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ABSTRACT 
 
 
Chassis and suspension system play an important role in the performance of a 

vehicle when it comes to safety and passenger comfort. The objectives of this 

project are to develop a “hop-in and hop-out” recreational vehicle with a capacity 

of eight-passenger, fitted with a dual-fuel system and to analyse the 

performance of its chassis and suspension system. This showcase vehicle is 

manufactured by a team of engineers from the Automotive Development Centre 

(ADC) in UTM. Both the chassis and suspension analyses are rigorously 

performed using industrial-standard computer software.  The safety factor 

requirement for the vehicle chassis is set for over a factor of 2.0 and its torsional 

stiffness must in the range from 3000Nm/degree to 9000Nm/degree. The vehicle 

chassis is analyzed in several conditions, namely static, bumping and braking, 

while the comfort performance is largely speculated to depend on the demand of 

user. In this project, the comfortable performance for tramcar which is the 

performance of its suspension system is benchmarked with that of the 

performance for Proton Waja 1.6. The level of comfort for the tramcar 

suspension system is referred to the performance results with particular 

emphasis on bouncing, pitching and rolling. From the results of the analyses the 

tramcar has achieved satisfactory performance criteria. The safety factor is over 

the minimum requirement for a typical utility vehicle and the torsional stiffness is 

within the allowable range. In addition the suspension system shows the results 

are comparable to the performance of the Proton Waja 1.6. 
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ABSTRAK 
 
 
Sistem gantungan (casis dan penyerap hentak) memainkan peranan penting 

dalam prestasi sesebuah kenderaan dimana ia memberikan keselamatan dan 

keselesaan kepada penumpang. Objective projek ini adalah untuk membina 

satu ”hip-in and hip out” kenderaan rekreasi untuk kegunaan 8 orang 

penumpang dimana ianya dilengkapi dengan sistem dua bahan baker dan 

analisis prestasinya pada system casis dan gantungan. Produk ini telah 

dibangunkan oleh sekumpulan jurutera dari Pusat Pembangunan Automotif 

(ADC) di UTM. Analysis sistem gantungan dan casis telah dianalisis 

menggunakan perisian komputer standard industri dengan ditetapkan faktor 

selamat yang ditetapkan untuk casis melebihi 2.0 dan keupayaan kilasan di 

antara 3000Nm/darjah hingga 9000Nm/darjah. Casis kenderaan telah di analisis 

dengan beberapa keadaan yang berbeza seperti statik analisis, keadaan 

berbonggol dan memberek, sehingga keselesaan pengguna diambil kira 

sebelum rekabentuk diterima. Dalam projek ini keselesaan pemanduan Proton 

Waja 1.6 adalah menjadi bandingan. Tahap keselesaan bagi sisyem gantungan 

Tramcar dirujuk kepada keputusan prestasi oleh pemerhatian terhadap 

bouncing, pitcing  dan rolling. Dari keputusan analisis tersebut, tramcar telah 

melapasi prestasi asa yang telah ditetapkan. Faktor selamat telah di rekabentuk 

melebihi tahap minimum yang diperlukan untuk kenderaan yang tipikal. 
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CHAPTER 1 
 

 

INTRODUCTION 
 

 
1.1  Introduction 
 
Transportation systems have come to play a large part in the lives of a 

significant segment of the world’s population. From daily trips to the place of 

employment, to occasional cross-country business or vacation trips, to once-

in-a-lifetime intercontinental emigration, the human race has achieved a level 

of mobility, which would have been incomprehensible a short time ago. 

 

For several years, the attention of the technical community has been 

attracted to the vibration environment of those making use of all types of 

transportation vehicles. For the passengers, discomfort and fatigue due to 

vibration are major considerations since this will determine their ability to 

perform tasks or enjoy recreation of their vehicle usages. The impact on 

safety of the trip, possible deterioration in efficiency and effectiveness in 

carrying out their duties are also the areas of concern for those who operate 

the vehicle. 

 

Chassis play an important role in the performance of vehicle. The chassis is 

the framework of any vehicle. The suspension system, steering and drive 

train components are mounted into the chassis. Due to that, chassis analysis 

frequent done by manufacturer to ensure the vehicle stability. The chassis 

has to be a strong and rigid platform to support all the components. The 

connections between the chassis, the suspension system and the drive train 

must be made of rubber to dampen noise, vibration and hardness. The 

construction of today’s vehicles required the use of many different materials. 

It must strong enough to protect the passenger. 
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One of the most important systems of the transportation vehicle, particularly 

when comfort is of interest, is the suspension system. The suspension 

system provides basic support, guidance, and in some cases propulsion of a 

vehicle. Suspensions also isolate passenger and freight compartments from 

disturbances due to roadway irregularities. When the ‘softer’ suspension, the 

effects of the irregularities on the vehicle vibration level (passenger comfort) 

is reduced and also the suspension stroke (rattle space requirement) is 

increased. When the suspension is harsh, vibration level will be increased 

while the suspension stroke is reduced. The requirement of achieving both 

low vibration magnitude and small suspension stroke will create conflicting 

factors in suspension design and to certain extend limit suspension 

performance capability. 

 
 
1.2 Tramcar Background 
 
Faculty mechanical of UTM has developed a non-commercial transport, 

better known as the Tramcar, whose sole purpose is to transport a group of 

people (visitors) from one point to another within its campus. This mobile 

platform ultimately can be used for other uses commercially i.e. to ferry 

people in recreational areas, large indoor exhibition centres, zoos, airports, 

hotels, and golf resort.  

 

UTM’s Tramcar is simple in design and construction, and is equipped with a 

dual-fuel capability. To achieve ease of operation, the concept of “hop-in, 

hop-out” is incorporated; thus it is not equipped with doors for easy excess. It 

has eight seats in the configuration of two-three-three i.e. two for the front 

seat (inclusive the driver seat), three in the centre and three in the rear site. 

These are adjustable seats giving comfort and easy boarding for passengers. 

 

The UTM’s Tramcar uses a four-cylinder Ford engine equipped with 16 

valves and having a displacement of 2000cc. The engine is mounted at the 

rear of the vehicle thus giving large intermediate volume for high-density 
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passenger capability. It uses the electronic control 2 way * OD attaching a 4-

speed automatic ECT-S transmission system to the engine in the rear engine 

compartment. 

 

The prototype uses Toyota ST 190 McPherson struts on its both sides of its 

suspension system. McPherson strut is an independent suspension system, 

which is small and lightweight yet with very little unsprung mass. It has fewer 

total components compared to conventional suspension systems and is fairly 

straightforward to assemble and repair. 

 

The framework of this platform was built based on the twin tube (or common 

known as ladder frame) configuration. Even it is simple arrangement; it can 

carry a substantial amount of load. This is largely attributed to the ladder 

frame that use the welding method to joint the bar, as the stability of chassis 

is very much depends on the welding joints. Here oblique joints were used to 

joint all the bars. It is widely believe that the oblique joint can provide a good 

load arrangement and is able to prevent the abrupt failure of chassis.  

 
 
1.3 Objectives 
 

The main objective of this project is to produce a versatile people’s mover 

platform within UTM campus, which is environmental-friendly and easy-

operation. 

 
The second objective is to analyse the Tramcar’s chassis and suspension 

system towards further improvement from the aspect of safety and comfort 

factors. 

 
The third objective is incorporation of the newly developed vehicle for dual 

fuel function with the augmentation of a typical CNG conversion kit for 

flexibility of fuel utilization. 
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1.4 Project Workscopes 
 
This project focuses on three major objectives mentioned earlier. However 

development and analysis work take up the bulk of the time allocated for the 

project.  

 

The specifications and properties on the chassis and suspension systems of 

the Tramcar are obtained from a series of discussions made with the group 

members. The scope in the work include: - 

 

i. Identify the displacements and stresses of the chassis due to static 

loadings. 

 

ii. Analyse the torsion of chassis when the Tramcar rides over a bump. 

 

iii. Analyse the chassis stability when the Tramcar undergoes a strenuous 

conditions such as braking and manoeuvring. 

 

iv. Obtain the maximum deformation of the structure, displacements and 

stresses contour. 

 

v. Dynamic analysis to the suspension system to obtain for: - 

 

 Bouncing characteristics 
 

 Pitching characteristics 
 

 Rolling characteristic 
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1.5 Methodology 
 
In any analysis work, the general procedures that are usually included are: 

problem definition, literature review, data collecting, solution method 

selecting, analysis and calculations, evaluations and documentations. The 

methodology for the implementation of this project is shown in the flowchart 

below:- 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Problem definition: 

Define the problem base on the objective and scope. Clarify the aim of 

the analysis. 

Literature review: 

 Chassis and suspension system general study will be the first step 

of the problem solving. The study includes four types of chassis 

that usually use in automotive field, simple dependent 

configuration, complicated independent systems and the more 

sophisticated suspension system. Study also comprises the 

passive, active and semi-active suspension system theory and 

design study, latest technology suspension system in automotive 

field. 

 The specification and properties of the tramcar’ chassis and 

suspension system. 
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Data collecting: 

The data about the tramcar will be collect from the sources:- 

 Researchers who were involved with the project 

 Platform developer 

 Post-graduate students 

 Website with the standard spec for Toyota engine and suspension 

system 

Analysis and calculations: 

The analysis will be done base on the selected solution method and the 

data obtained before. The results may include suspension performance 

in different conditions and the integrity, torsion and stiffness level of 

chassis. 

Discussions: 

The results obtain will be discuss and evaluated in order to predict the 

chassis and suspension performance.

Conclusions: 

Base on the findings and results of the analysis. 

Suggestions: 

The recommendations to improve the performance are suggest after the 

discussions. 
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CHAPTER 2 
 

 

LITERATURE REVIEW 
 

 

2.1  Brief Overview of Chassis 
 

 

Chassis plays an important role in the performance of vehicle. A good 

chassis must be structurally sound in every way over the expected life of the 

vehicle and beyond.  This means nothing will ever break under normal 

conditions. Chassis maintain the suspension mounting locations so that 

handling is safe and consistent under high cornering and bump loads. 

Besides of that, chassis support the body panels and other passenger 

components in vehicle so that everything feels solid and has a long and 

reliable life. 

 

In the real world, few chassis designs will not meet the standard 

criteria.  Major structural failures, even in kit cars are rare. Structural stiffness 

is the basis of what you feel at the seat of your pants.  It defines how a car 

handles, body integrity and the overall feel of the car. Different basic chassis 

designs each have their own strengths and weaknesses.  Every chassis is a 

compromise between weight, component size, vehicle intent, and ultimate 

cost.  Even within a basic design method, strength and stiffness can vary 

significantly, depending on the details.  There is no such thing as the ultimate 

method of construction for every car, because each car presents a different 

set of problems. 

 

In this section, some types of chassis will be reviewed and one type will be 

selected for the proposed Tramcar. The types are i) monocoque, ii) twin tube, 

iii) multi-tube and iv) space frame respectively. 
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2.1.1 Monocoque 
 

 
Figure 2.1: Monocoque [Source: Automotive Engineering, SAE]. 

 

Monocoque or in French "single shell" means unibody is a construction 

technique that utilizes the external skinning of an object to form most of the 

structure. This is as opposed to using an internal framework that is then 

covered with a non-structural skinning. Monocoque construction was first 

widely used in aircraft. The different between monocoque with the other 

frame is monocoque built in unibody but the other frame is in joint form to 

build a unit of vehicle. 

 

The monocoque skinning itself had significant structural properties of its own. 

With a sufficient thickness, one could do away with all of the internal 

structure. However this would be even heavier than the framing would have 

been. At thinner gauges the skinning could easily provide the structure for 

tension and shearing loads (metal resists being pulled apart quite well), and if 

it was bent into a curve or pipe, it became quite strong against bending loads 

as well. The only loading it could not handle on its own, at least in thin "skins" 

is compression. Combining this sort of structural skin with a greatly reduced 

internal framing to provide strength against compression led to what is known 

as "semi-monocoque". 

 

In the post-war period the technique became more widely used in other 

areas. It is now used quite commonly in automobile construction as well. In 

this application it is common to see true monocoque frames, where the 
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structural members around the window and door frames are built by folding 

the skinning material several times. In these situations the main concern is 

spreading the load evenly, having no holes for corrosion to start, and 

reducing the overall workload. Compared to older techniques where a body 

would be bolted to a frame, monocoque cars are less expensive and 

stronger. 

 

 

2.1.2 Twin Tube 
 

 
Figure 2.2: Ladder Frame [Source: Automotive Engineering, SAE]. 

 

Twin tube or known as ladder frame is the most simply frame among the 

others frame. The ladder frame is a shorthand description of a twin-rail 

chassis, typically made from round or rectangular tubing or channel.  It can 

use straight or curved members, connected by two or more cross members. 

The cross member provide more strength to chassis and as a place to mount 

the seat. It is not necessary to use the same dimension for whole member in 

ladder frame. 

 

Usually all members are joint by welding to build up a chassis and oblique 

joint use for the different dimension member. Oblique joint provides a good 

load arrangement and able to prevent the failure of chassis. Body mounts are 

usually integral outriggers from the main rails, and suspension points can be 

well or poorly integrated into the basic design. 
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Advantages of the ladder frame that are often overlooked are that the 

available space and ease of access to mechanical parts is often better and 

engine exhaust systems are less likely to be restricted by the need to route 

them around chassis tubes. Additional structures are often required with 

ladder frames to support bodywork but these can often be designed to brace 

the basic chassis structure.Ladder frame give a low performance in bending 

and torsional loads. However, it is the most easy and cheap for fabrication. 

 

 

 

2.1.3 Multi Tube 
 
Multi tube frame is described as a frame that has four side rails. It acts 

between the ladder frame and space frame. As ladder frame, multi tube 

frame also use cross member and diagonal member to improve its strength. 

 

 
Figure 2.3: Multi Tube [Source: Automotive Engineering, SAE]. 

 

 

Multi tube chassis design is as much an art as a science. The art comes in 

deciding where to put the tubes so as best to connect and support all the 

hundreds of components, without using more than an absolute minimum 

number of tubes, and equally, an absolute minimum of sheet or plate in the 

brackets. 
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The bending performance for multi tube chassis is base on the diagonal 

member that used in the frame. The diagonal member will prevent whole 

chassis to occur deformation. The tube dimension and the total tube used in 

frame will influence the torsional performance. More the tubes used in the 

frame then better its torsion stiffness. Hence it will cause to increase the 

vehicle weight.  

 

 

 

2.1.4 Space Frame  
 
Space frame is a complexity frame. A true space frame has small tubes that 

are only in tension or compression with no bending or twisting loads. The 

chassis build from hundreds of separate tubes. It was difficult to build and a 

nightmare to fix. The space frame that is currently used for chassis simply 

uses smaller tubes, many carrying bending and torsional loads. If compare to 

ladder frame and multi tube frame, space frame able to provide a good 

performance in bending and torsional loads. 

 
 

 
Figure 2.4: Space Frame [Source: Automotive Engineering, SAE]. 
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Besides, space frame able to resist the impact forces. Space frame will 

absorb the momentum and arrange the momentum to whole body. Therefore, 

space frame can minimize the damage of passenger if the vehicles going to 

accident in high speed by reduce the load to passenger. Even through the 

space frame is the most efficient frame, but it is not effective in the cost. This 

is because it uses more tube and integrating work. 

 

 

2.1.5 Choice 
 

Having look and carefully examined the prospect of each of one of the 

possible concept. The multi-tube chassis was selected as it offers cost-

effective for this project as the budget constrains heavily limits the choice 

available. 

 
 
2.2  Suspension Systems 

 

All dynamic vehicles have suspension systems. Commercial automobiles and 

trucks, motorcycles, road and mountain bikes and even shoes can be 

considered dynamic vehicles. By their nature, dynamic vehicles are 

concerned with motion and the generation of motion. With the motion, come 

forces, moments and accelerations that act on the vehicles, creating stresses, 

loads and moments on specific components and systems. The behaviour and 

response of the vehicle is dependent upon the forces imposed on that 

system from the external world. For wheeled and tired vehicles, the forces 

and moments generated by the tire’s interaction with the ground are 

transmitted through the suspension system and create loads and moments at 

the chassis attachment points. 

 

In the context of vibration theory, the suspension system is just a vibratory 

system with essential ingredients being inertial and elastic elements, and the 

central phenomenon is the cyclic interchange of kinetic and potential 

energies. Damping is essential for controlling the vibration. Damping is the 
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removal of energy from the oscillating system either by dissipating within the 

system or by transmission (radiation) away from the system. If the damping is 

light, the dynamical behaviour of the suspension system is principally 

determined by the relatively large elastic and inertial forces. The conventional 

suspension usually consists of springs as elastic elements, masses of 

various parts of the vehicle as inertial elements and shock absorber 

(dampers) as devices to provide damping. All of those elements are passive 

in the sense that no power is required from outside of the system. Such a 

suspension system is said to be a passive suspension system. 

 

In the context of automatic control theory, the suspension system is a system 

that provides the desired control forces so that the vehicle body behaves in 

the desired manner. Optimal control theory has been used to determine the 

desired control forces of the suspension system. Unfortunately, the optimum 

suspension system cannot be implemented using only passive elements. The 

implementation of such a suspension system requires active force generators 

and thus power has to be supplied to the suspension system from an 

external source. For the reason that it requires an external power supply, it is 

called an active suspension system. Although, an active suspension shows 

better performance over a prescribed frequency band than that of the best 

possible passive system, or accomplishes a task that is not possible for a 

passive one, it must be admitted that active suspension, in general, are more 

costly, more complex and therefore, often less reliable than passive 

suspensions. To date, the use of the active suspension has been limited to 

cases of which performance gains outweigh the disadvantages of increased 

cost, complexity and weight. 

 

A compromise between the active suspension and the passive one is called 

the ‘semi-active’ suspension system. In this type of suspension, some of the 

active suspension advantages are realized while using almost passive 

components in term of cost and complexity. Springs are still used as elastic 

elements as in the case of the passive suspension, but dampers are 

activated. The activated damper is a self-power, high-gain device which 

derives its control power from the disturbance of the roadway. In other words, 
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the damper force is generated totally passively as in a convectional damper. 

Only a small power source is required for instrumentation, signal-processing 

and low-power servos within the damper. For the fact that this suspension 

system uses only a small amount of externally supplied power, it is called a 

‘semi-active’ suspension system. A significant advantage over fully active 

suspension is its fail-safe malfunction. Failure in the control circuitry cannot 

destabilize the system since the activated damper cannot supply power to 

the vehicle body. Most failures simply turn the semi-active damper back into 

a passive one which, however, may be stiffer or softer than desirable. 

 

Several suspension systems will be discussed and outlined in this section, 

starting with a simple dependent configuration (solid axle, four link and De-

Dion), progressing through more complicated independent systems (trailing 

arm suspensions) and finally discussing a more sophisticated suspension 

system like the McPherson Strut, multi link and double wishbone. 

 

 

2.2.1 Solid Axle 
 
In s solid axle configuration, the wheels are mounted on either side of a rigid 

beam. The motion of the wheels is therefore tied together and any motion 

experienced by one of the wheels is transmitted to the opposite wheel. The 

wheels act as like a coupled pair. It is a dependent suspension system, and 

consequently, the wheels must steer and track together. The advantage of a 

solid axle suspension is that the wheel camber is not affected by body roll. 

The disadvantages are that the sprung mass (mass of the axle, wheels and 

the suspension components) tends to be very high and that the volume 

required to package the suspension components (shock and leaf springs) 

tends to be significant. 
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Figure 2.5: Solid Axle [Source: Automotive Engineering, SAE]. 

 

 

 

2.2.2 Four Link 
 
Similar to the solid axle configuration, the wheels are mounted on either side 

of a rigid beam. The leaf springs are removed and replaced with coil springs 

and shocks absorbers. The rear differential is removed from the rear axle, 

thereby reducing the unsprung mass. The response of the axis is governed 

by the addition of linkages from the axle to the chassis. As is the case with 

the solid axle, the motions of the wheels are tired together.  

 

 
Figure 2.6: Four Link [Source: Automotive Engineering, SAE]. 
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2.2.3 De-Dion 
 
It consist of a cross tube between two driving wheels with a chassis mounted 

differential and half shaft.  Trailing arm on each side supported the body by 

coil springs on it. The advantages are less interior space for rigid axle room 

and less differential weight for the gross vehicle weight. However, it needs 

sliding tube and half shaft as adding part of the suspension components. The 

main linkage components with its supporting axes are: trailing arm for x-axis; 

sliding tube and trailing arm for y-axis; leaf spring and damper for z-axis. The 

torque from acceleration and deceleration are by the semi elliptic leaf spring. 

 

 
Figure 2.7: De-Dion [Source: Automotive Engineering, SAE]. 

 

 

2.2.4 Trailing Arm 
 
The trailing arm suspension system is an independent suspension system. 

This suspension system allows for each wheel to move as a separate entity, 

without affecting the motion of the opposite wheel. By decoupling the wheels, 

the roll centre for each wheel is easier to control by geometrical design. 

Independent suspension systems allow for more efficient use of the 

packaging space restrictions of the automobile and provide a smoother 

passenger ride compared with the dependent suspension systems, with less 

overall vibration noise. Generally, independent suspension systems are less 

costly than alternative suspension systems. 
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Figure 2.8: Trailing Arm [Source: Automotive Engineering, SAE] 

 

The trailing arm suspension was developed as the first attempt at an 

independent suspension system. It uses parallel, equal length trailing arms 

connected to torsion bars. The torsion bars provide the springing action for 

the wheel. There is no coil spring or leaf spring. 

 

 

2.2.5 McPherson Strut  
 
The McPherson strut uses geometry with unequal arms. The primary 

advantage of the McPherson strut independent suspension system is that it 

is small and lightweight, with very little unsprung mass. It is also compact, but 

does tend to be large in the z-axis (tall). The McPherson strut suspension 

also has fewer total components compared to alternative rear suspension 

systems and is fairly straight forward to assemble and to repair. Another 

advantage of the McPherson suspension system is that the loads act as 

distributed loads over larger areas of the body structure. 
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Figure 2.9: McPherson Strut [Source: Automotive Engineering, SAE] 

 

2.2.6 Quadra Link 
 
The Quadra link or multi link rear suspension utilizes the McPherson strut 

(shock absorber-coil spring) arrangement with three or four additional links. 

The suspension is positioned and controlled by use of the linkages. The 

multi-link rear suspension system is characterized by the use of radial 

bushings at the linkage ends, so that-plane bending moments are eliminated. 

The bushings are complaint, allowing for accurate control of the toe angle 

during cornering. 

 

 

 
Figure 2.10: Quadra Link [Source: Automotive Engineering, SAE]. 
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2.2.7 Double Wishbone 
 
The double wishbone uses two ‘A’ shape lateral arms connected the wheel to 

the vehicle body. Usually the upper arm is shorter than the lower one. This 

unequal length characteristic will cause negative chambering during wheel 

vertical displacement. This suspension is suitable for front engine with rear 

wheel drives cars. There are few types recently for deferent suspension 

function design. The chambering effect will keep the outer turning wheel 

always straight to the road surface for good handling. Its geometry design 

required less space, able to assembly the rear deferential and driving shafts. 

The disadvantages are requiring careful refinement and accurate geometry 

design because of its kinematics abilities. Besides, cambering will cause 

track changing then increase tire wearing. The lower and upper control arm 

will support all the forces accept vertical forces, which acting on the coil 

spring and damper component. 

 

 
Figure 2.11: Double Wishbone [Source: Automotive Engineering, SAE]. 
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CHAPTER 3 
 

 

CHASSIS ANALYSIS 
 

 

3.1 Introduction 
 

Strength, rigidity and stiffness are the main concerns of constructing a 

supportive chassis for a vehicle. The chassis should be able to withstand the 

appropriate loads on and off the racetrack to ensure a high level of safety 

and performance. Chassis is frameworks that support the entire component 

in the car such as suspension system, seat, driver and engine. Even the 

framework of Tramcar is simple, but I need to know the maximum 

deformation of the chassis when all the loadings applied. Besides, I also 

need to know the torsional stiffness of the chassis when some cases occur, 

such as braking or one of the four wheels ride over a bump or into a hole. 

 

In this thesis, all the deformation, stresses, contour and safety factor of the 

chassis analysed by using visualNastran. The drawing of chassis imported 

from SolidWorks into VisualNastran by ACIS file to make easier for analysis. 

Constraint fixed for each analysis. After the analysis in VisualNastran, we 

obtained the value of: - 

 

i. Maximum Von Mises stress/strain 
 
ii. Maximum shear stress/strain 
 
iii. Maximum principal stress/strain 
 
iv. Total displacement 
 
v. Safety Factor, n 
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3.2 Input Material Specifications 
 

 
Figure 3.1: Tramcar chassis. 

 

Figure 3.1 shows the isometric view of the Tramcar chassis design. Figure 

3.2 and Figure 3.3 on the other hand show the upper and lower ladder 

frameworks associated with the chassis. The material selected is Structure 

Steel of ANSI i.e. the C1020 type. The material has the following properties: - 

 

 Young’s Modulus, E   : 200GPa 

 

 Yield stress, σyield   : 331MPa 

 

 Ultimate tensile stress, σultimate : 448MPa 

 

 Mass density, ρ   : 7850kg/m3 

 

 Poisson’s ratio, υ   : 0.29 
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Width     : 38.10mm 

Height     : 38.10mm 

Thickness: 2.50mm

Width     : 50.00mm 

Height     : 100.00mm 

Thickness: 4.00mm 

 
Figure 3.2: The upper ladder frame 

 

 

 

 
Figure 3.3: The lower ladder frame 
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3.3 Assumptions 
 
The static and equivalent dynamic analyses were carried out with the 

assumption that material is of linear elastic. All joints were assumed to be 

perfectly welded or bonded. The structures were rested on a flat ground and 

fixed at the given bolting positions. 

 
 
3.4 Loadings Applied 
 
 
Before the analysis can be initiated, the boundary conditions were firstly set 

up. For this Tramcar chassis, the loads applied on it are estimated as given 

in the table below: - 

 

Table 3.1: The loads applied on the chassis 

Components Estimated weight [kg] 

Chassis 204.35 

Seats and passengers 720.00 

Engine 300.00 

Tank with full petrol 30.80 

Front cover body 23.00 

Rear cover body 16.30 

Cover roof 69.55 

Others 300.00 

Vehicle curb weight 984.00 

Vehicle gross weight 1664.00 
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3.5 Static analysis 
 
The static analysis was made to determine the safety factor of the chassis 

when the Tramcar was in a static condition. The loads due to passengers 

were taken in account in this analysis.  

 
 
 
3.5.1 Boundary Conditions 
 
For the static analysis, the boundary conditions were as follows:  - 

 

1. The entire load was applied to the chassis 

2. Constraints are fixed onto the front and the rear suspension bars  

3. 1g of force was applied on –y direction.  

 
 
3.5.2 Results 
 
 
All the results of the contours are shown in Appendix B. The values can be 

summarized as follows: - 

 

i. Maximum Von Mises stress  (Figure B1): 101MPa 

ii. Maximum shear stress   (Figure B2): 53.8MPa 

iii. Maximum principal stress  (Figure B3): 113MPa 

iv. Maximum Von Mises strain  (Figure B4): 0.000436 

v. Maximum shear strain   (Figure B5): 0.000694 

vi. Maximum principal strain  (Figure B6): 0.000531 

vii. Total displacement   (Figure B7): 4.23mm  

viii.Safety Factor, n:  
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The safety factors are calculated as follows, 

 
6

6

331 10 2.93
113 10

yield

principal

n
σ
σ

×
= = =

×
       (Normal stress) --- (Eq 3.1) 

 
6

6
max

331 10 3.08
2 2 53.8 10

yieldn
σ
τ

×
= = =

× ×
 (Shear stress) --- (Eq 3.2) 

 
 
 
3.6 Bumping Analysis 
 
 
The bumping analysis has been done to know the safety factor of chassis 

when the Tramcar rides over a bump. 

 
 
3.6.1 Boundary Conditions 
 
In bumping analysis, the boundary conditions were set as follows: - 

 

1. The entire load was applied to the chassis.  

2. Constraints fixed in front and rear suspension bar.  

3. 2g of force was applied on the y -direction.  

 
 
3.6.2 Results 
 
 
All the results in the form of contour lines are shown in Appendix C. The 

values can conclude as below:- 

 

i. Maximum Von Mises stress  (Figure C1): 114MPa 
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ii. Maximum shear stress   (Figure C2): 60.7MPa 

iii. Maximum principal stress  (Figure C3): 128MPa 

iv. Maximum Von Mises strain  (Figure C4): 0.000492 

v. Maximum shear strain   (Figure C5): 0.000783 

vi. Maximum principal strain (Figure C6): 0.000599 

vii. Total displacement   (Figure C7): 4.63mm 

viii.Safety Factor, n:  

 
6

6

331 10 2.59
128 10

yield

principal

n
σ
σ

×
= = =

×
 (Normal stress) 

 
6

6
max

331 10 2.73
2 2 60.7 10

yieldn
σ
τ

×
= = =

× ×
 (Shear stress) 

 
 
 
3.7 Braking Analyses 
 
The braking analyses were made to identify the safety factor of the chassis 

when the Tramcar is subjected to a sudden braking. 

 
 
3.7.1 Boundary Conditions 
 
 
In undertaking the braking analyses, the boundary conditions were set with 

the following boundary conditions:- 

 

1. The entire load was applied onto the chassis  

2. Constraints fixed in front and rear suspension bars 

3. 1g of force was applied in the x-direction 
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3.7.2 Results 
 
All the results in the form of contours are shown in Appendix D. The values 

are summarised as below: - 

 

i. Maximum Von Mises stress  (Figure D1): 76.5MPa 

ii. Maximum shear stress   (Figure D2): 40.5MPa 

iii. Maximum principal stress  (Figure D3): 85.4MPa 

iv. Maximum Von Mises strain  (Figure D4): 0.000329 

v. Maximum shear strain   (Figure D5): 0.000523 

vi. Maximum principal strain  (Figure D6): 0.000400 

vii. Total displacement   (Figure D7): 3.72mm 

viii.Safety Factor, n:  

 
6

6

331 10 3.88
85.4 10

yield

principal

n
σ
σ

×
= = =

×
 (Normal stress) 

 
6

6
max

331 10 4.09
2 2 40.5 10

yieldn
σ
τ

×
= = =

× ×
 (Shear stress) 

 
 
3.8 Chassis Torsional Stiffness Analysis 
 
 
The torsional stiffness analysis was implemented to assess the chassis 

ability to withstand the torsional loading. 
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3.8.1 Boundary Conditions 
 
 
In chassis torsional stiffness analysis, the boundary conditions set as follows:  

 

1. Constraints fixed only in rear suspension bar. 

2. 1.5kN, 3kN, 4.5kN, 6kN, 7.5kN and 9kN force applied in fore suspension 

bar on opposite direction. 

 
 
 
3.8.2 Results 
 
 
All the results in the form of contour lines are shown in Appendix E.  

Examples of calculation to obtain the torsional stiffness are show as follows: 

 

 

Torsion, T  = Applied force x Distance (F x r)   --- (Eq. 3.3) 

  = 9000 x 0.6275 

  = 5647.50 Nm 

 

Twisting Angle, θ   1tan
r
δ−=      --- (Eq. 3.4) 

1 0.0121tan
0.6275

−=   

1.1047°=  

 

Here the twist angle is rather low indicating the rigidity of the chassis frame in 

its totality. 
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Figure 3.4: The chassis displacement 

 

 

 

Table 3.2: Table of applied force, displacement, torsion and twisting angle 
during torsional stiffness analysis 

 

Applied force, F 
[N] 

Chassis 
displacement, δ 

[mm] 

Torsion, T  
[Nm] 

Twisting angle, 
θ [˚] 

0 0 0 0 

1500 2.035 941.25 0.1858 

3000 4.015 1882.50 0.3666 

4500 6.050 2823.75 0.5524 

6000 8.250 3765.00 0.7532 

7500 9.900 4706.25 0.9039 

9000 12.10 5647.50 1.1047 

 

 

The values for torsion and twisting angle were used to plot a graph (Figure 

3.5). The slope of the graph indicated the chassis torsional stiffness. 

 

 

rrF F 

δ

δ
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Figure 3.5: Graph torsion increasingly against twisting angle. 
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CHAPTER 4 
 
 

SUSPENSION SYSTEM ANALYSIS 
 
4.1 Introduction 
 
Quarter car, half car and full car model can be created to determine the 

different characteristics of a vehicle under study, to determine for its ride and 

handling performance respectively. As for the vehicle ride aspect, the 

important parameters will include i) vehicle displacement, ii) yaw, iii) roll and 

iv) pitch response.  
 
4.2 Quarter Car Model 
 
The Figure 4.1 shows below the quarter car model representation. The 

quarter car model is a two degree-of-freedom type that emulates the vehicle 

body and axle dynamics with a single time respectively. 

 

Figure 4.1: Quarter car model representation 
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For this model, the two degree-of-freedom that can be created is the heave 

displacement of the unsprung mass. However, model cannot be used to 

determine the roll and the pitching conditions. This study remains adequate 

and efficient to determine the many design issues but is not sufficient to 

warrant for the actual system design purposes.  

 

As an example, the quarter car model is not able to study the influence of the 

wheelbase filtering mechanism on ride comfort. Half vehicle model is more 

convenient to design the passive as well as the active suspension systems 

and to study their influence on the interaction between the body bounce and 

pitch motions.  

 
 
4.3 Half Car Model 

 
 

Figure 4.2: Half car model 

 

The Figure 4.2 on the other hand illustrates a half car model of the Tramcar. 

The half car model is a four degree-of-freedom model that emulates the 

vehicle body and axle dynamics with a single time. 
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For a half car model, the four degree-of-freedom that can be created includes 

the roll or pitch model. The half-car model can either be the half car roll plane 

or the half car pitch plane.  

 

An example for a half car pitch plane is whereby the vehicle is represented 

by a sprung mass supported by primary suspension system at each wheel. 

Here the lateral dynamics of the vehicle are ignored. As a result, only one 

front tire and one rear tire are considered in the model. The model consists of 

the sprung mass or car body supported on suspensions at the front and rear. 

The suspensions are connected to their respective tire axles, which are 

considered to be un-sprung masses. Additionally, the suspensions have 

stiffness and damping properties, the tire is represented as a simple spring.  

 

As stated above, the half car model is convenience to determine either the 

passive susceptive system or active suspension system of their influence on 

the interaction the vehicle movement include the bounce, pitch or roll motion. 

 
 
 
4.4 Full Car Model  
 
 
Figure 4.3 shows a full car model. The full car model shown is a seven 

degree-of-freedom model that emulates the vehicle body and axle dynamics 

with a single time condition. Here the full car model was used to do the 

simulation since it was thought that the better overall result can be obtained 

through this technique. 

 

The full vehicle suspension system is represented as a linearized seven 

degree-of-freedom system. It consists of a single sprung mass (car body) 

connected to four unsprung masses (front-left, front-right, rear left and rear-

right wheels) at each corner. 
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Figure 4.3: Full car model 

 

The sprung mass is free to heave, pitch and roll while the unsprung masses 

are free to bounce vertically with respect to the sprung mass. The 

suspensions between the sprung mass and unsprung masses are modelled 

as linear viscous dampers and spring elements, while the tires are modelled 

as simple linear springs without damping. For simplicity, all pitch and roll 

angles are assumed to be small. The full car model can be used to predict 

more complexity of the vehicle ride and handling characteristic. The full car 

model can be used to determine the roll and pitch moment in one step 

compare to the half car model. 

 

After applying a force-balance analysis to the model in Figure 4.3, the 

equations of motion are given as: - 

 

( ) ( ) ( ) ( )2 2 2 2 2 2 2 2 ...

...
f r f r f r f r

f fl f fl f fr f fr r rl r rl r rr r rr

s s s s s s s s s s

s u s u s u s u s u s u s u s u

fl fr rl rr

m z m g K K z B B z aK bK aB bB

K z B z K z B z K z B z K z B z

f f f f

θ θ= − − + − + + − + − +

+ + + + + + + + +

+ + + +

&&& &

& & & &

         --- (Eq. 4.1) 
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( ) ( )2 20.25 2 2 0.25 2 2 0.5 0.5 ...

0.5 0.5 0.5 0.5 0.5 0.5 ...

0.5 0.5 0.5 0.5

f r f r f fl f fl

f fr f fr r rl r rl r rr r rr

xx s s s s s u s u

s u s u s u s u s u s u

fl fr rl rr

I w K K w B B wK z wB z

wK z wB z wK z wB z wK z wB z

wf wf wf wf

ϕ ϕ ϕ= − + − + + + +

− − + + − − +

+ − + −

&& & &

& & &

         --- (Eq. 4.2) 

 

( )
0.5 0.5 ...

fl f f f f f f

f fl f fl fl

u u u s s s s s s

s u u s u u r fl

m z m g K z B z aK aB wK wB

K K z B z K z f

θ θ ϕ ϕ= − + + − − + + +

− + − + −

& &&& &

&
 

         --- (Eq. 4.3) 

 

( )
0.5 0.5 ...

fr f f f f f f

f fr f fr fr

u u u s s s s s s

s u u s u u r fr

m z m g K z B z aK aB wK wB

K K z B z K z f

θ θ ϕ ϕ= − + + − − − − +

− + − + −

& &&& &

&
 

         --- (Eq. 4.4) 

 

( )
0.5 0.5 ...

rl r r r r r r

r rl f rl rl

u u u s s s s s s

s u u s u u r rl

m z m g K z B z bK bB wK wB

K K z B z K z f

θ θ ϕ ϕ= − + + + + + + +

− + − + −

& &&& &

&
 

         --- (Eq. 4.5) 

 

( )
0.5 0.5 ...

rr r r r r r r

r rr f rr rr

u u u s s s s s s

s u u s u u r rr

m z m g K z B z bK bB wK wB

K K z B z K z f

θ θ ϕ ϕ= − + + + + − − +

− + − + −

& &&& &

&
 

         --- (Eq. 4.6) 

The system states are assigned as: - 

 

1x  = z   heave position (ride height of sprung mass) 

2x  = z&   heave velocity (payload velocity of sprung mass) 

3x  = θ   roll angle 

4x  = θ&   roll angular velocity 

5x  = ϕ   pitch angle 

6x  = ϕ&   pitch angular velocity 

7x  = 
fluz   front-left wheel unsprung mass height 

8x  = 
fluz&   front-left wheel unsprung mass velocity 
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9x  = 
fruz   front-right wheel unsprung mass height 

10x  = 
fruz&  front-right wheel unsprung mass velocity 

11x  = 
rluz   rear-left wheel unsprung mass height 

12x  = 
rluz&   rear-left wheel unsprung mass velocity 

13x  = 
rruz   rear-right wheel unsprung mass height 

14x  = 
rruz&   rear-right wheel unsprung mass velocity 

 

The results of the system state equations analysis are as follows: - 

 

( ) ( ) ( ) ( )
1 2

2 2 2 2 2 2 2 2

2 1 2 3 4 7 8

9 10 11 12 13 14

...

1 1 1 1

s s s s s s s sf r f r f r f r f f

s s s s

f f r r r r

K K B B aK bK aB bB s s
m m m m

s s

s s s s s s
fl rl rl rr

s s s s s s s s s s

x x
K B

x x x x x x x
m m

K B K B K B
x x x x x x f f f f

m m m m m m m m m m

+ + + +

=

= − − + + + + +

+ + + + + + + + + +

&

&  

 

         --- (Eq. 4.7) 

( ) ( ) ( ) ( )2 2 2 2

3 4

2 2 2 2 2 2 2 2

4 1 2 3 4 7

8 9 10 11 12 13 14

...

...

s s s s s s s s ff r f r f r f r

yy yy yy yy

f f f f f f f

aK bK aB B a K b K a B b B s
I I I I

yy

s s s s s s s
fl fr

yy yy yy yy yy yy yy yy yy

rl
yy

x x
aK

x x x x x x
I

aB aK aB bK bB bK bB a ax x x x x x x f f
I I I I I I I I I

b bf
I I

+ + + +

=

= + − − − +

− − − + + + + − − +

+ +

&

&

rr
yy

f

         --- (Eq. 4.8) 

 

( ) ( )
5 6

2 2

6 5 6 7 8 9 10

11 12 13 14

2 2 2 2
...

4 4 2 2 2 2

2 2 2 2 2 2 2 2

f r f r f f f f

r r r r

s s s s s s s s

xx xx xx xx xx xx

s s s s
fl fr rl rr

xx xx xx xx xx xx xx xx

x x

w K K w B B wK wB wK wB
x x x x x x x

I I I I I I
wK wB wK wB w w w wx x x x f f f f

I I I I I I I I
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+ +
= − − + + − − +

+ + − − + − + −

&

&

         --- (Eq. 4.9) 
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( )
7 8

8 1 2 3 4 5 6 7 8 ...
2 2

1

ff f f f f f f

fl

s us s s s s s s

u u u u u u u u

u
fl r

u u

x x

K KK B aK aB wK wB B
x x x x x x x x x

m m m m m m m m
K

f g z
m m
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+
= + − − + + − − +

− − +

&

&

                  --- (Eq. 4.10) 

 

( )
9 10

10 1 2 3 4 5 6 9 10 ...
2 2

1

ff f f f f f f

fr

s us s s s s s s

u u u u u u u u

u
fr r

u u

x x
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x x x x x x x x x
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K

f g z
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+
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− − +

&
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                  --- (Eq. 4.11) 

 

( )
11 12

12 1 2 3 4 5 6 11 12 ...
2 2

1

r fr r r r r r

rl

s u ss s s s s s

u u u u u u u u

u
rl r

u u

x x

K K BK B bK bB wK wB
x x x x x x x x x

m m m m m m m m
K

f g z
m m
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+
= + + + + + − − +

− − +

&
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                  --- (Eq. 4.12) 

 

 

( )
13 14

14 1 2 3 4 5 6 13 14 ...
2 2

1

f fr r r r r r

rr

s u ss s s s s s

u u u u u u u u

u
rr r

u u

x x

K K BK B bK bB wK wB
x x x x x x x x x

m m m m m m m m
K

f g z
m m

=

+
= + + + + − − − +

− − +

&

&

               --- (Eq. 4.13) 

 

 

All the equations stated above are then converted to simulate the 

performance using simulation tool i.e. Matlab ver 6.5. For easy reference the 

diagrams for models used are shown below. 
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Figure 4.4: The full system of full car model 
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Figure 4.5: The inputs for the system 
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Figure 4.6: Subsystem for bouncing 
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Figure 4.7: Subsystem for pitching 
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Figure 4.8: Subsystem for rolling 
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4.5 Conditions for Analysis 
 
 
The conditions have been set up in the suspension analysis before we 

simulate in Matlab 6.5. There are: - 

 

1. Vehicle driven over the bump at a constant speed of 20km/h. 

 

2. The bump is 0.072m heights. 

 

3. In bouncing and rolling analysis, only left hand side of vehicle driven over 

the bump (Figure 4.9) while both of the side driven over the bump in 

pitching analysis (Figure 4.10). 

 

4. Two different suspensions stiffness are assumed to make a comparison 

suspension performance where the rest of input parameter remains 

constant. 

 

5. To identify more clearly for the comfort of Tramcar, the result will compare 

with the result from Proton Waja 1.6 which finish analyzed by ADC where 

the same analysis condition applied. 
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Figure 4.9: Condition for bouncing and rolling analysis 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.10: Condition for pitching analysis 
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4.6 The Input of Parameter 
 
The following data are the input of parameter for Tramcar benchmarked to a 

refrence i.e. Proton Waja 1.6 using Matlab ver 6.5. 

 

Table 4.1: Input parameters for Tramcar and Proton Waja 1.6. 

Description [Units] 
Tramcar 

parameter 
Proton Waja 1.6 

parameter 

Sprung mass [kg] 1664 1500 

Unsprung mass [kg] 59* 59 

Front suspension spring stiffness [N/m] 26500 35000 

Rear suspension spring stiffness [N/m] 26500 38000 

Tire spring stiffness [N/m] 190000* 190000 

Front suspension damping [N/m/s] 1030.05 1000 

Rear suspension damping [N/m/s] 1030.05 1100 

Roll axis moment of inertia [kg-m2] 729.67 460 

Pitch axis moment of inertia [kg-m2] 2813.79 2160 

Length between front of vehicle and centre of 

gravity of sprung mass [m] 
1.7085 1.4 

Length between rear of vehicle and centre of 

gravity of sprung mass [m] 
1.7085 1.7 

Width of sprung mass [m] 3.417 3 

* The value of unsprung mass and tire spring stiffness for Tramcar assumed same as the 
parameter with Proton  Waja 1.6 
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4.7 Assumptions 
 
The following are the assumptions made pertaining to the simulation 

outcomes:  

 

1. The road profile has zero noise. 

 

2. Air drag is neglected for a low speed (20km/hr). 

 

3. The model is a passive suspension system where there is not control 

input. 

4. The roll movement occurs around the vehicle’s centre of mass but not 

around the roll centre. 

 

5. All the chassis deformations were not taken into accounts as it was 

modelled as a rigid body. 

 

6. Small angles for the slip angle of the tire, so the lateral forces always acts 

perpendicular to the vehicle axis. 

 

7. The displacement of the suspension is only in the vertical direction, and 

geometry angles were not taken into account. 

 

8. Small displacement for the masses so the displacement of the points 

where the forces applied was not needed to considerate. 

 

9. The specified weight of the Tramcar is 984kg plus with 8 passengers’ 

weight of 680kg includes the driver that gives a total of 1664kg of 

unsprung mass. 

 

10. It is well known that motion of the sprung mass at the wheel frequency 

modes cannot be reduced if the only control input is a force applied 

between the sprung and unsprung masses. 
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11. The natural frequencies of heave, pitch and roll are determined from 

vehicle suspension dynamics and moments of inertia. Their damping is 

determined from the ride-dependent dynamics and moments. 

 
 
 
4.8 Results 
 
 
All the simulation results are shown in the form of graphical representations 

as follows: - 
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Figure 4.11: Bouncing Performance 
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Figure 4.12: Pitching Performance 
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Figure 4.13: Rolling Performance 
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Figure 4.14: Comparison in bouncing performance for different stiffness 
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Figure 4.15: Comparison in pitching performance for different stiffness 
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Figure 4.16: Comparison in rolling performance for different stiffness 
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CHAPTER 5 
 

 

DISCUSSIONS 
 

 
 Chassis Analysis 
 
From the chassis and suspension analyses of this project, the performance 

for both these parts in different situations can be obtained. Each of the 

results is discussed in the following sub-sections. 

 
 
 Static Analysis 
 
In the first analysis, we got the maximum Von Mises Stress is 101MPa, the 

maximum shear stress is 53.8MPa, the maximum principal stress is 113MPa 

and the maximum displacement is 4.23mm. The safety factor for normal 

stress is 2.93 while in shear stress is 3.08. 

 

From the safety factor, we can conclude that the framework is safe in static. 

The safety factor is satisfied for a vehicle. From literature review, we have 

known that a vehicle can be said ‘safe’ if the safety factor over 2.0. In the 

analysis we assumed all the joints are perfectly welded. 

 

From the analysis, we obtained that the maximum stress occurred at the 

middle of chassis. The deformation is large here. The chassis will most 

probably fail at this place. Hence, we need to strengthen the cross bar. We 

can either use bigger diameter of steel bar or increase the thickness of the 

bar. 
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From the analysis, we can found out that the actual maximum stress 

occurred in the joint between the fore suspension bar and the lower ladder 

frame. In the contour of stress, we can see that the colour in orange-yellow. 

In this analysis, the fore suspension bar is assumed while the fore 

suspension bar is not appearing in the real Tramcar. This is because the 

entire fore of Tramcar is built from monoque. We can only analyze the 

chassis in this project. Although the maximum stress occurred in fore 

suspension bar, we did not take it as result. 

 

The maximum Von Mises strain is 0.000436MPa, the maximum shear strain 

is 0.000694MPa and the maximum principal strain is 0.000531MPa. The 

value for strain is small which almost the zero, so we are neglected the effect 

of strain to the chassis. 

 

In most vehicles applications, the static loading in normal condition would not 

create any problem or permanent distortion to the chassis. The torsion due to 

the unbalance support will bring more severe case. 
 
 
 Bumping Analysis 
 
The second analysis is bumping analysis. In the analysis, we got the 

maximum Von Mises Stress is 114MPa, the maximum shear stress is 

60.7MPa, the maximum principal stress is 128MPa and the maximum 

displacement is 4.63mm. The safety factor for normal stress is 2.59 while in 

shear stress is 2.73. 

 

From the safety factor, we can conclude that the framework is safe when the 

Tramcar rode over a bump. The safety factor is satisfied for Tramcar. In the 

analysis we assume all the joints are perfectly welded. 
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From the result, we found out that the critical location for bumping analysis is 

almost the same for the static analysis. Referred to the contour, we obtained 

that the maximum displacement occurred at the middle of chassis. The 

chassis will most probably fail at this place. The maximum stress occurred at 

the fore suspension bar. As we mentioned before, we did not take it as result 

although the maximum stress occurred in fore suspension bar. 

 

In bumping analysis, we assumed that 2g force applied to the whole chassis 

in y−  direction. This is equal to the force when Tramcar rode over a bump. 

 
 
 Braking Analysis 
 
Based on the results of the bumping analysis, the chassis gives a better 

performance than the braking analysis. In the braking analysis, the maximum 

Von Mises Stress is 76.5MPa, the maximum shear stress is 40.5MPa, the 

maximum principal stress is 85.4MPa and the maximum displacement is 

3.72mm respectively. 

 

The chassis gives a more secure safety factor in braking analysis. The safety 

factor for normal stress has been determined as 3.88 while for shear stress is 

4.09. From the safety factor, it can be concluded that the framework will safe 

when the Tramcar is subjected to sudden braking. Here, all the joints for the 

chassis are regarded as being perfectly welded. 

 

As for the braking analysis, it was assumed that 1g force was applied to the 

whole chassis in x−  direction. This equals to the force when Tramcar brakes 

suddenly. This is the reason that caused for the maximum deformation to 

occur in y  direction to be less than the maximum deformation due to 

bumping effect. When the Tramcar brakes suddenly, two directional forces 

will be applied to the chassis, i.e. the x−  direction and the y−  direction. In the 

bumping analysis, only y−  direction force was considered to be applied to 

the chassis. 
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 Chassis Torsional Stiffness Analysis 
 
It is apparent that torsion will be increase with the increase in the twisting 

angle. This was plotted for the purpose to getting the torsional stiffness value 

of the chassis, particularly so when there are extra forces applied on the fore 

suspension bar.  

 

From the graph of torsion against the degree of torsion, it is found that the 

relationship is linear. As can be observed from the graph, the torsional 

stiffness of the chassis (from the slope of the graph), is 5127.5Nm/degree. 

This value is in range allowed for normal saloon car, which is from 

3000Nm/degree to 9000Nm/degree. 

 

When 10kN force is applied, the chassis lost its elasticity property. To 

maintain the elasticity property, the analysis only can be done until 9kN. 

 
 

 Suspension System Analysis 
 
Base on the graph, the results for suspension system analysis are discussed 

as follows. 

 
 

 Bouncing Performance 
 
 
Figure 4.11 shows the bouncing performance for the Tramcar and Proton 

Waja 1.6 in 8 seconds simulation. We can clearly see that there were two 

different two curves plotted. The pink colour curve line indicated the 

simulation curve for Tramcar, we note that increment of the sprung mass 

heave position started at 1s which is the time when the front left wheel hit the 

bump. From the curve too, we note that there was a peak point around 

3.522mm at 1.1711s. That means the Tramcar heaved the maximum value 
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3.522mm when the front wheel hit the bump. The second peak point 

occurred at 1.6943s where the rear wheel hit the bump. It is around 2.461mm 

heaved from the centre of gravity. Then the graph is damped off until more 

steady state. We noticed that the heave position was almost fully damped at 

around 7s. 

 

On the other hand, the Proton Waja 1.6 simulation curve was indicated in 

dark blue colour. The almost same orientation of behaviour as the Tramcar 

happened on the Proton Waja 1.6 step up and down when compared to the 

simulation curve for Tramcar. What was different here, Proton Waja 1.6 

indicated the peak point around 2.727mm at 1.1706s. The second peak point 

occurred at 1.7712s where the rear wheel hit the bump. It is around 1.402mm 

heaved from the centre of gravity. Both the simulation graph shows that their 

heave position had a same pattern of length. They were being fully damped 

at almost the same time.  

 
 

 Pitching Performance 
 
Graph 4.12 shows the pitching performance for the Tramcar and Proton Waja 

1.6 in 8 seconds simulation. Both of the graph indicated in much similarity 

started at 1s. The first negative slope shows that the vehicle pitched in the 

anti-clockwise direction. Tramcar shows the maximum pitch rate at 1.0358s 

about -0.11421rad/s. After the peak point, the curve was move to the positive 

value at 1.1001s about 0.036279rad/s and reached to 0.052034rad/s at 

1.2040s. After that, the pitching motion is slowly damped before the rear 

wheel hit the bump. The curve was reach to the maximum positive value 

when the rear wheel hit the bump. The positive slope from the graph means 

that the Tramcar pitched in the clockwise direction. The Tramcar reached the 

maximum pitch rate at 1.5448s about 0.12485rad/s. The graph after that was 

almost the same with the performance for front wheel but in the negative 

value. All the pitching motion was being fully damped after 4s. 
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Meanwhile the fluctuation pattern was almost the same where the Proton 

Waja 1.6 curve is a bit lower than the Tramcar curve. Proton Waja 1.6 

reached its maximum pitch rate at 1.0359s about -0.1002rad/s when the front 

wheel hit the bump and then reached the maximum value about 

0.082056rad/s at 1.5327s after the rear wheels hit the bump. 

 
 

 Rolling Performance 
 
Graph 4.13 shows the rolling performance for the Tramcar and Proton Waja 

1.6 for a period of 8 seconds simulation. Both of the cars set to hit the bump 

at 1 second. The first positive slope shows that the vehicle will roll in the 

clockwise direction. As for the Tramcar, the roll rate reached the maximum 

value at 1.0386s i.e. about 0.2038rad/s, which equals to 11.6769˚/s. This 

happened when the car hit the bump and subsequently roll in the clockwise 

direction. It goes back to zero when it rode on the bump again. The roll rate 

then reached a negative value nearly i.e. -0.2320rad/s at 1.0871s. This occur 

when the front wheel slip down from the bump. The rolling effect then 

damped by the absorber slowly until it reached a more steady state at 1.5s 

before the rear wheel step on the bump. The graph then continued with the 

effect by the rear wheel when it step on the bump 0.5s after the front wheel. 

The almost same orientation of behaviour as the front wheel happened on 

the rear wheel step up and down. The roll rate reached the maximum at 

1.5322s about 0.2234rad/s which equal to 12.7999˚/s for rear wheel. The 

rolling effect then damped by the absorber slowly as the front wheel until it 

reached a more steady state at 2 s. 

 

For Proton Waja 1.6, the roll rate reached the first maximum at 1.0370s 

about 0.1527rad/s which equal to 8.7473˚/s while the negative value nearly -

0.1399rad/s at 1.0857s for front wheel. The rolling effect then damped by the 

absorber slowly until it reached a more steady state at 1.5s before the rear 

wheel step on the bump. The graph then continued with the effect by the rear 

wheel when it step on the bump 0.5s after the front wheel. The almost same 

orientation of behaviour as the front wheel happened on the rear wheel step 
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up and down like the Tramcar. The roll rate reached the maximum at 1.5319s 

about 0.1505rad/s, which equals to 8.6230˚/s for rear wheel. The rolling 

effect then damped by the absorber slowly as the front wheel until it reached 

a more steady state at 2 s.  

 
 

 Comparison Performance in Different Stiffness 
 
The following graphs are the comparison for Tramcar suspension 

performance in different stiffness. Graph 4.14 shows the comparison in 

bouncing performance for different stiffness; graph 4.15 shows the 

comparison in pitching performance for different stiffness and graph 4.16 

shows the comparison in rolling performance for different stiffness. From the 

graph, it is clearly indicated that the heave position, pitch rate and roll rate 

strongly dependent on the suspension stiffness when the other inputs are fix. 

If the softer suspension use on the Tramcar, then the heave position, pitch 

rate and roll rate is a bit higher if compared with the harder suspension. For 

example, in bouncing performance simulation, we can know that the heave 

position at 1.68s for 15600N/m stiffness is 4.18mm, for 25600N/m stiffness is 

2.461mm and for 35600N/m stiffness is 1.074mm. The harder suspension 

gives the highest value of heave position. One more example we can look for 

the influenced of different stiffness at the rolling performance. If the 

16500N/m stiffness use on the Tramcar, then the maximum roll rate is 

0.23504rad/s while the 36500N/m stiffness give only the maximum roll rate at 

0.20763rad/s. The same trend of results will be obtained when the pitching 

performance is examined for the Tramcar in different suspension stiffness. 
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CHAPTER 6 

 

 

RETROFITTING OF CNG CONVERSION KIT  
 

 

6.1 Why is the Need for Retrofitting? 
 

This vehicle is not only to serve its purpose but also to showcase the ability 

of ADC in adapting new and relevant technologies pertaining to automotive 

engineering and able to demonstrate their applications in the creation of 

human wealth. With this in mind having to develop the vehicle is not enough 

but also to incorporate added value from the perspective of able to 

demonstrate its capability to use non conventional fuel.  

 

In its early effort CNG in tandem with gasoline will be used. With the 

successful retrofitting of the tramcar with a commercially viable conversion 

kit, it is hope that this initiative can be expended to include hybrid and all-

electric powertrain in the future. 

 

 

6.2  CNG Conversion Vehicle Requirements 
 
Suggested engine modifications are needed to assure engine reliability, 

optimized power, fuel consumption and emissions that include optimizing 

compression ratio, valve lift, valve timing, exhaust system and intake 

manifold. Special attention goes to the engine cooling, lubrication and the 

potential issue of excessive oil consumption. A properly modified and tuned 

engine can make the same power as the base engine. 
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Generally for gasoline conversion it calls for: 

 

i) improve cooling system 

ii) the need for engine oil cooler 

iii) the need for new valve seats 

iv) increase compression ratio  

 

However, the key to the successful use of gaseous fuel is a sophisticated 

engine controller unit (ECU), i.e. the electronic engine management system 

which enables gasoline engines to operate on clean-burning CNG, LPG or 

Hydrogen.  

 

ECU duty is to senses engine perimeters in real time and instantly adjusts to 

deliver the correct amount of fuel and the correct ignition timing. The system 

results in optimal engine performance, while always operating at the lowest 

emissions. The system and components can be installed in new vehicles, or 

retrofitted in existing fleets. 

 

 

6.2.1 Bi-fuel System and Dual-fuel System 
 

Bi-fuel systems use only one fuel at a time; they are particularly 

advantageous when alternative-fuel refueling stations are not always readily 

available. A switching system is added as part of the conversion so that the 

driver can switch from one fuel to the other.  

 

Dual-fuel systems, on the other hand, run on a combination of an alternative 

fuel and diesel; they inject both fuels into the combustion chamber at the 

same time. Dual-fuel systems are used mostly in heavy-duty diesel engines, 

while bi-fuel systems are usually used in passenger cars or light- and 

medium-duty trucks. 
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Dedicated conversion systems run on only one fuel. These systems generally 

provide reduced emissions and better performance if they are tuned to 

optimize their operations on only one fuel, and they have no evaporative 

emissions because they use no gasoline. There are many types of pure CNG 

system vehicle in the market today and have been used quite successfully in 

many other countries such as Canada, Italy, New Zealand, India and the far 

east. 

 

 

 

6.2.2 Optimize System 
 
An optimize system is synonymous with a closed-loop system. A closed-loop 

system uses a feedback system to monitor and adjust engine performance 

continuously. An oxygen sensor in the exhaust system monitors the fuel/air 

mixture to the engine and compensates for changes, thereby optimizing 

emissions performance. 

 

An open-loop system, in which carburetor is throttle-regulated does not 

provide optimum emission performance. This is because it does not 

compensate for changes in the fuel/air mixture. Such systems are generally 

used on older model vehicles that do not have computerized fuel control 

systems. 

 

 

6.2.3 CNG Operation System 
 
 
In CNG vehicles, the fuel is stored at a pressure range of 160 to 250 bar 

(2400-3600 psi) in one or more cylinders located under the body or in the 

trunk of the vehicle. The filling valve is placed near the tank or in the front 

grille. When the CNG leaves the cylinder tank, it travels through high-

pressure fuel lines into one or more pressure regulators, where it is reduced 

to low atmospheric pressure prior entering the engine intake. 
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Unlike gasoline, which must be vaporized before ignition, CNG is already 

gaseous when it enters the combustion chamber. When the intake valve 

opens, the gas enters the combustion chamber, where it is ignited to power 

the vehicle. 

 

 

 

6.2.4 Application of CNG in Vehicles 
 
 
Natural gas is compressed to a high pressure and is stored on board the 

vehicle in cylinders installed in the rear, undercarriage, or atop the vehicle. 

When natural gas is required by the engine, it leaves the cylinders traveling 

through a high pressure pipe to a high pressure regulator (most often located 

in the engine compartment) where the pressure is reduced.  

 

In carbureted engines, the fuel enters the carburetor (through a special 

fuel/air mixer) at close to atmospheric pressure through a specially designed 

natural gas mixer where it is properly mixed with air.  

 

In fuel injected vehicles the natural gas enters the injectors at relatively low 

pressure (up to about 6 bars). In either case, natural gas then flows into the 

engine's combustion chamber and is ignited by spark, to create the power 

required to drive the vehicle. Special solenoid valves prevent the gas from 

entering the engine when it is shut off.  

 

In bi-fuel vehicles, a fuel selector switch controls the flow of either natural gas 

or petrol. (In some systems the switchover is done automatically when the 

vehicle is out of natural gas). A fuel gauge is provided on the dashboard or it 

is incorporated into the normal fuel gauge so the driver can determine the 

amount of natural gas remaining in the fuel tanks.  

 
The types of conversion kits are shown in Figure 6.1 and 6.2 respectively.
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Figure 6.1: Catalyst System 
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Figure 6.2: Sequential System 

CNG 
TANK 

FILLING 
VALVE 

CNG 
SOLENOID 

VALVE 

PRESSURE 
REGULATOR FILTER 

AIR INTAKE 
MANIFOLD 

GAGOLINE 
INJECTOR ENGINE 

LAMBDA 
SENSOR

CNG ECU 
EMULATOR 

ORIGINAL 
ECU 

EMULATOR 

FUEL 
SWITCH

INJECTOR 
RAIL 

ELECTRON 

GAS 



 

 

 

64

6.2.5 Sequential System (Multipoint Sequential Injection System) 
 
One of the new technologies in natural gas vehicle, the multipoint sequential 

injection system, represents a new generation of bi-fuel CNG conversion system. 

The principle used by the CNG ECU to calculate the injection timing applied to 

the CNG injectors, is based on the acquisition of the gasoline injection timing by 

CNG ECU during CNG mode.  
 

 
Figure 6.3: Sequential system illustrated 

 

 

 

The engine management is, therefore, mainly left to the gasoline ECU whilst the 

CNG control unit translates gasoline actuations into an appropriate control for 

CNG injectors. In order to maintain the coherence with the gasoline system, the 

CNG ECU drives CNG injectors in the same sequence as gasoline injectors. 

Roughly, the CNG ECU converts an amount of energy that should be actuated 
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by the gasoline into an equivalent amount of energy that CNG has to release in 

order to compensate the differences between two fuels. This system can use 

different types of injectors according to the specifications of the application. In 

addition, it is minimally invasive with respect to the original gasoline engine 

management system. The CNG ECU is able to be easily integrated with the main 

engine management functions as mixture control, cut off, EGR, purge canister, 

etc and auxiliaries engine management functions as air-conditioning, power-

steering, electric loads, etc.. The CNG ECU is able to calculate CNG injection 

timing using specific information as CNG injector rail pressure, CNG 

temperature, engine coolant temperature, and engine RPM and battery voltage, 

in addition to the inputs of the gasoline ECU [10]. 

 
 
 
6.2.6 Catalyst System (Natural Gas System with TN 1 Step Motor regulator and 

Lambda Control System/2) 
 
 

Natural gas flows from the tank through the special valve and is conveyed to the 

engine compartment through high-pressure piping that is also connected to the 

refueling system. 

 

The TN1/B step-motor reducer is installed in the engine compartment where the 

pressure of the incoming natural gas is reduced from 220 bars to the engine 

supply pressure. From the reducer, the natural gas flows to the air/fuel mixer 

(installed on the suction piping), which mixes the gas flow in proportion to engine 

demand represented by the vacuum generated in the mixing devices. The high-

pressure solenoid valve allows the gas to flow only while the engine is running 

and with the switch in the gas position. 
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Figure 6.4: Catalyst System illustration 

 

 

Lambda Control System/2 is a self-adjusting electronic system: no manual 

adjustments are required and it can adapt automatically to the different 

environmental and vehicle use conditions, ensuring efficient carburetion in terms 

of driving style, consumption and emissions. The Lambda Control System/2 

computer electronically manages the gas flow adjustment, allowing the Lambda 

factor to reach the required value at all engine rpm thanks to 2 electromechanical 

actuators. One actuator is installed between the reducer and the mixer and 

doses the quantity of gas at medium and high rpm (maximum), while the second 

actuator of the pressure reducer adjusts the optimum gas flow for engine 

operation at idle (minimum), keeping it stable even when accessories such as an 

air conditioner or power steering system are operational. 
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Among its other functions, the LCS/2 computer can be used to start always with 

petrol, with automatic switchover to gas and, through the switch/indicator, allows 

the user, at any time, to select the fuel required, displaying the natural gas level 

in the tank. During gas operation, the electronic emulator (or the injector 

exclusion wiring) cuts off the petrol flow to the engine; while during petrol 

operation the natural gas flow to the engine is cut off by the high-pressure 

solenoid valve [10]. 

 

 

6.2.7 Carburetor System 
 
The schematic arrangement of a simple gas assisted system is the carburetor 

system. This is shown in Figure 6.5 below. 

 
Figure 6.5: Carburetor system linking pressurized tank to engine 
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An example a CNG Minikit for retrofitting in a carburetor car is shown in Figure 

6.6. This is suitable for use in engine from 20 to 90 kW. 

 

 

 

 

 

 

 

 

 
 
 
 
 

 

 

 

 

 

Figure 6.6: Conversions kit for carburetor car 

 

The above system includes the following main components: 

 

- CNG electronic reducer RME090 

- AMP super seal harness for pressure reducer 

- petrol solenoid valve 

- fuel switch with level indicator M198 C 

- pressure gauge complete with electronic pick-up for level indication 

- reducer installation bracket 

- accessory package for minikit installation 
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6.2.8 Economics of Vehicle Conversion to CNG 
 
Converting a vehicle to CNG involves installing a natural gas fuel system and 

storage tanks. Dual fuel systems will retain the original conventional fuel system. 

On a dedicated NGV, the original conventional fuel system can be removed. 

Generally, dedicated NGV demonstrate better vehicle performance and lower 

emissions than dual-fuel NGV because the fuel system can be set to take 

advantage of the characteristics of only one fuel.  

 

Prior to 1985, most gasoline vehicles had carbureted engines and NGV 

conversion systems were open-loop type - all controls are pre-set with no feed 

back and re-adjustment of air/fuel ratios, etc. Consequently, first generation and 

open-loop conversion systems do not provide a mechanism to allow the 

conversion system to adjust for optimum engine and emissions performance. 

However, with the advent of fuel-injected engines, computerized electronic 

engine and emissions controls allow adjustment of the air/fuel ratio and spark 

timing (on spark-ignition engines) to optimize engine and emissions performance. 

Monitoring and adjusting engine and emissions performance by computerized 

controls is carried out by the closed-loop feed back system for optimum engine 

and emissions performance [10].  

 

The costs to convert a vehicle to operate on natural gas vary and depend on 

several factors such as the followings:  

 

A. First generation system 

B. Open-loop or closed-loop 

C. The type of vehicle to be converted and the ease of installation  

D. The quantity of on-board fuel storage desired  

E. The type of on-board fuel storage tanks selected  

F. Labor rates for conversion 
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6.3 Retrofitting of the Conversion Kit 
 
The catalyst conversion system selected for the Tramcar can best be illustrated 

in the following Figure 6.7. 

 

 
 

 
Figure 6.7: Schematic illustration about the Catalyst conversion system 

 

 

A 

B 

C
D 

F 

E CNG pipe line 
connected from 
tank to regulator



 

 

 

71

 

The items labeled in the Figure are: 

 

A - CNG tank 

B - Filling valve 
C - CNG ECU 
D - Regulator  
E - Stepper motor 
F - Mixer  

 
 
6.3.1 CNG Tank 
 
The tank used is similar to the one shown here. It has a volume of 55 liter with a 

massive weight of 80 kg. 

 

 
Figure 6.8: CNG steel tanks 
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Figure 6.9: Location of CNG tank in the front compartment the Tramcar 

 

 

6.3.2 Filling Valve 
 

 
Figure 6.10: Filling valve location 

CNG 
cut-off 
valve 
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Filling valve is a quick-coupling valve that allows fast charging of the gas during 

refilling. Figure 6.10 shows its close feature while Figure 6.11 shows how gas is 

being charged. 

 

 
Figure 6.11: Charging of the gaseous fuel into the tank using the filling valve 

 
 
6.3.3 CNG Cut-off Valves 
 

In the event of emergency the gas is required to be isolated from the engine and 

its sub-system. In a CNG conversion kit an isolated valve, better known as the 

cut-off valve is incorporated in the system. There are two types of the cut-off 

valve used - a manual-operated and automatic. Figure 6.12 and 6.13illustrates it 

physical features. 
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Figure 6.12: CNG cut-off valve 200 Bar, completed with wiring 500 mm  

                             attached to filling valve. 
 
 

 
 

Figure 6.13: The emergency manual shut-off valve at the cylinder head 
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6.3.4 High Pressure Gas Piping 
 
A high pressure pipework is required in dealing with pressurized gas. This is a 

steel pipe with a typical external diameter of 8 mm. 

 

 
Figure 6.14: The gas pipe from CNG tank to the filling valve 
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Figure 6.15: Connection of the gas pipe from the filling valve to the regulator 

 

6.3.5 Pressure Regulator 
 

 
Figure 5.16: Lovato pressure regulator (RME090) 

The lowest 
chassis 
framework use 
as conduit and 
support for the 
gas pipe.   
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Dimensions: 
 
A = 170 mm  
 
B = 206 mm  
 
C = 123 mm 
 
 

 
Figure 6.17: Dimension of the pressure regulator (RME090) 

 

  

A CNG electronic reducer with dedicated fine idle tuning (for engine output of 20 

to 90 kW) includes the following main components: 

• 3-stage reducer with positive pressure idle device  

• Vehicular application (suitable for vehicles with catalytic converter, fuel 

injection)  

• Type of fluid: CNG (Compressed natural gas)  

• Casing: GDALSI 13 UNI 5079  

• Engine cooling circuit liquid heating  

• Inlet pressure: 220 bar  

• First stage adjustment pressure: 4 bar  

• Second stage adjustment pressure: 1.5 bar  

• Power supply: 12 V dc 

• High-pressure solenoid valve coil power: 20 W  

• Linear electromechanically actuator power: 2 W  
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The complete arrangement is shown in Figure 6.18. 

 
Figure 6.18: The regulator is installed in the engine compartment at the  

                             rear of Tramcar 
 
 

The solenoid valve placed on the pressure regulator is switched on when the 

threshold of engine coolant temperature is reached. The system will switch to 

CNG mode when all the other conditions such as minimum RPM threshold and 

acceleration are reached. 

 

 

6.3.6 Fuel Switch Injection  
 
A fuel switch injection system allows the vehicle operator to switch fuel from 

gasoline to CNG and vice versa with ease. At a push of a button fuel switching is 

effortless and of fast response. 

Stepper 
motor

Regulator  

Solenoid 
valve 
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Figure 6.19: Fuel switch injection THERMOTRONIC M 198I with 

                                  fuel level indicator, level indication is given by means  
                                  of 4 green leds and 1 red led for reserve 
 

 

      
Figure 6.20: Location of the fuel switches that is convenience for the 

                                driver to observe the running system. 
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Dimensions: 

A = 54 mm  

B = 23 mm 

C = 60 mm 

 
 

Figure 6.21: Dimension of the fuel switch 

 

 

6.3.7 Gas Mixer  
 
A gas mixer is a device that meters the proportionate amount of gas into the 

engine with the flow of air via the air filter assembly. It internal geometrical 

structure resembles a venture with fine holes embedded within the circumference 

of the venture constriction. As the air flows through the constriction section, it will 

induce the gas thus allowing the more or less constant air-gas ratio to rush into 

the engine intake manifold at every engine cycle. 
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Figure 6.16: Prototype mixer use at the air intake manifold 

 

 
Figure 6.17: Installation of the mixer to the air intake manifold and 

                                 the CNG supply line 
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Figure 6.18: Pressure gauge completed with electronic pick-up for level indicator 

 

 
Figure 5.19: The pressure gauge connect to the high pressure pipe to  

                             monitor the pressure in the CNG tank 
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6.3.8 Injector Emulators 
 

 
Figure 6.20: Emulator type 2, 5 - 5 cylinders with Europe standard harness 

 

 

Dimensions:  

                A = 68 mm 

                 B = 112 mm 

C = 38 mm 

 

 

 

 

Figure 6.21: Dimension of the injector emulator 
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Figure 6.22: Injector cut-out Japan standard harness specified for  

                                 Japanese engine 
 
 

The LOVECO-PRO closed loop system is equipped with a level indicator fuel 

switch. It also includes the following main components: 

 

- fuel switch MICRO LEVEL 

- electronic ECU 

- Flow actuator with step motor 

- NTC temperature sensor 

- wiring harness 

- accessories package  
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Dimensions of LOVECO-PRO 
device:  

A = 68 mm; B = 112 mm; C = 38 
mm 

 

 

Figure 6.23: Photo and dimension of LOVECO-PRO. 
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Figure 5.24: Location of the LOVECO-PRO  

 
Figure 5.25: The stepper motor connects to the mixer 

Dimensions of step motor:  

A = 87 mm 

B = 92 mm 

C = 34 mm 

 

 

 

 

 

Figure 5.27: Dimension of the stepper motor. 

Figure 6.25: The photo of the stepper motor and its physical dimension 

 



 

 

 

87

The gasoline injector during CNG mode is switched off with the control of injector 

emulator. The CNG ECU (LOVECO-PRO) starts to control the CNG system 

including the lambda sensor, throttle position sensor, RPM sensor, stepper motor 

and others relevant devices respectively. 

 

6.4 Vehicle Test with CNG Conversion Kit 
 
 
Having fitted the complete conversion kit with the assistance of the supplier, the 

Tramcar was tried extensively to assess its overall performance. It was noticed 

that after several trials and fine-tuning efforts, the vehicle now is fully a dual-fuel 

vehicle with a capability to demonstrate the gasoline-CNG operation. 
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CHAPTER 7 
 
 

CONCLUSIONS AND 
RECOMMENDATIONS 

 
 
7.1 Conclusions 
 
The Tramcar was successfully designed, developed and tested for 

recreational purposes as part of the flagship project for ADC. To add an 

interesting feature to it is the incorporation of CNG conversion kit which has 

proven to be successful, in line with the theme of environmental-friendly 

people’s mover within the UTM campus. 

 

Proceeding all the analysis and computational results obtained on the 

Tramcar, the safety and comfort impart on the passengers due to its chassis 

and suspension system, subjected to various operating conditions were 

successfully identified. 

 

The safety factor for a vehicle chassis has earlier been stressed to be 

beyond 2.0. The following table summarizes the safety factors for normal 

stress and shear stress and displacements of chassis for each of the 

analysis.  

 

Table 7.1: Safety factors 

 
Safety factor Displacement 

[mm] Normal stress Shear stress 

Static analysis 2.93 3.08 4.23 

Bumping analysis 2.59 2.73 4.63 

Braking analysis 3.88 4.09 3.72 
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The maximum deformations in the three analyses have been proven to be 

less than 5mm. From the contour of deformation, it can be said that the 

maximum deformation will occur at the middle of chassis. However the 

deformation can be regarded as small and it can be concluded that the 

chassis is safe for use. 

 

The magnitude of the chassis torsional stiffness was obtained from the slope 

of the graph of torsion against twisting angle. The value is 5127.5Nm/degree, 

which is in the range allowed for a normal saloon car i.e., 3000Nm/degree to 

9000Nm/degree. As far as the torsional stiffness analysis is concern it has 

proven that the chassis is safe. 

 

Also covered in the analysis was the comfort factor, which was only confined 

to the effect from the suspension system. Using the full car model and based 

on the response gain from the suspension design of Proton Waja 1.6, the 

Tramcar has performed badly in frequency isolation. For bouncing, pitching 

and rolling analysis, all the peak point in the graph for Tramcar were noted to 

be higher than the peak point for Proton Waja 1.6. This was due to Tramcar’s 

suspension system was ‘softer’ than the Proton Waja 1.6. To support this 

argument, in rolling analysis, the Tramcar reached the maximum roll rate at 

0.2234rad/s. However the Proton Waja 1.6 reached the maximum roll rate at 

0.1505rad/s. The different here is only 0.0719rad/s.  

 

The results also indicate that both the suspension systems have almost 

taken the same time to damp their respective displacement. That clearly 

shows that the displacement absorption (for the suspension system) is 

almost the same with Proton Waja 1.6. Hence, it can be concluded that the 

Tramcar suspension performance does not differ much from Proton Waja 

1.6. 
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7.2 Recommendations 
 
Although the Tramcar can be classified as suitable for use, there are still 

some improvements to be made.  

 

From the results of the contour of deformation analysis, the maximum stress 

will occur at the middle section of chassis. The maximum deformation is 

noted to occur at the same point. Since this is the weakest point, the chassis 

will most probably fail at this place. Hence, strengthening of the upper ladder 

frame cross bar must be made to avoid the failure occurrence. Two choices 

are available here, i.e. the use bigger diameter of steel bar or increase the 

thickness of bar. 

 

For suspension system, the displacement is more on Tramcar than the 

reference vehicle, which is the Proton Waja 1.6. Here it is suggested that the 

Tramcar may consider the use of the higher suspension stiffness to mitigate 

the vibration level, and indirectly to increase the passengers’ comfortable 

level. In is also suggested that to isolate the disturbance due to road 

irregularities, the increase the suspension damping rate must be made.  

 
Below are some recommendations for future work with regard to safety and 

comfort factors: - 

 

1. Analysis for other factor that influence the comfort level such as the 

position of seat, the view angle and the space for leg. 

 

2. Design an external cover roof to protect passengers getting wet when 

raining. 

 

3. The aerodynamic drag analysis. 
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APPENDIX A 
 
 

OVERALL VEHICLE CHARACTERISTICS 
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Table A1: Engine characteristics 

Engine type Serial 4 Cylinder DOHC 16 Valve 

Engine model 3S-FE 

Displacement 1998 cc 

Power density 8.71 

Maximum power (net) 102.97 kW (140 PS)/6000 rpm 

Maximum torque (net) 19.0 kgm (186.33 Nm)/4400 rpm 

Fuel system Electronic Fuel Injection 

Fuel type Unleaded Premium Gasoline 

Compression ratio 9.5 

Bore 86 mm 

Stroke 86 mm 

 

 

 

Table A2: Tramcar physical characteristics 

Dimension [mm] 

Overall length 4700 

Overall width 1851 

Overall height 1763 

Wheelbase 3417 

Front track 1600 

Rear track 1600 

Unload ground clearance 190 

Front overhang 970 

Rear overhang 1090 
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Table A3: The vehicle estimation weight 

Component Estimated weight [kg] 

Chassis 204.35 

Seats and passengers 720.00 

Engine 300.00 

Full petrol tank 30.80 

Front cover body 23.00 

Rear cover body 16.30 

Cover roof 69.55 

Others 300.00 

Vehicle curb weight 984.00 

Vehicle gross weight 1664.00 

 

 

 

Table A4: The suspension specifications 

Suspension type Independent McPherson Struts 

Coil spring outer diameter 114 mm 

Free length 351 mm 

Fitted length 228 mm 

Fitted load 5700 N 

Spring constant 26.5 N/mm 

Kingpin inclination 6˚35' - 7˚35' 

Shock absorber type Double Acting Tube 

Stroke 120 mm 

Damping forces (at 0.3 m/s):- 

Expansion 

Damping forces (at 0.3 m/s):- 

Contraction 

1030.05 N 

353.16 N 
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APPENDIX B 
 
 
 

RESULTS OF STATIC ANALYSES 
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Figure B1: The contour of Von Mises stress 

 

 
Figure B2: The contour of shear stress 
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Figure B3: The contour of principal stress 

 

 
Figure B4: The contour of Von Mises strain 
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Figure B5: The contour of shear strain 

 

 
Figure B6: The contour of principal strain 
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Figure B7: The contour of delta MAG displacement 

 

 
Figure B8: The contour of y-direction displacement 

 

Note: All the deformation scaled by 48.5 
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APPENDIX C 
 
 

RESULTS OF THE BUMPING ANALYSIS 
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Figure C1: The contour of Von Mises stress 

 

 
Figure C2: The contour of shear stress 
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Figure C3: The contour of principal stress 

 

 
Figure C4: The contour of Von Mises strain 

 



 104

 
Figure C5: The contour of shear strain 

 

 
Figure C6: The contour of principal strain 
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Figure C7: The contour of delta MAG displacement 

 

 
Figure C8: The contour of y-direction displacement 

 

Note: All the deformation scaled by a factor of 44.3 
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APPENDIX D 
 
 
 

RESULTS OF THE BRAKING ANALYSIS 
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Figure D1: The contour of Von Mises stress 

 

 
Figure D2: The contour of shear stress 

 



 108

 
Figure D3: The contour of principal stress 

 

 
Figure D4: The contour of Von Mises strain 
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Figure D5: The contour of shear strain 

 

 
Figure D6: The contour of principal strain 
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Figure D7: The contour of delta MAG displacement 

 

 
Figure D8: The contour of y-direction displacement 

 
Note: All the deformation were scaled by a factor of 55.1 
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APPENDIX E 
 

 

RESULTS OF THE CHASSIS TORSIONAL 
STIFFNESS ANALYSES 
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Figure E1: The contour and displacement due to 1500N 

(The deformation scaled by 42.2) 
 

 
Figure E2: The contour and displacement due to 3000N 

(The deformation scaled by a factor of 21.1) 
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Figure E3: The contour and displacement due to 4500N 

(The deformation was scaled by a factor of 14.1) 
 

 
Figure E4: The contour and displacement due to 6000N 

(The deformation was scaled by a factor of 10.6) 
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Figure E5: The contour and displacement due to 7500N 

(The deformation was scaled by a factor of 8.44) 
 

 
Figure E6: The contour and displacement due to 9000N 

(The deformation was scaled by a factor of 7.04) 
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APPENDIX F 
 
 

MANUFACTURING DRAWINGS OF THE 
TRAMCAR 
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APPENDIX G 
 
 

PICTURES OF THE TRAMCAR 
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Figure G1: The exterior view of tramcar. 

 

 
 

Figure G2: The front view of tramcar. 
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Figure G3: The rear view of tramcar. 

 

 
 

Figure G4: The engine location in tramcar. 
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Figure G5: The luxury seat in tramcar. 

 

 
 

Figure G6: The interior view. 
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Figure G7: The Toyota Corona 16 valves engine. 

 

 
 

Figure G8: The capacity of the engine used. 




































































































































































































































































































