the direction of the user has been identified before. So, we 

just need to perform the beamforming process for known direction. By having 

this assumption in mind, to steer the beam to pre-calculate user direction, the 

multiplication process of baseband signal to complex number is technically 

adequate enough. In addition the system is just able to produce one beam 

toward one single user. It means that to support multiple users simultaneously, 

the system must produce multiple beams which is out of the project scope. 

Moreover, to demonstrate the concept of digital beamforming in smart 

antenna, it is assumed that the application requires having seven beams at the 

seven desired angle shown in Figure-(3.5) each with 20 degree apart. 

 

 

Figure-(3.5) the predefined antenna beam direction 

 

 By using computer programming, the antenna can steered the beam to these 

directions at predefined time interval called T. The radiation pattern of the 

system is optimized by conventional Chebyshev window weighting. By doing 

so, the side lobes are minimized and also the radiated power toward the desired 
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user is maximized. It means the total system interference is minimized 

therefore the SNR increases.  

 

After this introduction, now it is clear that that the main important task 

in baseband processing is just multiplication process of coming signal from 

conventional wireless transmitter to complex weights. This process is shown in 

Figure-(3.6).  

 

 

 

Figure-(3.6) the beamforming flow 

 

 

3.7 Beamforming matrix  

 

For each direction, there are 2×2×16=64 multiplication operations. This 

can be simplified by calculating beamforming matrix before applying in the 

program. It means that the multiplication process for phase and amplitude is 

manually performed for each direction before programming. Then the results 

are stored in the memory called lookup table. It means for the direction of θ we 

would have following operation. 

 

      Wkaiser ×COSθ = Wreal   ; for 7 directions 7×16 matrix 
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      Wkaiser × SINθ = Wimag   ; for 7 directions 7×16 matrix 

        

If A=[Wreal]7×16  and B=[Wimag]7×16   then beamformer matrix=[A ;B] 

14×16  , therefore it can be saved at the onboard SDRAM on the starter kit 

(DSK6713) , So the RAM expansion is not needed. 

 

 

3.8 Sidelobe cancellation by using DSP 

 

The Kaiser window is a window function w
k

 used for digital signal 

processing, and is defined by the formula: 

 

Kaiser Window function for N=100 and α= 0.5,1,2,4,8,16 

 

 

 

 
 

 

Where I0 is the zeroth order modified Bessel function of the first kind, 

α is an arbitrary real number that determines the shape of the window, and the 
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integer N gives the length of the window (N+ 1 point).By construction, this 

function peaks at unity for k = N/2, i.e. at the center of the window, and decays 

exponentially towards the window edges. 

The larger the value of |α|, the narrower the window becomes; α = 0 

corresponds to a rectangular window. Conversely, for larger |α| the width of 

the main lobe increases in the Fourier transform of wk, while the side lobes 

decrease in amplitude. Thus, this parameter controls the tradeoff between 

main-lobe width and side-lobe area, as is illustrated in the plot of the frequency 

spectra below. For large α, the shape of the Kaiser window (in both time and 

frequency domain) tends to a Gaussian curve. The Kaiser window is nearly 

optimal in the sense of its peak's concentration around ω=0 (Oppenheim et al., 

1999). 

 
Frequency spectra of Kaiser Windows for α=2 and α=4. 

 

 

The sharp minima in the side lobes are places where the amplitude goes 

all the way to zero, but does not here because of the finite plotting resolution. 
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CHAPTER 4 

 

 

 

 

CHANNEL SEPARATION WITH FPGA BOARD 

 

 

 

 

4.1 Introduction 

 

 

In this chapter the channel separation for smart antenna project is briefly 

explained. First, a general overview on FPGA board is provided then channel 

separation is shortly discussed. 

 

 

 

4.2 Field Programmable Gate Arrays (FPGAs) Overview 

 

 

A field-programmable gate array (FPGA) is an integrated circuit (IC) 

that can be programmed in the field after manufacture. It is containing 

programmable logic components called "logic blocks", and programmable 

interconnects. Logic blocks can be programmed to perform the function of basic 

logic gates such as AND, and XOR, or more complex combinational functions 
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such as decoders or simple mathematical functions. In most FPGAs, the logic 

blocks also include memory elements, which may be simple flip-flops or more 

complete blocks of memories. DSP algorithms may also be implemented using 

field-programmable gate arrays (FPGAs). 

 

Advantages of FPGAs: 

1. A shorter time to market  

2. Ability to re-program in the field to fix bugs 

3.  Lower non-recurring engineering costs. 

 

 

 

4.2.1Applications of FPGAs 

 

 

Applications of FPGAs include digital signal processor DSP, software-

defined radio, aerospace and defense systems, ASIC prototyping, medical 

imaging, computer vision, speech recognition, cryptography, bioinformatics, 

computer hardware emulation and a growing range of other areas. 

 

 

4.2.2 FPGAs Architecture 

 

 

There are three key parts of its structure: logic blocks, interconnect, and 

I/O blocks. Figure-(4.1) illustrates a typical FPGA architecture. The I/O blocks 

form a ring around the outer edge of the part. Each of these provides 

individually selectable input, output, or bi-directional access to one of the 

general-purpose I/O pins on the exterior of the FPGA package. 
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Inside the ring of I/O blocks lies a rectangular array of logic blocks. And 

connecting logic blocks to logic blocks and I/O blocks to logic blocks is the 

programmable interconnect wiring. 

 

 

 

 

 

 

 

 

 

Figure-(4.1) internal structure of an FPGA 

 

The logic blocks within an FPGA can be as small and simple as the 

macrocells in a Programmable Logic Devices (PLD) or larger and more 

complex (coarse-grained). However, they are never as large as an entire PLD, as 

the logic blocks of a Complex Programmable Logic Devices (CPLDs) are. 

Remember that the logic blocks of a CPLD contain multiple macrocells. But the 

logic blocks in an FPGA are generally nothing more than a couple of logic gates 

or a look-up table and a flip-flop. 

 

Because of all the extra flip-flops, the architecture of an FPGA is much 

more flexible than that of a CPLD. This makes FPGAs better in register-heavy 

and pipelined applications. They are also often used in place of a processor-

plus-software solution, particularly where the processing of input data streams 

must be performed at a very fast pace. In addition, FPGAs are usually denser 

(more gates in a given area) and cost less than their CPLD cousins, so they are 

the de facto choice for larger logic designs. 
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4.3 Altera Excalibur development board 

 

 

In this project the Altera Excalibur development board is used. . It 

contains an APEX EP20K200E FPGA, 8Mbits (512K x 16) of internal Flash 

RAM, two 1Mbit (64K x 16) internal SRAM devices, an RS-232 

communication port, a JTAG port, a parallel port, multiple expansion ports, two 

LEDs, two 7-Segment displays, and miscellaneous other switches and 

components [19]. Figure 4.2 shows a diagram of the Excalibur board. 

 

 

Figure-(4.2) the Excalibur Development Board 

 

 

Contained within the APEX EP20K200E device is a Nios embedded 

processor. This soft core processor contains a 16 bit instruction set and is 
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capable of operating with a 16 or 32 bit data bus. It can perform 50 million 

instructions per second with one instruction per clock cycle. With a Nios 

processor added to the EP20K200E device (as well as a Fast Fourier Transform 

block), there are still 150K spare gates of the 200K total gates available for use 

[19].The structure of the Nios processor resembles Figure 4.3:  

 

 

 

 

Figure-(4.3) the Nios Embedded Processor 

 

The memory on the Excalibur board is set up as follows. The two 

internal SRAM devices can be used with 16 or 32 bit applications, but if the 

Nios processor is operating at 16 bits, only one of the two SRAM devices can 

be used. A 144 pin SODIMM memory expansion socket is also provided on the 

board if needed. Both the Nios processor and the APEX device share the flash 

memory [19]. 
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The flash memory is organized as follows:  

 

      Flash Address                                 Size                             Comments 

 

0x1C0000 – 0x1FFFFF                      256 Kbytes              Factory-default APEX 

                                                                                             Configuration 

0x180000 – 0x1BFFFF                      256 Kbytes               User-defined  

APEX                                                                                  Configuration data 

 

0x100000 – 0x17FFFF                       512 Kbytes               Nios instruction and 

                                                                                  Nonvolatile data  

                                                                                  Space 

 

Table 4.1 – Flash Memory Configuration of FPGA 

 

A factory programmed controller chip is contained on the board, a 

MAX7064 device that loads data from the flash and clocks it into the APEX 

device. It is possible to use user defined configurations by shorting J2 (normally 

open), and also to reprogram the device, but it is not recommended as it can 

result in an unusable board. The beginning address for the factory default is 

0x1C0000, and for user defined configurations, the starting address is 0x180000 

[19]. 

 

For expansion purposes, the Excalibur board provides 5 volt and 3.3 volt 

daughter cards. For 5 volt cards, a 40 pin connector (JP11), a 20 pin connector 

(JP13), and a 14 pin connector (JP12) are provided. The same applies to 3.3 volt 

cards, using JP8, JP10, and JP9, respectively [19].In this project the JP8 is used 

for transferring data from the DSP to FPGA board. Also, JP10 is used for clock 

and frame synchronization signals from DSP to FPGA. 
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There are three devices available for programming on the Excalibur 

board: the APEX device, the configuration controller, and the PMC (devices for 

JNC1 and JNC2). The ability to program each is determined by SW8, SW9, and 

SW10, respectively. If a switch is positioned to the left (marked connect on the 

board), then the corresponding device is added to the JTAG chain; each switch 

positioned to bypass will remove the device from the chain [19]. 

 

There are seven remaining switches on the board. SW1 is an eight pin 

user defined DIP switch. SW2 is a special button for resetting the board. Upon a 

reset, the configuration controller reloads the flash memory into the APEX 

device. SW3 is the clear function, which is defined by the configuration 

controller (a CPU reset by factory default). SW4-SW7 is user defined and may 

perform any function necessary. When pressed, the signals provided are logic 

zero [19]. 

                

There are two clocks for use on the Excalibur board. The first one is a 

33.3333MHz signal provided by an onboard oscillator. The second one utilizes 

the phase locked loop circuitry on the board so the user can create their own 

clock [19]. In this research, the external clock which is come from DSP board is 

used. 

 

 

 

4.4 FPGA programming 

 

 

In this project, the Quartus II software is used for programming the 

FPGA. This program is written by verilog. After programming the pins of 

FPGA must be assigned for transferring data to the next part. Figure-(4.4) 

shows the pins assignment of FPGA. 
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Figure-(4.4) Pin assignment of FPGA 
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CHAPTER 5 

 

 

 

INTERGRATION OF DIGITAL SIGNAL PROCESSOR AND FPGA 

BOARD 

 

 

 

 

5.1 Introduction 

 

 

One of the limitations of DSP board is the number of high data rate 

output port. This board only has two high data rate ports called Multi channel 

Buffer Serial Port (McBSP). Because of this limitation, the expansion board is 

needed. In this project, FPGA board is used as an expansion board.  

 

 

5.2 System design 

 

 

 

Figure-(5.1) shows the design for the expansion board is chosen for this 

project. In this design, high sampling data rate DAC such as DAC5678 can be 

connected to FPGA for digital to analog conversion.  
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Figure-(5.1) Smart antenna system model 

 

 

5.3 Integration of DSP and FPGA 

 

 

For connecting the DSP to FPGA, the TMS320C6713 DSK supports 

three expansion connectors that follow the Texas Instruments interconnection 

guidelines. The expansion connector used in this project is called Peripheral 

Expansion Connector (Figure-5.2). It is an 80 pin 0.050 x 0.050 inches 

connector. This connector provides both +12V and -12V to the daughter card 

[20].  
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Figure-(5.2) Integration of DSP and FPGA 

 

DSP 
Board

FPGA 
Board
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In this research, firstly for transferring data to device peripherals, 

EDMA and MCBSP must be programmed. The enhanced DMA (EDMA) 

controller of the TMS320C6713B device is a highly efficient data transfer 

engine, capable of maintaining up to 1200 Mbytes per second (MB/s) of data 

throughput during operation. The EDMA handles all data movement between 

the level-two memory and the device peripherals (in this project is FPGA), 

including cache-servicing, non-cacheable memory accesses, user-programmed 

data transfers, and host accesses (Figure-5.3).  

 

 

Another part used for transferring data to the FPGA is McBSP ((Figure-

5.3). This part provides the following functions: 
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• Full-duplex communication 

• Double-buffered data registers 

•  Independent framing and clocking for receive and transmit 

• External shift clock or an internal  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure-(5.3) Transferring from DSP and FPGA 

 

5.4 Summary 

 

In this chapter, the integration of DSP and FPGA is explained. For 

providing this connection, the EDMA and McBSP must be programmed. And 

these programming is done by using the code composer studio software.  
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CHAPTER 6 

 

 

 

 

IF AND RF FRONT-END DESIGN FOR SMART ANTENNA 

 

 

 

 

6.1 Introduction 

 

In all above three designs which are discussed in chapter two, we need 

to have our own design for the IF and RF part because there is no on-the-shelf 

device RF chain for smart antenna. Although some companies have fabricated 

IF and RF part, it is very costly and in addition there is no 16 channel IF and 

RF part! A 16-channel IF and RF chain can be designed as shown in Figure-

(6.1). 
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Figure-(6.1) IF and RF front end design 

 

 

This RF-front-end can transform the baseband data to 5.8GHz RF 

signal. This design is integration of TI and Micro linear devices companies. 

The single channel IF part comes from TI and the single channel RF part is 

designed by Micro linear company. 

 

 

 

6.2 Baseband glue circuit 

 

The design is started from multi-channel baseband data which come to 

the glue circuit in the first step. The data then transform to balanced type using 

this circuit shown in Figure-(6.2). By using differential signal the noise effect 

in the IF part can be highly mitigated. This circuit is necessary since the IF 

transformation is done by TRF3702 is balanced input device. 
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Figure-(6.2) connecting the single ended signal to balanced input of 

TRF3702 

 

 

 

 

The glue circuit for the second expansion board shown in Figure-(2.10) 

can be similar to Figure-(6.3) because in this case we do not need to design 

Balun circuit. Therefore, the Glue circuit as shown in dash-line in Figure-(6.3) 

could be very simple.  
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Figure-(6.3) glue circuit connecting the DAC5687 to TRF3702 

 

 

 

 

6.3 Quadrature-modulator 

 

TRF3702 is an IF to RF up-converter, the pin arrangement shown in 

Figure-(6.4) this IC can up-convert the baseband or IF signal to 2.4GHz 

signals. 
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Figure-(6.4) TRF3702 pin arrangement 

 

 

The functional block diagram of the TRF3702 is shown in Figure-(6.5).  This 

component is able to work with I and Q signals. However, in our project the 

signal is just real signal therefore the Q signal must be grounded. 

 
 

 

Figure-(6.5) TRF3702 functional block diagram 
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Figure-(6.6) Generating the LO signal for TRF3702 using TRF3750 

 

 

 

6.4 local oscillators for 2.4GHz signal 

 

If the modulator need to works with multi carrier system, the TRF3750 

shown in Figure 4.6, can be used as a frequency synthesizer. This PLL can 

generate different frequency components for the system. However, in our 

system the single RF frequency at is needed. Therefore, we can use a VCO to 

generate 2.4 RF sin frequencies. The VCO is considered for this project is 

“MAX2750” from MAXIM Company. 

 

Figures 6.7 and 6.8 are shown the typical layout and pin configurations of for 

MAX2750. The MAX2750/MAX2751/MAX2752 VCOs are implemented as 

an LC oscillator topology, integrating all of the tank components on-chip. This 

fully monolithic approach provides an extremely easy-to-use VCO, equivalent 
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to a VCO module. The frequency is controlled by a voltage applied to the 

TUNE pin, which is internally connected to a varactor.  

 
Figure-(6.7) the typical layout for” MAX2750” 

 

The VCO core uses a differential topology to provide a stable frequency versus 

supply voltage and improve the immunity to load variations. In addition, there 

is a buffer amplifier following the oscillator core to provide added isolation 

from load variations and to boost the output power. 

 

 
 

Figure-(6.8) the pin configuration for” MAX2750” 
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6.5 Wilkinson power divider 

 

A 2.4GHz and 10.368 MHz Wilkinson power divider also need to be 

designed to equally divide the LO and reference frequency of IF and RF part to 

their counterparts. 

 

 

 

 

6.6 Balun Circuits 

 

Since, the output of TRF3702 is single ended, the either Balun circuit 

of in Figure 3.13 by using AD8352 or a Balun chip shown in Figure 6.9 circuit 

can be used. The Balun prior to ML5824 circuit is needed since the input of 

ML5824 is differential input. 

 

 

 
Figure 6.9 Balun circuit before ICML5824, CAC=0.1µf RG=120KΩ 

 
 

This Balun figure 6.10 circuit functions at 2GHZ, the better choice could be 

2450BL15B200 from Ceramic solution which is simple solution for this 

purpose at the frequency of 2.4. The pin configuration can be seen in figure 

below. 
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Figure 6.10 Balun circuit configurations at 2.4 GHz 
 

 

 

6.7 Temperature compensated crystal oscillator (TCXO)  

 

 

The Temperature compensated crystal oscillator (TCXO 514) from 

Oscillant Company can be used in RF part as a reference frequency. The value 

of reference RF reference frequency value is 10.368MHz.  

 

 
 

Figure-(6.11) low profile TCXO-514 frequency range 1.2 to 100MHz 
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The oscillator for the RF part is a built in oscillator which is built on 

ML 5824. However, for the IF part the oscillator is voltage controlled 

oscillator (VCO).  

 

 
 

 
 

Figure-(6.12) ML5824 top-views 
 

6.8 linear RF and IF amplifier 

 

 

The Wilkinson power divider divide the power in 16 branch, therefore 

power amplification is necessary prior to LO in TRF3702. Either of amplifiers 

in figure 6.13 and 6.14 can be used for this project for the 2.4GHz. However, 

for the second power Wilkinson AD8353 should be used. 

 



 59 

 
 

 

Figure-(6.13) HMC315 linear amplifier frequency range up-to 7 GHZ (C 

block=0.1micro, Rbias=5k) 
 

 

 
 

 

Figure-(6.14) AD8353 amplifier (frequency range 1 MHZ up-to 2700 

GHZ) 

 

 

6.9 Second up-converter 

 

 

 

The Ml5824 is a cost effective solution to up-convert 2.4 signals to 5.8 

RF signals, in this project to simplify the RF design we used, this IC following 

by ML5803 a power amplifier. The functional block diagram of ML5824 is 

shown in figure 6.15. 
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Figure-(6.15) Ml5824 functional block diagram 
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Figure-(6.16) ML5824 glue circuits  
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CHAPTER 7 

 

 

 

 

ANTENNA ARRAY DESIGN AND FABRICATION 

 

 

 

 

7.1 Introduction 

 

 

An antenna array consists of a set of antenna elements that are spatially 

distributed at known locations with reference to a common fixed point [21]. By 

changing the phase and amplitude of the exciting currents in each of the antenna 

elements, it is possible to electronically scan the main beam and/or place nulls 

in any direction.                                     

 

The antenna elements can be arranged in various geometries, with linear, 

circular and planar arrays being very common. In the case of a linear array, the 

centers of the elements of the array are aligned along a straight line. If the 

spacing between the array elements is equal, it is called a uniformly spaced 

linear array. A circular array is one in which the centers of the array elements lie 

on a circle. In the case of a planar array, the centers of the array elements lie on 
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a single plane. Both the linear array and circular array are special cases of the 

planar array. Arrays whose element locations conform to a given non-planar 

surface are called conformal arrays.  

 

The radiation pattern of an array is determined by the radiation pattern 

of the individual elements, their orientation and relative positions in space, and 

the amplitude and phase of the feeding currents. If each element of the array is 

an isotropic point source, then the radiation pattern of the array will depend 

solely on the geometry and feeding current of the array, and the radiation 

pattern so obtained is called the array factor. If each of the elements of the array 

is similar but non-isotropic, by the principle of pattern multiplication, the 

radiation pattern can be computed as a product of the array factor and the 

individual element pattern [22]. 

 

                                 

7.2 Uniformly Spaced Linear Array 

 

 

Consider a K-element uniformly spaced linear array which is illustrated 

in Figure-(7.1). In Figure-(7.1), the array elements are equally spaced by a 

distance d, and a plane wave arrives at the array from a direction θ of the array 

broadside. The angle θ is called the direction-of-arrival (DOA) or angle-of-

arrival (AOA) of the received signal, and is measured clockwise from the 

broadside of the array [23]. The received signal at the first element may be 

expressed as: 

                                      

                                                 1( ) ( )cosy t m t wt=                                   (7.1) 

 

                                                 1( ) ( ) cos(2 )y t m t f t
c

π=                           (7.2) 
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Figure-(7.1) linear array antenna 

 

Where the carrier frequency of the modulated signal is
c

f  and ( )m t  is the 

amplitude of the signal. The complex envelope of 1( )y t  is given by: 

 

                                                              1( ) ( )
jwt

y t m t e=                                          (7.3) 

 

 

And the received signal of the second element may be expressed as 

 

                                                2 ( ) ( )cos ( )y t m t w tτ τ= − −                         (7.4) 

 

If the carrier frequency 
c

f is large compared to the bandwidth of the 

signal ( tτ � ), then the modulating signal in above equation reduces to: 

 

                                                 2 ( ) ( )cos ( )y t m t w t τ= −                              (7.5) 
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The complex envelope of 2( )y t is therefore given by 

 

                                                
2

2

( ) ( )
( ) ( ) ( )

(2 2 )
( ) ( )

jw t j wt w
y t m t e m t e

j f t f
c cy t m t e

τ τ

π π τ

− −
= =

−
=

 

                                                2

2 2
( ) ( )

j f t j f
c cy t m t e e

π π τ−
=                     (7.6) 

 

Comparing (7.6) with (7.3): 

 

                                                2 1

2
( ) ( )

j f
cy t y t e

π τ−
=                                 (7.7) 

 

 

We have used the relation between c and
c

f , that is, 
c

f
c λ

=  

 

                                           2 1

2

( ) ( )

c
j

y t y t e

π
τ

λ
−

=                                       (7.8) 

 

 

The signal arrives at second element after sind θ compare to first 

element so, the time delay is given by 

 

                                                
sind

c

θ
τ =                                                      (7.9) 

 

 

The received signal, at the second element is written as equation (7.10) 
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                                               2 1

2 sin
( )

( ) ( )

c d
j

cy t y t e

π θ

λ
−

=               

                                              2 1

2
( sin )

( ) ( )
j d

y t y t e

π
θ

λ
−

=                          (7.10) 

 

Similarly, for element i , the complex envelope of the received signal 

may be expressed as 

 

                            

2
( ( 1) sin )

( ) ( )
1

j i d
y t y t e
i

π
θ

λ
− −

=         1,..., .i k=           (7.11) 

 

Adding all the element outputs together gives what is commonly 

referred to as array factor F : 

 

 

           

2 2
sin ( 1) sin

( ) ...
1 2

1

j d j k dk
F y y e y e

k
k

π π
θ θ

λ λθ

− − −

= + + = ∑
=

         (7.12) 

 

The equation (7.12) can be expressed in terms of vector inner product: 

 

                                              ( ) ( ) ( )F y t vθ θ=                                            (7.13) 

 

Where 

                                              ( ) 1 RM
H z z

C
−

= −                                      (7.14) 
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                                 (7.15) 

 

The vector ( )F θ is often referred to as the array input data vector, and 

( )v θ is called the steering vector. In the equation (7.15), the signal is assumed to 

be narrowband. 

 

 

 

7.3 Antenna array design and fabrication for smart antenna project 

 

The required linear array antenna firstly designed by Microwave 

software. However, the software were not able to calculate return loss for 16 

linear patches properly although it is able to calculate the radiation pattern 

correctly. Therefore, the CST software with higher reliability is used for array 

designs.  

 

 

 

Figure-(7.2) front-view of linear antenna array (CST) 
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Figure-(7.3) back-view of linear antenna array (CST) 

 

 

 

 

 

 

 
 

 

 

Figure-(7.4) the radiation pattern in direction of o degree 
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Figure-(7.5) the 3D radiation pattern in direction of o degree 

 

 

 
 

Figure-(7.6) the simulation results for return loss 
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Figure-(7.7) fabricated linear antenna array 

 

The experimental results for return loss for each patch are around 21dB 

which is not exactly the same as simulation results.  However, it can work well 

in real situation. 
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CHAPTER 8 

 

 

 

 

SIMULATION RESULTS 

 

 

 

 

8.1 Introduction 

 

 

In this chapter the simulation results of the project are presented. The 

results can be classified to the parts as follow: (8.2) result of digital 

beamforming by using DSP, (8.3) sidelobe cancellation, (8.4) comparisons 

between the simulation software results and hardware implementation results, 

(8.5) Channel separation and synchronization by using FPGA, (8.6) the 

integration of DSP and FPGA board, (8.7) the simulation results of antenna 

array, (8.8) the conclusion is specifically given for each above part separately. 

Finally at the end of this chapter discussion and future work are presented. 
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8.2 Result of digital beamforming by using DSP 

 

The digital beamforming specification can be summarized in table-(8.1). 

The following result in Figure-(8.1) has been achieved. 

 

 

Figure 8.1 the DSP and MATLAB arrangement by PC  

 

Table-(8.1) simulation parameters for beamforming 

DSP board TMS320C6713B 

Azimuth angle 30 degree 

# channel 16 

Sidelobe cancellation technique Chebyshev algorithms 

Antenna array Uniform linear 
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Figure-(8.2) Digital beamforming with DSP board 

 

The model for this simulation is available in chapter three. The 

simulation can be done for each direction. Figure-(8.1) is the output of the 

beamforming model. The corresponding source code for these is available in 

Appendix D. As it can be seen from the graph, channels in the middle and in the 

corner have maximum and minimum amplitude respectively. As an example, 

the channels number 8 and 9 have maximum amplitudes and channels number 1 

and 16 have minimum amplitude. This fact refers to chebyshev algorithm. Also, 

if you have a look to each wave, you can differentiate the phase difference 

between them which justify the beamforming process. 

 

8.3 The simulation software results and hardware implementation results 

One of the main facilities of DSP board is called Hardware-In-Loop 

used for comparison between hardware and software results. By using this 

property of DSP, the correctness of the results can be verified.  



 74 

 

(a) MATLAB Result 

 

      (b) DSP Result 

 

Figure-(8.3) Comparisons between the software simulation results (a) and 

hardware implementation results (b) 

 

In this section, the simulation results of digital beamforming algorithm 

by using MATAB software and the DSP implementation result are compared. 

Figure-(8.2) indicates that the hardware and software results are the same in 
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terms of amplitude and phases for each channel. So, digital beamforming in 

DSP board is implemented successfully. 

 

8.4 Antenna array radiation and sidelobe cancellation results 

 

 The simulation results below show the antenna array radiation 

pattern with and without weighting techniques. For beam steering of smart 

antenna prototype, following simulation results for 16-elements array has been 

achieved. The beamforming has been performed using signal processing 

technique. It means that, the required phase delay for each patch for the 

particular direction has been calculated, and then the signal with different 

phase feeds to each antenna elements. Fortunately, the results have been 

accomplished as it has been expected. 

 

 
Figure 8.4a 16-elemets zero phase, without weighting 
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Figure 8.4b 16-elemets zero phase, Kaiser weighting α=3 

 

 
 

Figure 8.4b and 8.4a show the antenna pattern with and without sidelobe 

cancellation respectively. Using Kaiser Technique we can reduce the sidelobe 

to the desire level. The beamwidth of 16 elements microstrip patch is around 6 

degree. Therefore the requirement for 10 degree resolution for the smart 

antenna project is met. Base on this information we can apply this array to the 

linear array smart antenna project. Although we need more interfaces and 

higher DSP processor, there is no alternative unless we go to lower degree of 

resolution for the system. 
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Figure 8.5a 16-elemets -30 phase, without weighting 

 

 
 

Figure 8.5b 16-elemets -30 phase, Kaiser weighting 

α=4 
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Figure 8.5c 16-elemets, Kaiser weighting for α=8 theta=-30 

 

 

 

 
Figure 8.5d 16-elemets, -30 phase, Kaiser weighting α=16 
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Figure 8.5 shows the results of beamforming for -30 degree azimuth 

angle. As you can see from this graph the sidelobe can decrease to any desire 

level at the expense of having wider beamwidth. The weights are calculated 

using Kaiser formula. As an example base on Kaiser Equation weights for α=8 

and α=16 can be calculated as below: 

 

Kaiser weighting for α=8: 

 

W= [14.2604   19.8265   23.6283   26.3342   28.2179   29.4163   30.0000   

30.000 29.4163   28.2179   26.3342   23.6283   19.8265   14.2604    3.7623] 

 

 

Kaiser weighting for α=16: 

 

W= [3.762 14.2604 19.8265 23.6283   26.3342   28.2179   29.4163   30.0000   

30.000 29.4163   28.2179   26.3342   23.6283   19.8265   14.2604    3.7623] 

 

                 

 

 

 

8.5 Channel separation and synchronization by using FPGA 

 

 

In Figure-(8.6), DATA in, clock and FS signals come from DSP to 

FPGA for splitting data to the channels. After sixteen clocks one sample which 

has sixteen bits is transferred to FPGA. The VHDL code for this simulation is 

available in the appendix. 
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Figure-(8.6) Channel separation and synchronization with FPGA 

 

 

 

8.6 Integration of DSP and FPGA board 

 

 

Figure-(8.7) shows the connection between DSP and FPGA. CPU of 

DSP processes the data and save them to the SDRAM. Then these data are 

transferred to the FPGA as it is shown in Figure-(8.4) (blue wire) to split to the 

sixteen channels. Also clock and FS (Frame Synchronization) go to the FPGA 
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with green and white wires respectively. In addition, four LEDS are used as an 

indicator. The C source code for the digital beamforming is available in the 

appendix at end of the report. 

 

 

 

Figure-(8.7) Connection between DSP and FPGA 
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8.7 Summary and conclusion 

 

In this research, the single-beam switch-beam smart antenna in the 

baseband frequency is implemented. The popular, up-to-date hardware 

technology which is integrated DSP and FPGA for this purpose is used. More 

precisely, the system uses integration of a TMS320C6713B and an Apex-

20k200E board for baseband processing. In this respect, baseband processing 

parts including sidelobe cancellation and digital beamforming is simulated using 

computer modeling. After modeling, the algorithm is implemented in DSP 

board.  The simulation results and hardware signal measurement prove that 

digital beamforming and sidelobe cancellation can be done by using DSP board.  

 

Regardless of DSP efficiency, it has only two high data rate serial ports. 

Because of this, the FPGA is used to split the channels into sixteen antenna 

array elements. For splitting channels into sixteen antenna array elements, 

channel separation and synchronization is successfully implemented by 

programming the FPGA. By connecting this system to a multi-channel RF 

chain, narrower beams are formed towards the desired user and nulls towards 

interfering users. 

 

  

 

 

8.8 Future works 

 

One part of this project is about the implementation of digital 

beamforming and sidelobe cancellation for single user on the downlink 

transmission. The future work can be defined as the digital beamforming on the 

uplink transmission and Multiple-beam digital beamforming for smart antenna 

system. In hardware implementation part for baseband processing, the FPGA 
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board can be used instead of DSP for beamforming to decrease the cost and 

complexity of the system. In addition, the IF and RF implementation are very 

challenging and essential to research. Antenna array part is another area in smart 

antenna system which should be taken into the account. In overall, there are lots 

of open fields in smart antenna systems which are attractive to research.  
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Appendix A 

Digital beamforming C source code: 

(i) Main.C 

 

1 

/************************************************************/ 

/* baseband switch beam smart antenna */ 

/* date: 20.05.08 */ 

/* written by: Reza Abdolee and Vida Vakilian*/ 

5 /* wireless communication centre */ 

/* University Technology of Malasia */ 

/************************************************************/ 

/* FILENAME: main.c */ 

/* DESCRIPTION: This program performs single-beam digital */ 

10 /* beamforming for any user location in azimuth angle, with 

*/ 

/* desired resolution.In addition, the program performs */ 

/* sidelobe cancellation as much as 30dB to optimize */ 

/* antenna radiation pattern. The program uses ISR and */ 

/* McBSP1 to transmit user data countinuesly. */ 

15 /* All right are reserved. */ 

/************************************************************/ 

/* Header file */ 

#include <stdio.h> 

20 #include <math.h> 

#include "BeamFormcfg.h" 

#include "csl.h" 

#include "mat.h" 

#include "csl_irq.h" 

25 #include "csl_mcbsp.h" 

#include "csl_timer.h" 

#include "dsk6713.h" 

#include "dsk6713_led.h" 

#include "dsk6713_dip.h" 

30 

/*Declarations*/ 

#define Num_Antenna ((int)16) 

35 #define Num_Sample ((int)256) 

/*Global variables*/ 

Uint16 CH[Num_Antenna][Num_Sample]; 

void McBSP1Xmt(void); 

40 

/**************************************************************

*****\ 

* Function: main() 

* Description: Enables McBSP1 transmit interrupt 

\**************************************************************

*****/ 

45 void main() 
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{ 

/* Call BSL init */ 

DSK6713_init(); 

DSK6713_rset(DSK6713_MISC, 0x03); 

50 DSK6713_LED_init(); 

DSK6713_DIP_init(); 

init(); 

55 EDMA_clearChannel(hEdmaCha14); 

EDMA_enableChannel(hEdmaCha14); 

EDMA_intDisable(14); 

EDMA_intClear(14); 

EDMA_intEnable(14); 

60 

MCBSP_start(hMcbsp1, MCBSP_XMIT_START | MCBSP_SRGR_START| 

MCBSP_SRGR_FRAMESYNC, 

IRQ_enable(IRQ_EVT_XINT1); 

} 

65 

/**************************************************************

*******\ 

* Function: McBSP1Xmt() 

* Description: McBSP1 Transmit Interrupt Service Routine. 

* Write all channel user data out to the FPGA board. 

70 

\**************************************************************

*******/ 

void McBSP1Xmt(void) 

{ 

75 

/* Wait until a value is received then write it */ 

while (!MCBSP_xrdy(hMcbsp1)); 

{ 

80 

DSK6713_LED_toggle(1); 

DSK6713_waitusec(200000); 

} 

85 

} 

/**************************************************************

*******\ 

* End of main.c 

90 

\**************************************************************

*******/ 

 

 

 

 

 



 88 

 

(ii) Beamformcfg.C 

 

1 /* Do *not* directly modify this file. It was */ 

/* generated by the Configuration Tool; any */ 

/* changes risk being overwritten. */ 

5 /* INPUT BeamForm.cdb */ 

/* Include Header File */ 

#include "BeamFormcfg.h" 

10 

#ifdef __cplusplus 

#pragma CODE_SECTION(".text:CSL_cfgInit") 

#else 

#pragma CODE_SECTION(CSL_cfgInit,".text:CSL_cfgInit") 

15 #endif 

#ifdef __cplusplus 

#pragma FUNC_EXT_CALLED() 

20 #else 

#pragma FUNC_EXT_CALLED(CSL_cfgInit) 

#endif 

extern far Uint16 CH[]; 

25 

/* Config Structures */ 

EDMA_Config edmaCfg14 = { 

0x2B000001, /* Option */ 

(Uint32) CH, /* Source Address - Extern Decl.Obj */ 

30 0x00010010, /* Transfer Counter - Numeric */ 

0x00000000, /* Destination Address - Numeric */ 

0x00200002, /* Index register - Numeric */ 

0x00000000 /* Element Count Reload and Link Address */ 

}; 

35 

MCBSP_Config mcbspCfg1 = { 

0x00200080, /* Serial Port Control Reg. (SPCR) */ 

0x00000000, /* Receiver Control Reg. (RCR) */ 

0x00400F40, /* Transmitter Control Reg. (XCR) */ 

40 0x30FF0002, /* Sample-Rate Generator Reg. (SRGR) */ 

0x00000000, /* Multichannel Control Reg. (MCR) */ 

0x00000000, /* Receiver Channel Enable(RCER) */ 

0x00000000, /* Transmitter Channel Enable(XCER) */ 

0x00000A00 /* Pin Control Reg. (PCR) */ 

45 }; 

/* Handles */ 

EDMA_Handle hEdmaCha14; 

MCBSP_Handle hMcbsp1; 

50 

/* 

* ======== CSL_cfgInit() ======== 

*/ 

void CSL_cfgInit() 

55 { 
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hEdmaCha14 = EDMA_open(EDMA_CHA_XEVT1, EDMA_OPEN_RESET); 

hMcbsp1 = MCBSP_open(MCBSP_DEV1, MCBSP_OPEN_RESET); 

edmaCfg14.dst = EDMA_DST_RMK(hMcbsp1->dxrAddr); 

EDMA_config(hEdmaCha14, &edmaCfg14); 

60 E 

0x00000000, /* Transmitter Channel Enable(XCER) */ 

0x00000A00 /* Pin Control Reg. (PCR) */ 

}; 

65 /* Handles */ 

EDMA_Handle hEdmaCha14; 

MCBSP_Handle hMcbsp1; 

50 

/* 

* ======== CSL_cfgInit() ======== 

*/ 

void CSL_cfgInit() 

55 { 

hEdmaCha14 = EDMA_open(EDMA_CHA_XEVT1, EDMA_OPEN_RESET); 

hMcbsp1 = MCBSP_open(MCBSP_DEV1, MCBSP_OPEN_RESET); 

edmaCfg14.dst = EDMA_DST_RMK(hMcbsp1->dxrAddr); 

EDMA_config(hEdmaCha14, &edmaCfg14); 

60 EDMA_enableChannel(hEdmaCha14); 

MCBSP_config(hMcbsp1, &mcbspCfg1); 

} 
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(iii) temp.C 

 

1 #include <stdio.h> 

#include <stdlib.h> 

#include <math.h> 

#include "mat.h" 

5 #include "dsk6713_led.h" 

#include "dsk6713_dip.h" 

/*#include <log.h>, it is used when the standard IO for print 

and scanf is not used 

/*#include "BeamFormcfg.h", this header file is needed since 

the log is adjusted in 

10 

#define Num_Antenna ((int)16) 

# 

/**************************************************************

***********/ 

15 

void init() 

{ 

20 /* The led indicated that the subroutin executed*/ 

DSK6713_LED_on(0); 

puts("Enter the user location base on azimuth angle in degree 

:"); 

scanf("%d", &user_doa); 

25 

/*Verifying the user location*/ 

printf("The entered user location in angle is : %d\n", 

user_doa); 

/* base on radian*/ 

30 doa_rad=(PI*user_doa)/180; 

/*calculating the array factor both real and imaginary part*/ 

35 for (c = 0;c < Num_Antenna; c++) 

{ 

w_rl[c]=cos((c-1)*PI*sin(doa_rad)); 

w_img[c]=-sin((c-1)*PI*sin(doa_rad)); 

40 } 

/* generating the user data, assume that is a sinosoidal data 

streem*/ 

/*alike data=sin(2*pi*f*n/fs)=cos(2*pi*n/fs-

pi/2)=real(exp(j(2*pi*f*n/fs-pi/ 

45 

for (b=0;b<Num_Sample;b++) 

{ 

data_rl[b]=sin(2*PI*f*b/fs); 

50 data_img[b]=-cos(2*PI*f*b/fs); 

} 

/*sidelobe cancellation and digital beamforming */ 

55 for (k=0;k<Num_Antenna;k++) 

{for (n = 0;n< Num_Sample;n++) 
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60 CH[k][n]=(Uint16)((cheb_coeff[k]*(w_rl[k]*data_rl[n]-

w_img[k]*data_img[n]) 

/* CH[k][n]= (Uint16) ((sample+1)* data_max);*/ 

} 

65 

} 

95 /********************End of 

temp************************************/ 
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Appendix B 

 Channel separation using VHDL code:  

 

Date: May 23, 2008 ch_sep.vhd Project: ch_sep 
Page 1 of 4 Revision: ch_sep 
1 -------------------------------------------------- 

2 -- Channel Separtion Module 

3 -- By  Reza Abdolee & Vida Vakilian, 04/2008 

4 

5 

6 --------------------------------------------------- 

7 

8 library ieee ; 

9 use ieee.std_logic_1164.all; 

10 use ieee.std_logic_arith.all; 

11 use ieee.std_logic_unsigned.all; 

12 

13 --------------------------------------------------- 

14 

15 entity ch_sep is 

16 port( datain: in std_logic; 

17 clock: in std_logic; 

18 FS: in std_logic; 

19 CH1,CH2,CH3,CH4,CH5,CH6,CH7,CH8,CH9: out std_logic; 

20 CH10,CH11,CH12,CH13,CH14,CH15,CH16 : out std_logic; 

21 led_CH_TEST,led_clock,led_datain,led_FS : out std_logic; 

22 count_in_value: out std_logic_vector( 

8 downto 0) 

23 

24 ); 

25 end ch_sep; 

26 

27 --------------------------------------------------- 

28 

29 architecture behv of ch_sep is 

30 

31 -- initialize the declared signal 

32 signal S: std_logic_vector(255 downto 0); 

33 signal shift_in: std_logic; 

34 signal count_in: std_logic_vector(8 downto 0); 

35 signal count_out: std_logic_vector(7 downto 0); 

36 signal Q1,Q2,Q3,Q4,Q5,Q6,Q7,Q8,Q9 : std_logic_vector(15 

downto 0 

); 

37 signal Q10,Q11,Q12,Q13,Q14,Q15,Q16: std_logic_vector(15 

downto 0 

); 

38 signal shift_out,CH_TEST: std_logic; 

39 

40 ------------------------------------------------------------ 

41 component FS_signal 
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42 port( fs: in std_logic; 

43 clk: in std_logic; 

44 trig: out std_logic 

45 

46 ); 

47 end component; 

48 

49 ------------------------------------------------------------ 

50 component puls_show 

Date: May 23, 2008 ch_sep.vhd Project: ch_sep 
Page 2 of 4 Revision: ch_sep 
51 port( 

52 P: in std_logic; 

53 led_p: out std_logic 

54 

55 

56 ); 

57 end component; 

58 

59 ------------------------------------------------------------ 

60 component shift_reg_16 

61 port( 

62 data: in std_logic_vector(15 downto 0); 

63 clock: in std_logic; 

64 load: in std_logic; 

65 ch_out: out std_logic 

66 

67 

68 ); 

69 end component; 

70 

71 ------------------------------------------------------------ 

72 begin 

73 

74 

75 

76 process(datain, clock, shift_in) 

77 begin 

78 

79 -- everything happens upon the clock changing 

80 if clock'event and clock='1' then 

81 

82 if shift_in = '1' then 

83 

84 if (count_in <= x"0FF") then 

85 

86 S <= datain & S(255 downto 1); 

87 count_in <=count_in+1; 

88 count_in_value <=count_in; 

89 shift_out <='0'; 

90 else 

91 Q1<=S(15 downto 0); 

92 Q2<=S(31 downto 16); 

93 Q3<=S(47 downto 32); 
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94 Q4<=S(63 downto 48); 

95 Q5<=S(79 downto 64); 

96 Q6<=S(95 downto 80); 

97 Q7<=S(111 downto 96); 

98 Q8<=S(127 downto 112); 

99 Q9<=S(143 downto 128); 

100 Q10<=S(159 downto 144); 

101 Q11<=S(175 downto 160); 

102 Q12<=S(191 downto 176); 

103 Q13<=S(207 downto 192); 

Date: May 23, 2008 ch_sep.vhd Project: ch_sep 
Page 3 of 4 Revision: ch_sep 
104 Q14<=S(223 downto 208); 

105 Q15<=S(239 downto 224); 

106 Q16<=S(255 downto 240); 

107 

108 count_in<="000000000"; 

109 shift_out<='1'; 

110 

111 end if; 

112 

113 

114 

115 

116 end if; 

117 end if; 

118 

119 end process; 

120 

121 U_FS_signal:FS_signal 

122 port map(FS,clock,shift_in); 

123 

124 --------------------------------------------------- 

125 

126 U_led_datain: puls_show 

127 port map(datain,led_datain); 

128 

129 U_led_FS: puls_show 

130 port map(FS,led_FS); 

131 

132 U_led_clock: puls_show 

133 port map(clock,led_clock); 

134 

135 CH_TEST<=Q1(0); 

136 

137 U_led_ch_out: puls_show 

138 port map( CH_TEST,led_CH_TEST); 

139 --------------------------------------------------- 

140 

141 U_CH1: shift_reg_16 

142 port map(Q1,clock,shift_out,CH1); 

143 

144 U_CH2: shift_reg_16 

145 port map(Q2,clock,shift_out,CH2); 
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146 

147 U_CH3: shift_reg_16 

148 port map(Q3,clock,shift_out,CH3); 

149 

150 U_CH4: shift_reg_16 

151 port map(Q4,clock,shift_out,CH4); 

152 

153 U_CH5: shift_reg_16 

154 port map(Q5,clock,shift_out,CH5); 

155 

156 U_CH6: shift_reg_16 

Date: May 23, 2008 ch_sep.vhd Project: ch_sep 
Page 4 of 4 Revision: ch_sep 
157 port map(Q6,clock,shift_out,CH6); 

158 

159 U_CH7: shift_reg_16 

160 port map(Q7,clock,shift_out,CH7); 

161 

162 U_CH8: shift_reg_16 

163 port map(Q8,clock,shift_out,CH8); 

164 

165 U_CH9: shift_reg_16 

166 port map(Q9,clock,shift_out,CH9); 

167 

168 U_CH10: shift_reg_16 

169 port map(Q10,clock,shift_out,CH10); 

170 

171 U_CH11: shift_reg_16 

172 port map(Q11,clock,shift_out,CH11); 

173 

174 U_CH12: shift_reg_16 

175 port map(Q12,clock,shift_out,CH12); 

176 

177 U_CH13: shift_reg_16 

178 port map(Q13,clock,shift_out,CH13); 

179 

180 U_CH14: shift_reg_16 

181 port map(Q14,clock,shift_out,CH14); 

182 

183 U_CH15: shift_reg_16 

184 port map(Q15,clock,shift_out,CH15); 

185 

186 U_CH16: shift_reg_16 

187 port map(Q16,clock,shift_out,CH16); 

188 ------------------------------------------------------ 

189 

190 

191 end behv; 
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Appendix C: 

Channel separation using Verilog code: 
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Appendix D 

1 /* 

2 * File: rtdx_com_16mul_main.c 

3 * 

4 * Real-Time Workshop code generated for Simulink model 

rtdx_com_16mul. 

5 * 

6 * Model version : 1.184 

7 * Real-Time Workshop file version : 6.6 (R2007a) 01-Feb-2007 

8 * Real-Time Workshop file generated on : Wed May 14 12:14:40 2008 

9 * TLC version : 6.6 (Jan 16 2007) 

10 * C source code generated on : Wed May 14 12:14:41 2008 

11 */ 

12 

13 #include "rtdx_com_16mul.h" 

14 #include "rtdx_com_16mul_private.h" 

15 #include "rtdx_com_16mulcfg.h" 

16 #include "rtwtypes.h" 

17 #include "MW_c6xxx_csl.h" 

18 #include "c6000_main.h" 

19 #include <stdio.h> 

20 #define DSK_CPLD_BASE 0x90080000 

21 #define DSK_USER_REG 0 

22 

23 /* Function: exitprocessing ---------------------------------- 

24 * 

25 * Abstract: 

26 * Perform various tasks at program exit. 

27 */ 

28 void exitprocessing() 
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29 { 

30 disable_interrupts(); 

31 UTL_halt(); 

32 } 

33 

34 extern void TSK_prolog(TSK_Handle hTask); 

35 extern void TSK_epilog(TSK_Handle hTask); 

36 

37 // 

38 // TSK prolog/epilog functions. 

39 // 

40 void TSK_prolog(TSK_Handle hTask) 

41 { 

42 

43 #ifdef ENET_SOCKET_CALLS 

44 

45 fdOpenSession( hTask ); 

46 

47 #endif 

48 

49 } 

50 

51 void TSK_epilog(TSK_Handle hTask) 

52 { 

53 

54 #ifdef ENET_SOCKET_CALLS 

55 

56 fdCloseSession( hTask ); 

57 

58 #endif 
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59 

60 } 

61 

62 // 

63 // This task is run at the highest priority. It is used to 

64 // initialize the model and also to monitor stopping conditions. 

65 // OS executes this task immidiatey after falling out of main(). 

66 // 

67 void initTerminateTSK_fcn(void) 

68 { 

69 rtdx_com_16mul_initialize(1); 

70 enable_interrupts(); 

71 configureTimers(); 

72 

73 /* Wait for a stopping condition. */ 

74 SEM_pend(&stopSEM, SYS_FOREVER); 

75 

76 /* We have acquired the STOP semaphore. Perform model 

termination. */ 

77 /* Suspend syncronous tasks */ 

78 { 

79 TSK_epilog( &tBaseRateTSK ); 

80 TSK_setpri( &tBaseRateTSK, -1 ); 

81 } 

82 

83 LOG_printf(&LOG_MW1, "**stopping the model**"); 

84 

85 /* Disable rt_OneStep() here */ 

86 

87 /* Terminate model */ 
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88 rtdx_com_16mul_terminate(); 

89 targetTerminate(); 

90 } 

91 

92 void tBaseRateTSK_fcn(void) 

93 { 

94 volatile boolean_T noErr; 

95 TSK_prolog( TSK_self() ); 

96 noErr = 

97 rtmGetErrorStatus(rtdx_com_16mul_M) == NULL; 

98 while (noErr ) { 

99 /* Wait for the next timer interrupt */ 

100 SEM_pend(&rtClockSEM, SYS_FOREVER); 

101 rtdx_com_16mul_step(); 

102 noErr = 

103 rtmGetErrorStatus(rtdx_com_16mul_M) == NULL; 

104 } /* while */ 

105 

106 SEM_post(&stopSEM); 

107 } 

108 

109 void main(void) 

110 { 

111 turnOn_L2Cache(); 

112 LOG_printf(&LOG_MW1, "**starting the model**"); 

113 

114 /* Drop out of main() and enter DSP/BIOS Kernel */ 

115 } 
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1 /* 

2 * File: rtdx_com_16mul_data.c 

3 * 

4 * Real-Time Workshop code generated for Simulink model 

rtdx_com_16mul. 

5 * 

6 * Model version : 1.184 

7 * Real-Time Workshop file version : 6.6 (R2007a) 01-Feb-2007 

8 * Real-Time Workshop file generated on : Wed May 14 12:14:40 2008 

9 * TLC version : 6.6 (Jan 16 2007) 

10 * C source code generated on : Wed May 14 12:14:41 2008 

11 */ 

12 

13 #include "rtdx_com_16mul.h" 

14 #include "rtdx_com_16mul_private.h" 

15 

16 /* Block parameters (auto storage) */ 

17 

18 #pragma DATA_ALIGN(rtdx_com_16mul_P, 8) 

19 

20 Parameters_rtdx_com_16mul rtdx_com_16mul_P = { 

21 0.0F, /* FromRTDX1_IC : '<Root>/From RTDX1' 

22 */ 

23 

24 { 'a', 'a', 'a', 'a' }, /* FromRTDX1_IC : '<Root>/From RTDX1' 

25 */ 

26 0.0F, /* FromRTDX3_IC : '<Root>/From RTDX3' 

27 */ 
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28 

29 { 'a', 'a', 'a', 'a' }, /* FromRTDX3_IC : '<Root>/From RTDX3' 

30 */ 

31 0.0F, /* FromRTDX2_IC : '<Root>/From RTDX2' 

32 */ 

33 

34 { 'a', 'a', 'a', 'a' }, /* FromRTDX2_IC : '<Root>/From RTDX2' 

35 */ 

36 0.0F, /* FromRTDX4_IC : '<Root>/From RTDX4' 

37 */ 

38 

39 { 'a', 'a', 'a', 'a' } /* FromRTDX4_IC : '<Root>/From RTDX4' 

40 */ 

41 }; 

 

 

 

1 /* 

2 * File: rtdx_com_16mul.c 

3 * 

4 * Real-Time Workshop code generated for Simulink model 

rtdx_com_16mul. 

5 * 

6 * Model version : 1.184 

7 * Real-Time Workshop file version : 6.6 (R2007a) 01-Feb-2007 

8 * Real-Time Workshop file generated on : Wed May 14 12:14:40 2008 

9 * TLC version : 6.6 (Jan 16 2007) 

10 * C source code generated on : Wed May 14 12:14:41 2008 

11 */ 

12 
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13 #include "rtdx_com_16mul.h" 

14 #include "rtdx_com_16mul_private.h" 

15 

16 RTDX_CreateInputChannel(sin_real); /* Channel sin_real for block 

<Root>/From RTDX1 */ 

17 RTDX_CreateInputChannel(real_); /* Channel real_ for block 

<Root>/From RTDX3 */ 

18 RTDX_CreateInputChannel(sin_img); /* Channel sin_img for block 

<Root>/From RTDX2 */ 

19 RTDX_CreateInputChannel(img_); /* Channel img_ for block 

<Root>/From RTDX4 */ 

20 RTDX_CreateOutputChannel(r1); /* Channel r1 for block <S3>/To 

RTDX1 */ 

21 RTDX_CreateOutputChannel(i1); /* Channel i1 for block <S3>/To 

RTDX2 */ 

22 RTDX_CreateOutputChannel(r2); /* Channel r2 for block <S3>/To 

RTDX3 */ 

23 RTDX_CreateOutputChannel(i2); /* Channel i2 for block <S3>/To 

RTDX4 */ 

24 RTDX_CreateOutputChannel(r3); /* Channel r3 for block <S3>/To 

RTDX5 */ 

25 RTDX_CreateOutputChannel(i3); /* Channel i3 for block <S3>/To 

RTDX6 */ 

26 RTDX_CreateOutputChannel(r4); /* Channel r4 for block <S3>/To 

RTDX7 */ 

27 RTDX_CreateOutputChannel(i4); /* Channel i4 for block <S3>/To 

RTDX8 */ 

28 RTDX_CreateOutputChannel(r5); /* Channel r5 for block <S3>/To 

RTDX9 */ 
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29 RTDX_CreateOutputChannel(i5); /* Channel i5 for block <S3>/To 

RTDX10 */ 

30 RTDX_CreateOutputChannel(r6); /* Channel r6 for block <S3>/To 

RTDX11 */ 

31 RTDX_CreateOutputChannel(i6); /* Channel i6 for block <S3>/To 

RTDX12 */ 

32 RTDX_CreateOutputChannel(r7); /* Channel r7 for block <S3>/To 

RTDX13 */ 

33 RTDX_CreateOutputChannel(i7); /* Channel i7 for block <S3>/To 

RTDX14 */ 

34 RTDX_CreateOutputChannel(r8); /* Channel r8 for block <S3>/To 

RTDX15 */ 

35 RTDX_CreateOutputChannel(i8); /* Channel i8 for block <S3>/To 

RTDX16 */ 

36 RTDX_CreateOutputChannel(r9); /* Channel r9 for block <S3>/To 

RTDX17 */ 

37 RTDX_CreateOutputChannel(i9); /* Channel i9 for block <S3>/To 

RTDX18 */ 

38 RTDX_CreateOutputChannel(r10); /* Channel r10 for block <S3>/To 

RTDX19 */ 

39 RTDX_CreateOutputChannel(i10); /* Channel i10 for block <S3>/To 

RTDX20 */ 

40 RTDX_CreateOutputChannel(r11); /* Channel r11 for block <S3>/To 

RTDX21 */ 

41 RTDX_CreateOutputChannel(i11); /* Channel i11 for block <S3>/To 

RTDX22 */ 

42 RTDX_CreateOutputChannel(r12); /* Channel r12 for block <S3>/To 

RTDX23 */ 

43 RTDX_CreateOutputChannel(i12); /* Channel i12 for block <S3>/To 

RTDX24 */ 
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44 RTDX_CreateOutputChannel(r13); /* Channel r13 for block <S3>/To 

RTDX25 */ 

45 RTDX_CreateOutputChannel(i13); /* Channel i13 for block <S3>/To 

RTDX26 */ 

46 RTDX_CreateOutputChannel(r14); /* Channel r14 for block <S3>/To 

RTDX27 */ 

47 RTDX_CreateOutputChannel(i14); /* Channel i14 for block <S3>/To 

RTDX28 */ 

48 RTDX_CreateOutputChannel(r15); /* Channel r15 for block <S3>/To 

RTDX29 */ 

49 RTDX_CreateOutputChannel(i15); /* Channel i15 for block <S3>/To 

RTDX30 */ 

50 RTDX_CreateOutputChannel(r16); /* Channel r16 for block <S3>/To 

RTDX31 */ 

51 RTDX_CreateOutputChannel(i16); /* Channel i16 for block <S3>/To 

RTDX32 */ 

52 

53 /* Block signals (auto storage) */ 

54 #pragma DATA_ALIGN(rtdx_com_16mul_B, 8) 

55 

56 BlockIO_rtdx_com_16mul rtdx_com_16mul_B; 

57 

58 /* Real-time model */ 

59 RT_MODEL_rtdx_com_16mul rtdx_com_16mul_M_; 

60 RT_MODEL_rtdx_com_16mul *rtdx_com_16mul_M = 

&rtdx_com_16mul_M_; 

61 

62 /* Model step function */ 

63 void rtdx_com_16mul_step(void) 

64 { 
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65 /* local block i/o variables */ 

66 real32_T rtb_multiply[16]; 

67 real32_T rtb_Subtract[16]; 

68 

69 /* S-Function Block: <Root>/From RTDX1 (rtdx_src) */ 

70 RTDX_read( &sin_real, (void*) rtdx_com_16mul_B.FromRTDX1, 

16*sizeof(real32_T)); 

71 

72 /* S-Function Block: <Root>/From RTDX3 (rtdx_src) */ 

73 RTDX_read( &real_, (void*) rtdx_com_16mul_B.FromRTDX3, 

16*sizeof(real32_T)); 

74 

75 { 

76 int32_T i; 

77 for (i = 0; i < 16; i++) { 

78 /* Product: '<S4>/multiply' */ 

79 rtb_multiply[i] = rtdx_com_16mul_B.FromRTDX1[i] * 

80 rtdx_com_16mul_B.FromRTDX3[0]; 

81 } 

82 } 

83 

84 /* S-Function Block: <Root>/From RTDX2 (rtdx_src) */ 

85 RTDX_read( &sin_img, (void*) rtdx_com_16mul_B.FromRTDX2, 

16*sizeof(real32_T)); 

86 

87 /* S-Function Block: <Root>/From RTDX4 (rtdx_src) */ 

88 RTDX_read( &img_, (void*) rtdx_com_16mul_B.FromRTDX4, 

16*sizeof(real32_T)); 

89 

90 { 
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91 int32_T i; 

92 for (i = 0; i < 16; i++) { 

93 /* Sum: '<S4>/Subtract' incorporates: 

94 * Product: '<S4>/multiply1' 

95 */ 

96 rtb_Subtract[i] = rtb_multiply[i] - rtdx_com_16mul_B.FromRTDX2[i] 

* 

97 rtdx_com_16mul_B.FromRTDX4[0]; 

98 } 

99 } 

100 

101 /* S-Function Block: <S3>/To RTDX1 (rtdx_snk) */ 

102 if (RTDX_isOutputEnabled( &r1 )) { 

103 while (RTDX_writing != NULL) { 

104 } /* waiting for rtdx write to complete */ 

105 

106 RTDX_write( &r1, (void*) rtb_Subtract, 16*sizeof(real32_T)); 

107 } 

108 

109 { 

110 int32_T i; 

111 for (i = 0; i < 16; i++) { 

112 /* Sum: '<S4>/Subtract1' incorporates: 

113 * Product: '<S4>/multiply2' 

114 * Product: '<S4>/multiply3' 

115 */ 

116 rtb_Subtract[i] = rtdx_com_16mul_B.FromRTDX2[i] * 

117 rtdx_com_16mul_B.FromRTDX3[0] + 

rtdx_com_16mul_B.FromRTDX1[i] * 

118 rtdx_com_16mul_B.FromRTDX4[0]; 
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119 } 

120 } 

121 

122 /* S-Function Block: <S3>/To RTDX2 (rtdx_snk) */ 

123 if (RTDX_isOutputEnabled( &i1 )) { 

124 while (RTDX_writing != NULL) { 

125 } /* waiting for rtdx write to complete */ 

126 

127 RTDX_write( &i1, (void*) rtb_Subtract, 16*sizeof(real32_T)); 

128 } 

129 

130 { 

131 int32_T i; 

132 for (i = 0; i < 16; i++) { 

133 /* Sum: '<S5>/Subtract' incorporates: 

134 * Product: '<S5>/multiply' 

135 * Product: '<S5>/multiply1' 

136 */ 

137 rtb_Subtract[i] = rtdx_com_16mul_B.FromRTDX1[i] * 

138 rtdx_com_16mul_B.FromRTDX3[1] - 

rtdx_com_16mul_B.FromRTDX2[i] * 

139 rtdx_com_16mul_B.FromRTDX4[1]; 

140 } 

141 } 

142 

143 /* S-Function Block: <S3>/To RTDX3 (rtdx_snk) */ 

144 if (RTDX_isOutputEnabled( &r2 )) { 

145 while (RTDX_writing != NULL) { 

146 } /* waiting for rtdx write to complete */ 

147 
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148 RTDX_write( &r2, (void*) rtb_Subtract, 16*sizeof(real32_T)); 

149 } 

150 

151 { 

152 int32_T i; 

153 for (i = 0; i < 16; i++) { 

154 /* Sum: '<S5>/Subtract1' incorporates: 

155 * Product: '<S5>/multiply2' 

156 * Product: '<S5>/multiply3' 

157 */ 

158 rtb_Subtract[i] = rtdx_com_16mul_B.FromRTDX2[i] * 

159 rtdx_com_16mul_B.FromRTDX3[1] + 

rtdx_com_16mul_B.FromRTDX1[i] * 

160 rtdx_com_16mul_B.FromRTDX4[1]; 

161 } 

162 } 

163 

164 /* S-Function Block: <S3>/To RTDX4 (rtdx_snk) */ 

165 if (RTDX_isOutputEnabled( &i2 )) { 

166 while (RTDX_writing != NULL) { 

167 } /* waiting for rtdx write to complete */ 

168 

169 RTDX_write( &i2, (void*) rtb_Subtract, 16*sizeof(real32_T)); 

170 } 

171 

172 { 

173 int32_T i; 

174 for (i = 0; i < 16; i++) { 

175 /* Sum: '<S12>/Subtract' incorporates: 

176 * Product: '<S12>/multiply' 
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177 * Product: '<S12>/multiply1' 

178 */ 

179 rtb_Subtract[i] = rtdx_com_16mul_B.FromRTDX1[i] * 

180 rtdx_com_16mul_B.FromRTDX3[2] - 

rtdx_com_16mul_B.FromRTDX2[i] * 

181 rtdx_com_16mul_B.FromRTDX4[2]; 

182 } 

183 } 

184 

185 /* S-Function Block: <S3>/To RTDX5 (rtdx_snk) */ 

186 if (RTDX_isOutputEnabled( &r3 )) { 

187 while (RTDX_writing != NULL) { 

188 } /* waiting for rtdx write to complete */ 

189 

190 RTDX_write( &r3, (void*) rtb_Subtract, 16*sizeof(real32_T)); 

191 } 

192 

193 { 

194 int32_T i; 

195 for (i = 0; i < 16; i++) { 

196 /* Sum: '<S12>/Subtract1' incorporates: 

197 * Product: '<S12>/multiply2' 

198 * Product: '<S12>/multiply3' 

199 */ 

200 rtb_Subtract[i] = rtdx_com_16mul_B.FromRTDX2[i] * 

201 rtdx_com_16mul_B.FromRTDX3[2] + 

rtdx_com_16mul_B.FromRTDX1[i] * 

202 rtdx_com_16mul_B.FromRTDX4[2]; 

203 } 

204 } 
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205 

206 /* S-Function Block: <S3>/To RTDX6 (rtdx_snk) */ 

207 if (RTDX_isOutputEnabled( &i3 )) { 

208 while (RTDX_writing != NULL) { 

209 } /* waiting for rtdx write to complete */ 

210 

211 RTDX_write( &i3, (void*) rtb_Subtract, 16*sizeof(real32_T)); 

212 } 

213 

214 { 

215 int32_T i; 

216 for (i = 0; i < 16; i++) { 

217 /* Sum: '<S13>/Subtract' incorporates: 

218 * Product: '<S13>/multiply' 

219 * Product: '<S13>/multiply1' 

220 */ 

221 rtb_Subtract[i] = rtdx_com_16mul_B.FromRTDX1[i] * 

222 rtdx_com_16mul_B.FromRTDX3[3] - 

rtdx_com_16mul_B.FromRTDX2[i] * 

223 rtdx_com_16mul_B.FromRTDX4[3]; 

224 } 

225 } 

226 

227 /* S-Function Block: <S3>/To RTDX7 (rtdx_snk) */ 

228 if (RTDX_isOutputEnabled( &r4 )) { 

229 while (RTDX_writing != NULL) { 

230 } /* waiting for rtdx write to complete */ 

231 

232 RTDX_write( &r4, (void*) rtb_Subtract, 16*sizeof(real32_T)); 

233 } 
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234 

235 { 

236 int32_T i; 

237 for (i = 0; i < 16; i++) { 

238 /* Sum: '<S13>/Subtract1' incorporates: 

239 * Product: '<S13>/multiply2' 

240 * Product: '<S13>/multiply3' 

241 */ 

242 rtb_Subtract[i] = rtdx_com_16mul_B.FromRTDX2[i] * 

243 rtdx_com_16mul_B.FromRTDX3[3] + 

rtdx_com_16mul_B.FromRTDX1[i] * 

244 rtdx_com_16mul_B.FromRTDX4[3]; 

245 } 

246 } 

247 

248 /* S-Function Block: <S3>/To RTDX8 (rtdx_snk) */ 

249 if (RTDX_isOutputEnabled( &i4 )) { 

250 while (RTDX_writing != NULL) { 

251 } /* waiting for rtdx write to complete */ 

252 

253 RTDX_write( &i4, (void*) rtb_Subtract, 16*sizeof(real32_T)); 

254 } 

255 

256 { 

257 int32_T i; 

258 for (i = 0; i < 16; i++) { 

259 /* Sum: '<S14>/Subtract' incorporates: 

260 * Product: '<S14>/multiply' 

261 * Product: '<S14>/multiply1' 

262 */ 
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263 rtb_Subtract[i] = rtdx_com_16mul_B.FromRTDX1[i] * 

264 rtdx_com_16mul_B.FromRTDX3[4] - 

rtdx_com_16mul_B.FromRTDX2[i] * 

265 rtdx_com_16mul_B.FromRTDX4[4]; 

266 } 

267 } 

268 

269 /* S-Function Block: <S3>/To RTDX9 (rtdx_snk) */ 

270 if (RTDX_isOutputEnabled( &r5 )) { 

271 while (RTDX_writing != NULL) { 

272 } /* waiting for rtdx write to complete */ 

273 

274 RTDX_write( &r5, (void*) rtb_Subtract, 16*sizeof(real32_T)); 

275 } 

276 

277 { 

278 int32_T i; 

279 for (i = 0; i < 16; i++) { 

280 /* Sum: '<S14>/Subtract1' incorporates: 

281 * Product: '<S14>/multiply2' 

282 * Product: '<S14>/multiply3' 

283 */ 

284 rtb_Subtract[i] = rtdx_com_16mul_B.FromRTDX2[i] * 

285 rtdx_com_16mul_B.FromRTDX3[4] + 

rtdx_com_16mul_B.FromRTDX1[i] * 

286 rtdx_com_16mul_B.FromRTDX4[4]; 

287 } 

288 } 

289 

290 /* S-Function Block: <S3>/To RTDX10 (rtdx_snk) */ 
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291 if (RTDX_isOutputEnabled( &i5 )) { 

292 while (RTDX_writing != NULL) { 

293 } /* waiting for rtdx write to complete */ 

294 

295 RTDX_write( &i5, (void*) rtb_Subtract, 16*sizeof(real32_T)); 

296 } 

297 

298 { 

299 int32_T i; 

300 for (i = 0; i < 16; i++) { 

301 /* Sum: '<S15>/Subtract' incorporates: 

302 * Product: '<S15>/multiply' 

303 * Product: '<S15>/multiply1' 

304 */ 

305 rtb_Subtract[i] = rtdx_com_16mul_B.FromRTDX1[i] * 

306 rtdx_com_16mul_B.FromRTDX3[5] - 

rtdx_com_16mul_B.FromRTDX2[i] * 

307 rtdx_com_16mul_B.FromRTDX4[5]; 

308 } 

309 } 

310 

311 /* S-Function Block: <S3>/To RTDX11 (rtdx_snk) */ 

312 if (RTDX_isOutputEnabled( &r6 )) { 

313 while (RTDX_writing != NULL) { 

314 } /* waiting for rtdx write to complete */ 

315 

316 RTDX_write( &r6, (void*) rtb_Subtract, 16*sizeof(real32_T)); 

317 } 

318 

319 { 
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320 int32_T i; 

321 for (i = 0; i < 16; i++) { 

322 /* Sum: '<S15>/Subtract1' incorporates: 

323 * Product: '<S15>/multiply2' 

324 * Product: '<S15>/multiply3' 

325 */ 

326 rtb_Subtract[i] = rtdx_com_16mul_B.FromRTDX2[i] * 

327 rtdx_com_16mul_B.FromRTDX3[5] + 

rtdx_com_16mul_B.FromRTDX1[i] * 

328 rtdx_com_16mul_B.FromRTDX4[5]; 

329 } 

330 } 

331 

332 /* S-Function Block: <S3>/To RTDX12 (rtdx_snk) */ 

333 if (RTDX_isOutputEnabled( &i6 )) { 

334 while (RTDX_writing != NULL) { 

335 } /* waiting for rtdx write to complete */ 

336 

337 RTDX_write( &i6, (void*) rtb_Subtract, 16*sizeof(real32_T)); 

338 } 

339 

340 { 

341 int32_T i; 

342 for (i = 0; i < 16; i++) { 

343 /* Sum: '<S16>/Subtract' incorporates: 

344 * Product: '<S16>/multiply' 

345 * Product: '<S16>/multiply1' 

346 */ 

347 rtb_Subtract[i] = rtdx_com_16mul_B.FromRTDX1[i] * 
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348 rtdx_com_16mul_B.FromRTDX3[6] - 

rtdx_com_16mul_B.FromRTDX2[i] * 

349 rtdx_com_16mul_B.FromRTDX4[6]; 

350 } 

351 } 

352 

353 /* S-Function Block: <S3>/To RTDX13 (rtdx_snk) */ 

354 if (RTDX_isOutputEnabled( &r7 )) { 

355 while (RTDX_writing != NULL) { 

356 } /* waiting for rtdx write to complete */ 

357 

358 RTDX_write( &r7, (void*) rtb_Subtract, 16*sizeof(real32_T)); 

359 } 

360 

361 { 

362 int32_T i; 

363 for (i = 0; i < 16; i++) { 

364 /* Sum: '<S16>/Subtract1' incorporates: 

365 * Product: '<S16>/multiply2' 

366 * Product: '<S16>/multiply3' 

367 */ 

368 rtb_Subtract[i] = rtdx_com_16mul_B.FromRTDX2[i] * 

369 rtdx_com_16mul_B.FromRTDX3[6] + 

rtdx_com_16mul_B.FromRTDX1[i] * 

370 rtdx_com_16mul_B.FromRTDX4[6]; 

371 } 

372 } 

373 

374 /* S-Function Block: <S3>/To RTDX14 (rtdx_snk) */ 

375 if (RTDX_isOutputEnabled( &i7 )) { 
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376 while (RTDX_writing != NULL) { 

377 } /* waiting for rtdx write to complete */ 

378 

379 RTDX_write( &i7, (void*) rtb_Subtract, 16*sizeof(real32_T)); 

380 } 

381 

382 { 

383 int32_T i; 

384 for (i = 0; i < 16; i++) { 

385 /* Sum: '<S17>/Subtract' incorporates: 

386 * Product: '<S17>/multiply' 

387 * Product: '<S17>/multiply1' 

388 */ 

389 rtb_Subtract[i] = rtdx_com_16mul_B.FromRTDX1[i] * 

390 rtdx_com_16mul_B.FromRTDX3[7] - 

rtdx_com_16mul_B.FromRTDX2[i] * 

391 rtdx_com_16mul_B.FromRTDX4[7]; 

392 } 

393 } 

394 

395 /* S-Function Block: <S3>/To RTDX15 (rtdx_snk) */ 

396 if (RTDX_isOutputEnabled( &r8 )) { 

397 while (RTDX_writing != NULL) { 

398 } /* waiting for rtdx write to complete */ 

399 

400 RTDX_write( &r8, (void*) rtb_Subtract, 16*sizeof(real32_T)); 

401 } 

402 

403 { 

404 int32_T i; 
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405 for (i = 0; i < 16; i++) { 

406 /* Sum: '<S17>/Subtract1' incorporates: 

407 * Product: '<S17>/multiply2' 

408 * Product: '<S17>/multiply3' 

409 */ 

410 rtb_Subtract[i] = rtdx_com_16mul_B.FromRTDX2[i] * 

411 rtdx_com_16mul_B.FromRTDX3[7] + 

rtdx_com_16mul_B.FromRTDX1[i] * 

412 rtdx_com_16mul_B.FromRTDX4[7]; 

413 } 

414 } 

415 

416 /* S-Function Block: <S3>/To RTDX16 (rtdx_snk) */ 

417 if (RTDX_isOutputEnabled( &i8 )) { 

418 while (RTDX_writing != NULL) { 

419 } /* waiting for rtdx write to complete */ 

420 

421 RTDX_write( &i8, (void*) rtb_Subtract, 16*sizeof(real32_T)); 

422 } 

423 

424 { 

425 int32_T i; 

426 for (i = 0; i < 16; i++) { 

427 /* Sum: '<S18>/Subtract' incorporates: 

428 * Product: '<S18>/multiply' 

429 * Product: '<S18>/multiply1' 

430 */ 

431 rtb_Subtract[i] = rtdx_com_16mul_B.FromRTDX1[i] * 

432 rtdx_com_16mul_B.FromRTDX3[8] - 

rtdx_com_16mul_B.FromRTDX2[i] * 
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433 rtdx_com_16mul_B.FromRTDX4[8]; 

434 } 

435 } 

436 

437 /* S-Function Block: <S3>/To RTDX17 (rtdx_snk) */ 

438 if (RTDX_isOutputEnabled( &r9 )) { 

439 while (RTDX_writing != NULL) { 

440 } /* waiting for rtdx write to complete */ 

441 

442 RTDX_write( &r9, (void*) rtb_Subtract, 16*sizeof(real32_T)); 

443 } 

444 

445 { 

446 int32_T i; 

447 for (i = 0; i < 16; i++) { 

448 /* Sum: '<S18>/Subtract1' incorporates: 

449 * Product: '<S18>/multiply2' 

450 * Product: '<S18>/multiply3' 

451 */ 

452 rtb_Subtract[i] = rtdx_com_16mul_B.FromRTDX2[i] * 

453 rtdx_com_16mul_B.FromRTDX3[8] + 

rtdx_com_16mul_B.FromRTDX1[i] * 

454 rtdx_com_16mul_B.FromRTDX4[8]; 

455 } 

456 } 

457 

458 /* S-Function Block: <S3>/To RTDX18 (rtdx_snk) */ 

459 if (RTDX_isOutputEnabled( &i9 )) { 

460 while (RTDX_writing != NULL) { 

461 } /* waiting for rtdx write to complete */ 
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462 

463 RTDX_write( &i9, (void*) rtb_Subtract, 16*sizeof(real32_T)); 

464 } 

465 

466 { 

467 int32_T i; 

468 for (i = 0; i < 16; i++) { 

469 /* Sum: '<S19>/Subtract' incorporates: 

470 * Product: '<S19>/multiply' 

471 * Product: '<S19>/multiply1' 

472 */ 

473 rtb_Subtract[i] = rtdx_com_16mul_B.FromRTDX1[i] * 

474 rtdx_com_16mul_B.FromRTDX3[9] - 

rtdx_com_16mul_B.FromRTDX2[i] * 

475 rtdx_com_16mul_B.FromRTDX4[9]; 

476 } 

477 } 

478 

479 /* S-Function Block: <S3>/To RTDX19 (rtdx_snk) */ 

480 if (RTDX_isOutputEnabled( &r10 )) { 

481 while (RTDX_writing != NULL) { 

482 } /* waiting for rtdx write to complete */ 

483 

484 RTDX_write( &r10, (void*) rtb_Subtract, 16*sizeof(real32_T)); 

485 } 

486 

487 { 

488 int32_T i; 

489 for (i = 0; i < 16; i++) { 

490 /* Sum: '<S19>/Subtract1' incorporates: 
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491 * Product: '<S19>/multiply2' 

492 * Product: '<S19>/multiply3' 

493 */ 

494 rtb_Subtract[i] = rtdx_com_16mul_B.FromRTDX2[i] * 

495 rtdx_com_16mul_B.FromRTDX3[9] + 

rtdx_com_16mul_B.FromRTDX1[i] * 

496 rtdx_com_16mul_B.FromRTDX4[9]; 

497 } 

498 } 

499 

500 /* S-Function Block: <S3>/To RTDX20 (rtdx_snk) */ 

501 if (RTDX_isOutputEnabled( &i10 )) { 

502 while (RTDX_writing != NULL) { 

503 } /* waiting for rtdx write to complete */ 

504 

505 RTDX_write( &i10, (void*) rtb_Subtract, 16*sizeof(real32_T)); 

506 } 

507 

508 { 

509 int32_T i; 

510 for (i = 0; i < 16; i++) { 

511 /* Sum: '<S6>/Subtract' incorporates: 

512 * Product: '<S6>/multiply' 

513 * Product: '<S6>/multiply1' 

514 */ 

515 rtb_Subtract[i] = rtdx_com_16mul_B.FromRTDX1[i] * 

516 rtdx_com_16mul_B.FromRTDX3[10] - 

rtdx_com_16mul_B.FromRTDX2[i] * 

517 rtdx_com_16mul_B.FromRTDX4[10]; 

518 } 
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519 } 

520 

521 /* S-Function Block: <S3>/To RTDX21 (rtdx_snk) */ 

522 if (RTDX_isOutputEnabled( &r11 )) { 

523 while (RTDX_writing != NULL) { 

524 } /* waiting for rtdx write to complete */ 

525 

526 RTDX_write( &r11, (void*) rtb_Subtract, 16*sizeof(real32_T)); 

527 } 

528 

529 { 

530 int32_T i; 

531 for (i = 0; i < 16; i++) { 

532 /* Product: '<S6>/multiply3' */ 

533 rtdx_com_16mul_B.Subtract1[i] = 

rtdx_com_16mul_B.FromRTDX1[i] * 

534 rtdx_com_16mul_B.FromRTDX4[10]; 

535 

536 /* Sum: '<S6>/Subtract1' incorporates: 

537 * Product: '<S6>/multiply2' 

538 */ 

539 rtdx_com_16mul_B.multiply3[i] = 

rtdx_com_16mul_B.FromRTDX2[i] * 

540 rtdx_com_16mul_B.FromRTDX3[10] + 

rtdx_com_16mul_B.Subtract1[i]; 

541 } 

542 } 

543 

544 /* S-Function Block: <S3>/To RTDX22 (rtdx_snk) */ 

545 if (RTDX_isOutputEnabled( &i11 )) { 
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546 while (RTDX_writing != NULL) { 

547 } /* waiting for rtdx write to complete */ 

548 

549 RTDX_write( &i11, (void*) rtdx_com_16mul_B.multiply3, 

16*sizeof(real32_T)); 

550 } 

551 

552 { 

553 int32_T i; 

554 for (i = 0; i < 16; i++) { 

555 /* Product: '<S7>/multiply' */ 

556 rtdx_com_16mul_B.multiply3[i] = 

rtdx_com_16mul_B.FromRTDX1[i] * 

557 rtdx_com_16mul_B.FromRTDX3[11]; 

558 

559 /* Product: '<S7>/multiply1' */ 

560 rtdx_com_16mul_B.Subtract1[i] = 

rtdx_com_16mul_B.FromRTDX2[i] * 

561 rtdx_com_16mul_B.FromRTDX4[11]; 

562 

563 /* Sum: '<S7>/Subtract' */ 

564 rtdx_com_16mul_B.multiply2[i] = rtdx_com_16mul_B.multiply3[i] - 

565 rtdx_com_16mul_B.Subtract1[i]; 

566 } 

567 } 

568 

569 /* S-Function Block: <S3>/To RTDX23 (rtdx_snk) */ 

570 if (RTDX_isOutputEnabled( &r12 )) { 

571 while (RTDX_writing != NULL) { 

572 } /* waiting for rtdx write to complete */ 
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573 

574 RTDX_write( &r12, (void*) rtdx_com_16mul_B.multiply2, 

16*sizeof(real32_T)); 

575 } 

576 

577 { 

578 int32_T i; 

579 for (i = 0; i < 16; i++) { 

580 /* Product: '<S7>/multiply2' */ 

581 rtdx_com_16mul_B.multiply2[i] = 

rtdx_com_16mul_B.FromRTDX2[i] * 

582 rtdx_com_16mul_B.FromRTDX3[11]; 

583 

584 /* Product: '<S7>/multiply3' */ 

585 rtdx_com_16mul_B.multiply3[i] = 

rtdx_com_16mul_B.FromRTDX1[i] * 

586 rtdx_com_16mul_B.FromRTDX4[11]; 

587 

588 /* Sum: '<S7>/Subtract1' */ 

589 rtdx_com_16mul_B.Subtract1[i] = rtdx_com_16mul_B.multiply2[i] + 

590 rtdx_com_16mul_B.multiply3[i]; 

591 } 

592 } 

593 

594 /* S-Function Block: <S3>/To RTDX24 (rtdx_snk) */ 

595 if (RTDX_isOutputEnabled( &i12 )) { 

596 while (RTDX_writing != NULL) { 

597 } /* waiting for rtdx write to complete */ 

598 
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599 RTDX_write( &i12, (void*) rtdx_com_16mul_B.Subtract1, 

16*sizeof(real32_T)); 

600 } 

601 

602 { 

603 int32_T i; 

604 for (i = 0; i < 16; i++) { 

605 /* Product: '<S8>/multiply' */ 

606 rtdx_com_16mul_B.multiply2[i] = 

rtdx_com_16mul_B.FromRTDX1[i] * 

607 rtdx_com_16mul_B.FromRTDX3[12]; 

608 

609 /* Product: '<S8>/multiply1' */ 

610 rtdx_com_16mul_B.multiply3[i] = 

rtdx_com_16mul_B.FromRTDX2[i] * 

611 rtdx_com_16mul_B.FromRTDX4[12]; 

612 

613 /* Sum: '<S8>/Subtract' */ 

614 rtdx_com_16mul_B.Subtract1[i] = rtdx_com_16mul_B.multiply2[i] - 

615 rtdx_com_16mul_B.multiply3[i]; 

616 } 

617 } 

618 

619 /* S-Function Block: <S3>/To RTDX25 (rtdx_snk) */ 

620 if (RTDX_isOutputEnabled( &r13 )) { 

621 while (RTDX_writing != NULL) { 

622 } /* waiting for rtdx write to complete */ 

623 

624 RTDX_write( &r13, (void*) rtdx_com_16mul_B.Subtract1, 

16*sizeof(real32_T)); 
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625 } 

626 

627 { 

628 int32_T i; 

629 for (i = 0; i < 16; i++) { 

630 /* Product: '<S8>/multiply2' */ 

631 rtdx_com_16mul_B.multiply2[i] = 

rtdx_com_16mul_B.FromRTDX2[i] * 

632 rtdx_com_16mul_B.FromRTDX3[12]; 

633 

634 /* Product: '<S8>/multiply3' */ 

635 rtdx_com_16mul_B.multiply3[i] = 

rtdx_com_16mul_B.FromRTDX1[i] * 

636 rtdx_com_16mul_B.FromRTDX4[12]; 

637 

638 /* Sum: '<S8>/Subtract1' */ 

639 rtdx_com_16mul_B.Subtract1[i] = rtdx_com_16mul_B.multiply2[i] + 

640 rtdx_com_16mul_B.multiply3[i]; 

641 } 

642 } 

643 

644 /* S-Function Block: <S3>/To RTDX26 (rtdx_snk) */ 

645 if (RTDX_isOutputEnabled( &i13 )) { 

646 while (RTDX_writing != NULL) { 

647 } /* waiting for rtdx write to complete */ 

648 

649 RTDX_write( &i13, (void*) rtdx_com_16mul_B.Subtract1, 

16*sizeof(real32_T)); 

650 } 

651 
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652 { 

653 int32_T i; 

654 for (i = 0; i < 16; i++) { 

655 /* Product: '<S9>/multiply' */ 

656 rtdx_com_16mul_B.multiply2[i] = 

rtdx_com_16mul_B.FromRTDX1[i] * 

657 rtdx_com_16mul_B.FromRTDX3[13]; 

658 

659 /* Product: '<S9>/multiply1' */ 

660 rtdx_com_16mul_B.multiply3[i] = 

rtdx_com_16mul_B.FromRTDX2[i] * 

661 rtdx_com_16mul_B.FromRTDX4[13]; 

662 

663 /* Sum: '<S9>/Subtract' */ 

664 rtdx_com_16mul_B.Subtract1[i] = rtdx_com_16mul_B.multiply2[i] - 

665 rtdx_com_16mul_B.multiply3[i]; 

666 } 

667 } 

668 

669 /* S-Function Block: <S3>/To RTDX27 (rtdx_snk) */ 

670 if (RTDX_isOutputEnabled( &r14 )) { 

671 while (RTDX_writing != NULL) { 

672 } /* waiting for rtdx write to complete */ 

673 

674 RTDX_write( &r14, (void*) rtdx_com_16mul_B.Subtract1, 

16*sizeof(real32_T)); 

675 } 

676 

677 { 

678 int32_T i; 
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679 for (i = 0; i < 16; i++) { 

680 /* Product: '<S9>/multiply2' */ 

681 rtdx_com_16mul_B.multiply2[i] = 

rtdx_com_16mul_B.FromRTDX2[i] * 

682 rtdx_com_16mul_B.FromRTDX3[13]; 

683 

684 /* Product: '<S9>/multiply3' */ 

685 rtdx_com_16mul_B.multiply3[i] = 

rtdx_com_16mul_B.FromRTDX1[i] * 

686 rtdx_com_16mul_B.FromRTDX4[13]; 

687 

688 /* Sum: '<S9>/Subtract1' */ 

689 rtdx_com_16mul_B.Subtract1[i] = rtdx_com_16mul_B.multiply2[i] + 

690 rtdx_com_16mul_B.multiply3[i]; 

691 } 

692 } 

693 

694 /* S-Function Block: <S3>/To RTDX28 (rtdx_snk) */ 

695 if (RTDX_isOutputEnabled( &i14 )) { 

696 while (RTDX_writing != NULL) { 

697 } /* waiting for rtdx write to complete */ 

698 

699 RTDX_write( &i14, (void*) rtdx_com_16mul_B.Subtract1, 

16*sizeof(real32_T)); 

700 } 

701 

702 { 

703 int32_T i; 

704 for (i = 0; i < 16; i++) { 

705 /* Product: '<S10>/multiply' */ 
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706 rtdx_com_16mul_B.multiply2[i] = 

rtdx_com_16mul_B.FromRTDX1[i] * 

707 rtdx_com_16mul_B.FromRTDX3[14]; 

708 

709 /* Product: '<S10>/multiply1' */ 

710 rtdx_com_16mul_B.multiply3[i] = 

rtdx_com_16mul_B.FromRTDX2[i] * 

711 rtdx_com_16mul_B.FromRTDX4[14]; 

712 

713 /* Sum: '<S10>/Subtract' */ 

714 rtdx_com_16mul_B.Subtract1[i] = rtdx_com_16mul_B.multiply2[i] - 

715 rtdx_com_16mul_B.multiply3[i]; 

716 } 

717 } 

718 

719 /* S-Function Block: <S3>/To RTDX29 (rtdx_snk) */ 

720 if (RTDX_isOutputEnabled( &r15 )) { 

721 while (RTDX_writing != NULL) { 

722 } /* waiting for rtdx write to complete */ 

723 

724 RTDX_write( &r15, (void*) rtdx_com_16mul_B.Subtract1, 

16*sizeof(real32_T)); 

725 } 

726 

727 { 

728 int32_T i; 

729 for (i = 0; i < 16; i++) { 

730 /* Product: '<S10>/multiply2' */ 

731 rtdx_com_16mul_B.multiply2[i] = 

rtdx_com_16mul_B.FromRTDX2[i] * 
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732 rtdx_com_16mul_B.FromRTDX3[14]; 

733 

734 /* Product: '<S10>/multiply3' */ 

735 rtdx_com_16mul_B.multiply3[i] = 

rtdx_com_16mul_B.FromRTDX1[i] * 

736 rtdx_com_16mul_B.FromRTDX4[14]; 

737 

738 /* Sum: '<S10>/Subtract1' */ 

739 rtdx_com_16mul_B.Subtract1[i] = rtdx_com_16mul_B.multiply2[i] + 

740 rtdx_com_16mul_B.multiply3[i]; 

741 } 

742 } 

743 

744 /* S-Function Block: <S3>/To RTDX30 (rtdx_snk) */ 

745 if (RTDX_isOutputEnabled( &i15 )) { 

746 while (RTDX_writing != NULL) { 

747 } /* waiting for rtdx write to complete */ 

748 

749 RTDX_write( &i15, (void*) rtdx_com_16mul_B.Subtract1, 

16*sizeof(real32_T)); 

750 } 

751 

752 { 

753 int32_T i; 

754 for (i = 0; i < 16; i++) { 

755 /* Product: '<S11>/multiply' */ 

756 rtdx_com_16mul_B.multiply2[i] = 

rtdx_com_16mul_B.FromRTDX1[i] * 

757 rtdx_com_16mul_B.FromRTDX3[15]; 

758 
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759 /* Product: '<S11>/multiply1' */ 

760 rtdx_com_16mul_B.multiply3[i] = 

rtdx_com_16mul_B.FromRTDX2[i] * 

761 rtdx_com_16mul_B.FromRTDX4[15]; 

762 

763 /* Sum: '<S11>/Subtract' */ 

764 rtdx_com_16mul_B.Subtract1[i] = rtdx_com_16mul_B.multiply2[i] - 

765 rtdx_com_16mul_B.multiply3[i]; 

766 } 

767 } 

768 

769 /* S-Function Block: <S3>/To RTDX31 (rtdx_snk) */ 

770 if (RTDX_isOutputEnabled( &r16 )) { 

771 while (RTDX_writing != NULL) { 

772 } /* waiting for rtdx write to complete */ 

773 

774 RTDX_write( &r16, (void*) rtdx_com_16mul_B.Subtract1, 

16*sizeof(real32_T)); 

775 } 

776 

777 { 

778 int32_T i; 

779 for (i = 0; i < 16; i++) { 

780 /* Product: '<S11>/multiply2' */ 

781 rtdx_com_16mul_B.multiply2[i] = 

rtdx_com_16mul_B.FromRTDX2[i] * 

782 rtdx_com_16mul_B.FromRTDX3[15]; 

783 

784 /* Product: '<S11>/multiply3' */ 
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785 rtdx_com_16mul_B.multiply3[i] = 

rtdx_com_16mul_B.FromRTDX1[i] * 

786 rtdx_com_16mul_B.FromRTDX4[15]; 

787 

788 /* Sum: '<S11>/Subtract1' */ 

789 rtdx_com_16mul_B.Subtract1[i] = rtdx_com_16mul_B.multiply2[i] + 

790 rtdx_com_16mul_B.multiply3[i]; 

791 } 

792 } 

793 

794 /* S-Function Block: <S3>/To RTDX32 (rtdx_snk) */ 

795 if (RTDX_isOutputEnabled( &i16 )) { 

796 while (RTDX_writing != NULL) { 

797 } /* waiting for rtdx write to complete */ 

798 

799 RTDX_write( &i16, (void*) rtdx_com_16mul_B.Subtract1, 

16*sizeof(real32_T)); 

800 } 

801 } 

802 

803 /* Model initialize function */ 

804 void rtdx_com_16mul_initialize(boolean_T firstTime) 

805 { 

806 (void)firstTime; 

807 

808 /* Registration code */ 

809 

810 /* initialize error status */ 

811 rtmSetErrorStatus(rtdx_com_16mul_M, (const char_T *)0); 

812 
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813 /* block I/O */ 

814 { 

815 int_T i; 

816 void *pVoidBlockIORegion; 

817 pVoidBlockIORegion = (void 

*)(&rtdx_com_16mul_B.FromRTDX1[0]); 

818 for (i = 0; i < 112; i++) { 

819 ((real32_T*)pVoidBlockIORegion)[i] = 0.0F; 

820 } 

821 } 

822 

823 /* S-Function Block: <Root>/From RTDX1 (rtdx_src) */ 

824 { 

825 RTDX_enableInput(&sin_real); 

826 } 

827 

828 /* S-Function Block: <Root>/From RTDX3 (rtdx_src) */ 

829 { 

830 RTDX_enableInput(&real_); 

831 } 

832 

833 /* S-Function Block: <Root>/From RTDX2 (rtdx_src) */ 

834 { 

835 RTDX_enableInput(&sin_img); 

836 } 

837 

838 /* S-Function Block: <Root>/From RTDX4 (rtdx_src) */ 

839 { 

840 RTDX_enableInput(&img_); 

841 } 
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842 

843 RTDX_enableOutput(&r1); /* S-Function Block: <S3>/To RTDX1 

(rtdx_snk) */ 

844 RTDX_enableOutput(&i1); /* S-Function Block: <S3>/To RTDX2 

(rtdx_snk) */ 

845 RTDX_enableOutput(&r2); /* S-Function Block: <S3>/To RTDX3 

(rtdx_snk) */ 

846 RTDX_enableOutput(&i2); /* S-Function Block: <S3>/To RTDX4 

(rtdx_snk) */ 

847 RTDX_enableOutput(&r3); /* S-Function Block: <S3>/To RTDX5 

(rtdx_snk) */ 

848 RTDX_enableOutput(&i3); /* S-Function Block: <S3>/To RTDX6 

(rtdx_snk) */ 

849 RTDX_enableOutput(&r4); /* S-Function Block: <S3>/To RTDX7 

(rtdx_snk) */ 

850 RTDX_enableOutput(&i4); /* S-Function Block: <S3>/To RTDX8 

(rtdx_snk) */ 

851 RTDX_enableOutput(&r5); /* S-Function Block: <S3>/To RTDX9 

(rtdx_snk) */ 

852 RTDX_enableOutput(&i5); /* S-Function Block: <S3>/To RTDX10 

(rtdx_snk) */ 

853 RTDX_enableOutput(&r6); /* S-Function Block: <S3>/To RTDX11 

(rtdx_snk) */ 

854 RTDX_enableOutput(&i6); /* S-Function Block: <S3>/To RTDX12 

(rtdx_snk) */ 

855 RTDX_enableOutput(&r7); /* S-Function Block: <S3>/To RTDX13 

(rtdx_snk) */ 

856 RTDX_enableOutput(&i7); /* S-Function Block: <S3>/To RTDX14 

(rtdx_snk) */ 
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857 RTDX_enableOutput(&r8); /* S-Function Block: <S3>/To RTDX15 

(rtdx_snk) */ 

858 RTDX_enableOutput(&i8); /* S-Function Block: <S3>/To RTDX16 

(rtdx_snk) */ 

859 RTDX_enableOutput(&r9); /* S-Function Block: <S3>/To RTDX17 

(rtdx_snk) */ 

860 RTDX_enableOutput(&i9); /* S-Function Block: <S3>/To RTDX18 

(rtdx_snk) */ 

861 RTDX_enableOutput(&r10); /* S-Function Block: <S3>/To RTDX19 

(rtdx_snk) */ 

862 RTDX_enableOutput(&i10); /* S-Function Block: <S3>/To RTDX20 

(rtdx_snk) */ 

863 RTDX_enableOutput(&r11); /* S-Function Block: <S3>/To RTDX21 

(rtdx_snk) */ 

864 RTDX_enableOutput(&i11); /* S-Function Block: <S3>/To RTDX22 

(rtdx_snk) */ 

865 RTDX_enableOutput(&r12); /* S-Function Block: <S3>/To RTDX23 

(rtdx_snk) */ 

866 RTDX_enableOutput(&i12); /* S-Function Block: <S3>/To RTDX24 

(rtdx_snk) */ 

867 RTDX_enableOutput(&r13); /* S-Function Block: <S3>/To RTDX25 

(rtdx_snk) */ 

868 RTDX_enableOutput(&i13); /* S-Function Block: <S3>/To RTDX26 

(rtdx_snk) */ 

869 RTDX_enableOutput(&r14); /* S-Function Block: <S3>/To RTDX27 

(rtdx_snk) */ 

870 RTDX_enableOutput(&i14); /* S-Function Block: <S3>/To RTDX28 

(rtdx_snk) */ 

871 RTDX_enableOutput(&r15); /* S-Function Block: <S3>/To RTDX29 

(rtdx_snk) */ 
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872 RTDX_enableOutput(&i15); /* S-Function Block: <S3>/To RTDX30 

(rtdx_snk) */ 

873 RTDX_enableOutput(&r16); /* S-Function Block: <S3>/To RTDX31 

(rtdx_snk) */ 

874 RTDX_enableOutput(&i16); /* S-Function Block: <S3>/To RTDX32 

(rtdx_snk) */ 

875 } 

876 

877 /* Model terminate function */ 

878 void rtdx_com_16mul_terminate(void) 

879 { 

880 RTDX_disableInput(&sin_real); /* S-Function Block: <Root>/From 

RTDX1 (rtdx_src) */ 

881 RTDX_disableInput(&real_); /* S-Function Block: <Root>/From 

RTDX3 (rtdx_src) */ 

882 RTDX_disableInput(&sin_img); /* S-Function Block: <Root>/From 

RTDX2 (rtdx_src) */ 

883 RTDX_disableInput(&img_); /* S-Function Block: <Root>/From 

RTDX4 (rtdx_src) */ 

884 RTDX_disableOutput(&r1); /* S-Function Block: <S3>/To RTDX1 

(rtdx_snk) */ 

885 RTDX_disableOutput(&i1); /* S-Function Block: <S3>/To RTDX2 

(rtdx_snk) */ 

886 RTDX_disableOutput(&r2); /* S-Function Block: <S3>/To RTDX3 

(rtdx_snk) */ 

887 RTDX_disableOutput(&i2); /* S-Function Block: <S3>/To RTDX4 

(rtdx_snk) */ 

888 RTDX_disableOutput(&r3); /* S-Function Block: <S3>/To RTDX5 

(rtdx_snk) */ 
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889 RTDX_disableOutput(&i3); /* S-Function Block: <S3>/To RTDX6 

(rtdx_snk) */ 

890 RTDX_disableOutput(&r4); /* S-Function Block: <S3>/To RTDX7 

(rtdx_snk) */ 

891 RTDX_disableOutput(&i4); /* S-Function Block: <S3>/To RTDX8 

(rtdx_snk) */ 

892 RTDX_disableOutput(&r5); /* S-Function Block: <S3>/To RTDX9 

(rtdx_snk) */ 

893 RTDX_disableOutput(&i5); /* S-Function Block: <S3>/To RTDX10 

(rtdx_snk) */ 

894 RTDX_disableOutput(&r6); /* S-Function Block: <S3>/To RTDX11 

(rtdx_snk) */ 

895 RTDX_disableOutput(&i6); /* S-Function Block: <S3>/To RTDX12 

(rtdx_snk) */ 

896 RTDX_disableOutput(&r7); /* S-Function Block: <S3>/To RTDX13 

(rtdx_snk) */ 

897 RTDX_disableOutput(&i7); /* S-Function Block: <S3>/To RTDX14 

(rtdx_snk) */ 

898 RTDX_disableOutput(&r8); /* S-Function Block: <S3>/To RTDX15 

(rtdx_snk) */ 

899 RTDX_disableOutput(&i8); /* S-Function Block: <S3>/To RTDX16 

(rtdx_snk) */ 

900 RTDX_disableOutput(&r9); /* S-Function Block: <S3>/To RTDX17 

(rtdx_snk) */ 

901 RTDX_disableOutput(&i9); /* S-Function Block: <S3>/To RTDX18 

(rtdx_snk) */ 

902 RTDX_disableOutput(&r10); /* S-Function Block: <S3>/To RTDX19 

(rtdx_snk) */ 

903 RTDX_disableOutput(&i10); /* S-Function Block: <S3>/To RTDX20 

(rtdx_snk) */ 
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904 RTDX_disableOutput(&r11); /* S-Function Block: <S3>/To RTDX21 

(rtdx_snk) */ 

905 RTDX_disableOutput(&i11); /* S-Function Block: <S3>/To RTDX22 

(rtdx_snk) */ 

906 RTDX_disableOutput(&r12); /* S-Function Block: <S3>/To RTDX23 

(rtdx_snk) */ 

907 RTDX_disableOutput(&i12); /* S-Function Block: <S3>/To RTDX24 

(rtdx_snk) */ 

908 RTDX_disableOutput(&r13); /* S-Function Block: <S3>/To RTDX25 

(rtdx_snk) */ 

909 RTDX_disableOutput(&i13); /* S-Function Block: <S3>/To RTDX26 

(rtdx_snk) */ 

910 RTDX_disableOutput(&r14); /* S-Function Block: <S3>/To RTDX27 

(rtdx_snk) */ 

911 RTDX_disableOutput(&i14); /* S-Function Block: <S3>/To RTDX28 

(rtdx_snk) */ 

912 RTDX_disableOutput(&r15); /* S-Function Block: <S3>/To RTDX29 

(rtdx_snk) */ 

913 RTDX_disableOutput(&i15); /* S-Function Block: <S3>/To RTDX30 

(rtdx_snk) */ 

914 RTDX_disableOutput(&r16); /* S-Function Block: <S3>/To RTDX31 

(rtdx_snk) */ 

915 RTDX_disableOutput(&i16); /* S-Function Block: <S3>/To RTDX32 

(rtdx_snk) */ 

916 } 

 

 

 

1 #include "MW_c6xxx_csl.h" 

2 #include "rtwtypes.h" 
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3 #include "rtdx_com_16mul.h" 

4 #include "rtdx_com_16mul_private.h" 

5 #include "rtdx_com_16mulcfg.h" 

6 #include <hwi.h> 

7 #define _C6XCHIP_SOURCE_FILE_ 

8 

9 void cslInitialize (void); 

10 void turnOn_L2Cache(void); 

11 void targetInitialize(void) 

12 { 

13 cslInitialize(); 

14 } 

15 

16 void targetTerminate(void) 

17 { 

18 } 

19 

20 TIMER_Handle hTimer1; 

21 void configureTimers(void) 

22 { 

23 Uint32 timerControl = TIMER_CTL_RMK( 

24 TIMER_CTL_INVINP_NO, 

25 TIMER_CTL_CLKSRC_CPUOVR4, 

26 TIMER_CTL_CP_PULSE, 

27 TIMER_CTL_HLD_YES, 

28 TIMER_CTL_GO_NO, 

29 TIMER_CTL_PWID_ONE, 

30 TIMER_CTL_DATOUT_0, 

31 TIMER_CTL_INVOUT_NO, 

32 TIMER_CTL_FUNC_GPIO 
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33 ); 

34 TIMER_Config timerCfg; 

35 Uint32 timerEventId; 

36 

37 // Initialize control and count fields of 

38 // the timer configuration object 

39 timerCfg.ctl = timerControl; 

40 timerCfg.cnt = 0x0; 

41 

42 // Configure timer for timer interrupt 15 

43 hTimer1 = TIMER_open(TIMER_DEV1, TIMER_OPEN_RESET); 

44 timerCfg.prd = 11250000U; 

45 TIMER_config(hTimer1, &timerCfg); 

46 timerEventId = TIMER_getEventId(hTimer1); 

47 IRQ_map(timerEventId, 15); 

48 IRQ_enable(timerEventId); 

49 TIMER_start(hTimer1); 

50 } 

51 

52 void Timer1_ISR(Uint32 Mailbox) 

53 { 

54 SEM_post( &rtClockSEM ); 

55 } 

56 

57 void cslInitialize(void) 

58 { 

59 } 

60 

61 /* Function: enable_interrupts ------------------------------- 

62 * 
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63 * Abstract: 

64 * Enable the all DMA and DSP interrupts 

65 */ 

66 void enable_interrupts() 

67 { 

68 } 

69 

70 /* Function: disable_interrupts ------------------------------ 

71 * 

72 * Abstract: 

73 * Disable all DSP interrupts 

74 */ 

75 void disable_interrupts() 

76 { 

77 IRQ_globalDisable(); 

78 } 

79 

80 // 

81 //EOF -- MW_c6xxx_csl.c 

82 void turnOn_L2Cache() 

83 { 

84 CACHE_setL2Mode (CACHE_64KCACHE); 

85 CACHE_enableCaching (CACHE_CE00); 

86 } 
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