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Abstract. In this paper we introduce a new fuzzy evaluation function
for examination timetabling. We describe how we employed fuzzy reason-
ing to evaluate the quality of a constructed timetable by considering two
criteria: the average penalty per student and the highest penalty imposed
on any of the students. A fuzzy system was created based on a series of
easy to understand rules to combine the two criteria. A significant prob-
lem encountered was how to determine the lower and upper bounds of
the decision criteria for any given problem instance, in order to allow the
fuzzy system to be fixed and, hence, applicable to new problems without
alteration. In this work, two different methods for determining bound-
ary settings are proposed. Experimental results are presented and the
implications analysed. These results demonstrate that fuzzy reasoning
can be successfully applied to evaluate the quality of timetable solutions
in which multiple decision criteria are involved.

1 Introduction

Timetabling refers to the process of allocating limited resources to a number
of events subject to many constraints. Constraints are divided into two types:
hard and soft. Hard constraints cannot be violated under any circumstances.
Any timetable solution that satisfies all the specified hard constraints is con-
sidered to be a feasible solution, provided that all the events are assigned to a
time slot. Soft constraints are highly desirable to satisfy, but it is acceptable to
breach these types of constraint. However, it is very important to minimise the
violation of the soft constraints, because, in many cases, the quality of the con-
structed timetable is evaluated by measuring the fulfillment of these constraints.
In practice, the variety of constraints which are imposed by academic institu-
tions are very different [6]. Such variations make the timetabling problem more
challenging. Algorithms or approaches that have been successfully applied to one
problem may not perform well when applied to different timetabling instances.
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Researchers have employed many different approaches over the years in an
attempt to generate ‘optimal’ timetabling solutions subject to a list of con-
straints. Approaches such as Evolutionary Algorithms, e.g. [8, 16, 28], Tabu
Search, e.g. [7, 17, 19, 29], Simulated Annealing, e.g. [27], Constraint Program-
ming, e.g. [1, 4, 18], Case-Based Reasoning, e.g. [11, 30], and Fuzzy Methodolo-
gies, e.g. [2, 3, 23, 30] have been successfully applied to timetabling problems.
Overviews of timetabling approaches are presented in [10, 12, 22, 24, 26].

In 1996, Carter et al. [13] introduced a set of examination timetabling bench-
mark data. The original benchmark data set consists of 13 problem instances.
Since then certain difficulties have come to light with these benchmarks because
different versions circulated under the same name (the situation is discussed and
clarified in [24]. However, these benchmarks remain an important testbed. They
consider the following constraints:

Hard constraint. The constructed timetable must be conflict free. The re-
quirement is to avoid any student being scheduled for two different exams
at the same time.

Soft constraint. The solution should attempt to minimise the number of ex-
ams assigned in adjacent time slots in such a way as to reduce the number
of students sitting exams in close proximity.

In the context of these benchmark data sets, several different objective func-
tions have been introduced in order to measure the quality of the timetable
solution. In addition to the commonly used objective function that evaluates
only the proximity cost (see next section for details), other objective functions
have been derived based on the satisfaction of other soft constraints, such as
minimising consecutive exams in one day or overnight, assigning large exams to
early time slots, and others. This is discussed in more detail in the following
section.

Previous studies such as [3] and [23], demonstrated that fuzzy reasoning is a
promising technique that can be used both for modelling timetabling problems
and for constructing solutions. These studies indicated that the utilisation of
fuzzy methodologies in university timetabling is an encouraging research topic.
In this paper, we introduce a new evaluation function that is based on fuzzy
methodologies. The research presented in this paper will focus on evaluating the
constructed timetable solutions by considering two decision criteria. Although
the constructed timetable solutions were developed based on objectives speci-
fied earlier, the method is general in the sense that a user could, in principle,
define additional criteria to be taken into account in evaluating any constructed
timetables. This paper is motivated by the fact that, in practice, the quality of
the timetable solution is usually assessed by a timetabling officer who considers
several criteria/objectives.

In the next section, we present a brief description of existing evaluation meth-
ods, their drawbacks, and a detailed explanation of the proposed novel approach.
Section 3 presents descriptions of the experiments carried out and the results ob-
tained, followed by discussions in Section 4. Finally, some concluding comments
and future research directions are given in Section 5.
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2 Assessing Timetable Quality

2.1 Existing Evaluation Functions

This section presents several evaluation functions that have been developed for
Carter et al.’s benchmark data sets. The proximity cost function was the first
evaluation function used to measure the quality of timetables [13]. It is moti-
vated by the goal of spreading out each student’s examination schedule. In the
implementation of the proximity cost, it is assumed that the timetable solution
satisfies the defined hard constraint i.e. no student can attend more than one
exam at the same time. In addition, the solution must be developed in such a
way that it will promote the spreading out of each student’s exams so that stu-
dents have as much time as possible between exams. If two exams scheduled for
a particular student are t time slots apart, a penalty weight is set to wt = 25−t

where t ∈ {1, 2, 3, 4, 5} (as implemented in [13] and widely adopted by most
subsequent research in this area). The weight is multiplied by the number of
students that sit both the scheduled exams. The average penalty per student is
calculated by dividing the total penalty by the total number of students. The
maximum number of time slots for each data set is predefined and fixed, but no
limitation in terms of capacity per time slot is set. Consecutive exams, either in
the same day or overnight, are treated the same, and there is no consideration
of weekends or other actual gaps between logically consecutive days. Hence, the
following formulation is used to measure this proximity cost (see, for example,
Burke et al. [5]):

∑N−1
i=1

∑N
j=i+1 sijw|pj−pi|

S
,

where N is the number of exams, sij is the number of students enrolled in both
exam i and j, pi is the time slot where exam i is scheduled, and S is the total
number of students; subject to 1 ≤ |pj − pi| ≤ 5.

Burke et al. [8] devised a new evaluation function in which the goal is to
minimise the number of students who have to sit two exams in the same day.
Besides the need to construct a conflict-free timetable, it also aimed to schedule
the exams within the maximum number of time slots given. There are three time
slots per weekday and one morning slot on Saturday. A maximum capacity per
time slot is also specified. Burke and Newall [9] extended the previous evaluation
function by defining different weights for two consecutive exams in the same day
and two exams in overnight consecutive time slots.

More recently, Petrovic et al. [23] employed fuzzy methodologies to measure
the satisfaction of various soft constraints. The authors described how they mod-
eled two soft constraints, namely constraint on large exam and constraint on
proximity of exams, in the form of fuzzy linguistic terms and defined the related
rule set. They used these two criteria to evaluate the timetable quality.
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2.2 Disadvantages/Drawbacks of Current Evaluation Functions

As can be seen, the final value of the proximity cost penalty function is a measure
only of the average penalty per student. Although this penalty function has been
widely used by many researchers in the context of the benchmark data set, in
practice, considering only the average penalty per student is not sufficient to
evaluate the quality of the constructed timetable. For instance, the final value
does not necessarily represent the relative fairness of spreading out each student’s
schedule. For example, when examining the resultant timetable, it may be the
case that a few students have an examination timetable in which many of their
exams are scheduled in adjacent time slots. These students will not be happy
with their timetable as they will not have enough time to do their preparation.
On the other hand, the remaining students enjoy a ‘good’ examination timetable.

Example. Consider two cases. Case 1: there are 100 students with each stu-
dent given 1 penalty cost; Case 2: there are 100 students, but now 10 students
are given 10 penalty cost respectively; the rest zero. In both cases the average
penalty per student is equal to 1, but obviously the solution in Case 2 is ‘worse’
than the solution in Case 1.

One of the authors (McCollum) has extensive experience of real-world time-
tabling, having spent 12 years as a timetabling officer and with continuing links
with the timetabling industry. He has expressed (via private communication) the
view that ‘proximity cost’ is not the only factor considered by timetabling offi-
cers when evaluating the quality of a timetable. Usually, a timetable evaluation
is based on several factors and some of the factors are subjective and/or based
on ambiguous information. Furthermore, to the best of our knowledge, all the
evaluation functions mentioned in Section 2.1 are integrated into the timetabling
construction process. These objective functions are used to measure the satis-
faction of specific soft constraints. This means that the constructed timetable is
generated around satisfying certain soft constraints. In practice, the user may
consider other criteria in evaluating the constructed timetable.

One way to handle multiple criteria decision making is by using simple linear
combinations. This works by multiplying the value of each criterion by a constant
weighting factor and summing to form an overall result. Each weight represents
the relative important of each criterion compared to the other criteria. In reality,
there is no simple way to determine the precise values for these weights, espe-
cially weights that can be used across several problem instances with different
complexity. Fuzzy systems are a generalisation of a linear system. The nature
of fuzzy systems allows the use of linguistic terms to express the systems’ be-
haviours. Fuzzy systems apply ‘if–then’ rules and logical operators to map the
relationships between input and output variables in the system. Fuzzy rules may
be elicited from ‘experts’. This term, for the problem under consideration, refers
to timetabling officers or timetabling consultants. As mentioned earlier, we have
access to such experts who could provide us with enough knowledge to develop
a fuzzy system.
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Therefore, in this paper a new evaluation function utilising fuzzy methodolo-
gies is introduced. Basically, the idea is to develop an independent evaluation
function that can be used to measure the quality of any constructed examina-
tion timetable. The timetable can be generated using any approach with specific
objectives to achieve. Subsequently, the timetable solution with the problem de-
scription and the list of factors that need to be evaluated are submitted to the
evaluation function.

2.3 Overview of Fuzzy Systems

This section is largely reproduced from our paper [3] for the purpose of com-
pleteness. In many decision making environments, it is often the case that sev-
eral factors are simultaneously taken into account. Often, it is not known which
factor(s) need to be emphasised more in order to generate a better decision.
Somehow a trade-off between the various (potentially conflicting) factors must
be made. The general framework of fuzzy reasoning facilitates the handling of
such uncertainty.

Fuzzy systems are used for representing and employing knowledge that is im-
precise, uncertain, or unreliable. A fuzzification component computes the mem-
bership grade for each crisp input variable based on the membership functions
defined. An inference engine then conducts the fuzzy reasoning process by ap-
plying the appropriate fuzzy operators in order to obtain the fuzzy set to be
accumulated in the output variable. A defuzzifier transforms the output fuzzy
set to crisp output by applying specific defuzzification method.

More formally, a fuzzy set A of a universe of discourse X (the range over which
the variable spans) is characterised by a membership function μA : X → [0, 1]
which associates with each element x of X a number μA(x) in the interval [0, 1],
with μA(x) representing the grade of membership of x in A [31]. The precise
meaning of the membership grade is not rigidly defined, but is supposed to
capture the ‘compatibility’ of an element to the notion of the set. Rules which
connect input variables to output variables in ‘IF ... THEN ...’ form are used
to describe the desired system response in terms of linguistic variables (words)
rather than mathematical formulae. The ‘IF’ part of the rule is referred to as the
‘antecedent’, the ‘THEN’ part is referred to as the ‘consequent’. The number of
rules depends on the number of inputs and outputs, and the desired behaviour of
the system. Once the rules have been established, such a system can be viewed
as a non-linear mapping from inputs to outputs.

There are many alternative ways in which this general fuzzy methodology
can be implemented in any given problem. In our implementation, the standard
Mamdani style fuzzy inference was used with standard Zadeh (min-max) oper-
ators. In Mamdani inference [20], rules are of the following form:

Ri : if (x1 is Ai1) and ... and (xr is Air) then (y is Ci) for i = 1, 2, . . . , L

where L is the number of rules, xj (j = 1, 2, 3, . . . , r) are input variables, y
is output variable, and Aij and Ci are fuzzy sets that are characterised by
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membership functions Aij(xj) and Ci(y), respectively. The final output of a
Mamdani system is one or more arbitrarily complex fuzzy sets which (usually)
need to be defuzzified. It is not appropriate to present a full description of the
functioning of fuzzy systems here; the interested reader is referred to [21] and [15]
for a simple treatment or Zimmerman [32] for a more complete treatment.

2.4 The Proposed Fuzzy Evaluation Function

As an initial investigation, this proposed approach was implemented on solu-
tions which were generated based on the proximity cost requirements (average
penalty), with one additional factor/objective. In addition to the average penalty
per student, the highest penalty that occurred amongst the students (highest
penalty) was also taken into account. However, the latter factor was only evalu-
ated after the timetable was constructed. That is to say, there was no attempt
to include this factor in the process of constructing the timetable.

A fuzzy system with these two input variables (average penalty and highest
penalty) and one output variable (quality) was constructed. Each of the input
variables were associated with three linguistic terms: fuzzy sets corresponding to
a meaning of low, medium and high. In addition to these three linguistic terms,
the output variable (quality) has two extra terms that correspond to meanings
of very low and very high. These terms were selected as they were deemed to be
the simplest possible to adequately represent the problem. Gaussian functions of
the form e−(x−c)2/σ2

, where c and σ are constants, are used to define the fuzzy
set for each linguistic term. This is on the basis that they are the simplest and
most common choice, given that smooth, continuously varying functions were
desired. The membership functions defined for the two inputs, average penalty
and highest penalty, and the output quality are depicted in Figures 1(a)–(c),
respectively.

In the case of such a system having two inputs with three linguistic terms,
there are nine possible fuzzy rules that can be defined in which each input
variable has one linguistic term. As we already know, from the definition of
proximity cost, the objective is to minimise the penalty cost, meaning that, the
lower the penalty cost, the better the timetable quality. Also, based on everyday
experience, we would prefer the highest penalty for any one student to be as low
as possible, as this will create a fairer timetable for all students. Based upon this
knowledge we defined a fuzzy rule set consisting of all nine possible combinations.
Each rule set connects the input variables to a single output variable, quality. The
fuzzy rule set is presented in Figure 2. As stated above, standard Mamdani-style
fuzzy inference was used to obtain the fuzzy output for a given set of inputs. The
most common form of defuzzification, ‘centre of gravity defuzzification’, was then
used to obtain a single crisp (real) value for the output variable. This process is
based upon the notion of finding the centroid of a planar figure, as given by

∑

i

μ(xi) · xi

μ(xi)
.

This single crisp output was then taken as the quality of the timetable.
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Fig. 1. Membership functions for input and output variables

2.5 Input Normalisation

With this proposed fuzzy evaluation function, we carried out experiments to
determine whether the fuzzy evaluation system was able to distinguish a range
of timetable solutions based on the average penalty per student and the highest
penalty imposed on any of the students. All the constructed timetables for the
given problem instance were evaluated using the same fuzzy system, and their
quality determined based on the output of the fuzzy system. The constructed
timetable with the biggest output value was selected to be the ‘best’ timetable.

Based on our previous experience [2,3], the average penalty values for different
data sets result in widely different scales due to the different complexity of the
problem instances. For example, in the STA-F-83I data set (see below for full
details of the data sets used) an average penalty of 160.42 was obtained, whereas
for UTA-S-92I, the average penalty was 3.57.

As can be seen in Figure 1(a) and Figure 1(b), the input variables have their
universe of discourse defined between 0.0 and 1.0. Therefore, in order to use this
fuzzy model, both of the original input variables must be normalised within the
range [0.0, 1.0]. The transformation used is as follows:
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v′ =
(v − lowerBound)

(upperBound − lowerBound)

where v is the actual value in the initial range [lowerBound, upperBound]. In ef-
fect, the range [lowerBound, upperBound] represents the actual lower and upper
boundaries for the fuzzy linguistic terms.

By applying the normalisation technique, the same fuzzy model can be used
for any problem instance, either for the benchmark data sets as used here, or
for a new real-world problem. This would provide flexibility when problems of
various complexity are presented to the fuzzy system. In such a scheme, the
membership functions do not need to be changed from their initial shapes and
positions. In addition, rather than recalculate the parameters for each input
variable’s membership functions, it is much easier to transform the crisp input
values into normalised values in the range of [0.0, 1.0]. The problem thus becomes
one of finding suitable lower and upper bounds for each problem instance.

3 Experiments on Benchmark Problems

3.1 Experiments Setup

In order to test the fuzzy evaluation system, the benchmark data sets of Carter et
al. [13] were used. The 12 instances that we studied, with different characteristics
and various level of complexity, are shown in Table 1. Note that we are using
the notation introduced in [24].

Rule 1: IF (average penalty is low) AND (highest penalty is low)
THEN (quality is very high)

Rule 2: IF (average penalty is low) AND (highest penalty is medium)
THEN (quality is high)

Rule 3: IF (average penalty is low) AND (highest penalty is high)
THEN (quality is medium)

Rule 4: IF (average penalty is medium) AND (highest penalty is low)
THEN (quality is high)

Rule 5: IF (average penalty is medium) AND (highest penalty is medium)
THEN (quality is medium)

Rule 6: IF (average penalty is medium) AND (highest penalty is high)
THEN (quality is low)

Rule 7: IF (average penalty is high) AND (highest penalty is low)
THEN (quality is medium)

Rule 8: IF (average penalty is high) AND (highest penalty is medium)
THEN (quality is low)

Rule 9: IF (average penalty is high) AND (highest penalty is high)
THEN (quality is very low)

Fig. 2. Fuzzy rules for Fuzzy Evaluation System
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Table 1. Examination timetabling problem characteristics

Data set Number of Number of Number of
slots (T ) exams (N ) students (S)

CAR-F-92I 32 543 18419
CAR-S-91I 35 682 16925
EAR-F-83I 24 190 1125
HEC-S-92I 18 81 2823
KFU-S-93 20 461 5349
LSE-F-91 18 381 2726
RYE-F-92 23 486 11483
STA-F-83I 13 139 611
TRE-S-92 23 261 4360
UTA-S-92I 35 622 21266
UTE-S-92 10 184 2750
YOR-F-83I 21 181 941

For each instance of the 12 data sets, 40 timetable solutions were constructed
using a simple sequential constructive algorithm with backtracking, as previously
implemented in [3]. We used eight different heuristics to construct the timetable
solutions, for each of which the algorithm was run five times to obtain a range
of solutions. However, due to the nature of the heuristics used, in some cases, a
few of the constructed timetable solutions have the same proximity cost value.
Therefore, for the purpose of standardisation, 35 different timetable solutions
were selected out of the 40 constructed timetable solutions, by firstly removing
any repeated solution instances and then just removing at random any excess.
The idea is to obtain a set of timetable solutions with variations of timetable
solution quality, in which none of the solutions have the same quality in terms of
proximity cost (i.e average penalty per student). The timetable solutions were
constructed by implementing the following heuristics:

– Three different single heuristic orderings:
• Least Saturation Degree First (SD),
• Largest Degree First (LD), and
• Largest Enrollment First (LE),

– Three different fuzzy multiple heuristic orderings:
• a Fixed Fuzzy LD+LE Model,
• a Tuned Fuzzy LD+LE Model, and
• a Tuned Fuzzy SD+LE Model (see [3] for details of these), and

– random ordering, and
– deliberately ‘poor’ ordering (see below).

A specific ‘poor’ heuristic was utilised in an attempt to purposely construct bad
solutions. The idea was to attempt to determine the upper bound of solution
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quality (in effect, though not formally, the ‘worst’ timetable for the given prob-
lem instance). Basically the method was to deliberately assign student exams
in adjacent time slots. In order to construct bad solutions, LD was initially
employed to order the exams. Next, the exams were sequentially selected from
this ordered exams list, and assigned to the time slot that caused the highest
proximity cost; this process continued until all the exams were scheduled.

The 35 timetable solutions were analysed in order to determine the mini-
mum and the maximum values for both the input variables, average penalty
and highest penalty. These values were then used for the normalisation process
(see Section 2.5). However, because the 12 data sets have various levels of com-
plexity (see Table 1), the determination of the initial range for each data set
is not a straightforward process. Thus, two alternative boundary settings were
implemented in order to identify the appropriate set of lowerBound and upper-
Bound for each data set. The first boundary setting used lowerBound = 0.0
and the upperBound = maxValue, where maxValue is the largest value ob-
tained from the set of 35 solutions. However, from the literature, the lowest
value yet obtained for the STA-F-83I data set is around 130 [14]. Thus, it did
not seem sensible to use zero as the lower bound in this case. In order to at-
tempt to address this, we investigated the use of a non-zero lower bound. Of
course, a formal method for determining the lower bound for any given time-
tabling instance is not currently known. Hence, the second boundary setting
used lowerBound = minValue and upperBound = maxValue, where minValue
is the smallest value obtained from the set of 35 constructed solutions for the
respective data set.

In this implementation, both input variables, average penalty and highest
penalty, were independently normalised based on their respective minValue and
maxValue. The fuzzy evaluation system described earlier (see Section 2.4) was
then employed to evaluate the timetable solutions. The same processes were ap-
plied to all of the data sets listed in Table 1. The fuzzy evaluation system was
implemented using the ‘R’ language (The R Foundation for Statistical Comput-
ing Version 2.2.0 ) [25].

3.2 Experimental Results

In this section the experiment results are presented. Table 2 shows the minimum
and maximum values obtained for both criteria. Figures 3(a) and 3(b) show the
evaluation results obtained by the fuzzy evaluation system for the LSE-F-91 and
TRE-S-92 data sets. These two data sets are shown as representative examples
chosen at random. Both graphs show the results obtained when the boundary
setting [minV alue, maxV alue] was implemented. In the graph, the x-axis (So-
lution Rankings) represents the ranking of the timetable solution quality evalu-
ated by using the fuzzy evaluation function; in the order of the best solution to
the worst solution. The y-axis represents the normalised input values (average
penalty and highest penalty) and the output values (quality) obtained for the
particular timetable solution. These two graphs show that the fuzzy evaluation
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TRE-S-92 : Timetable Quality

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

0 5 10 15 20 25 30 35 40

Solution Rankings

In
p

u
t/

O
u

tp
u

t 
V

al
u

e

Average Penalty

Highest Penalty

Quality

(b)

Fig. 3. Indicative illustrations of the range of normalised inputs and associated output
obtained for the LSE-F-91 and TRE-S-92 data sets

function has performed as desired, in that the overall (fuzzy) quality of the
solutions varies from close to zero to close to one.

Tables 3 and 4 show a comparison of the results obtained using the two
alternative forms of the normalisation process. The Solution Number is used
to identify a particular solution within the 35 timetable solutions used in the
experiments for each data set. In both tables, the fifth and sixth columns
(labeled as ‘Range [minValue,maxValue]’) indicate the fuzzy evaluation value
and the rank of the solution relative to the other solutions, when the boundary
range [minValue,maxValue] was used. The last two columns in the tables show
the evaluation values and solution ranking obtained when the boundary range
[0,maxValue] was used. Only the first 10 ‘best’ timetable solutions for each of
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Table 2. Minimum and maximum values for Average Penalty and Highest Penalty
obtained from the 35 timetable solutions for each data set

Average penalty Highest penalty

Data set Minimum
value

Maximum
value

Minimum
value

Maximum
value

CAR-F-92I 4.54 11.42 65.0 132.0
CAR-S-91I 5.29 13.33 68.0 164.0
EAR-F-83I 37.02 71.28 105.0 198.0
HEC-S-92I 11.78 31.88 75.0 136.0
KFU-S-93 15.81 43.40 98.0 191.0
LSE-F-91 12.09 32.38 78.0 191.0
RYE-F-92 10.38 36.71 87.0 191.0
STA-F-83I 160.75 194.53 227.0 284.0
TRE-S-92 8.67 17.25 68.0 129.0
UTA-S-92I 3.57 8.79 63.0 129.0
UTE-S-92 28.07 56.34 83.0 129.0
YOR-F-83I 39.80 64.48 228.0 331.0

the data sets are presented, based on the ranking produced when the boundary
range [minValue,maxValue] was used.

4 Discussion

The fuzzy system presented here provides a mechanism to allow an overall de-
cision in evaluating the quality of a timetable solution to be made based on
common-sense rules that encapsulate the notion that the timetable solution qual-
ity increases as both the average penalty and the highest penalty decrease. The
rules are in a form that is easily understandable by any timetabling officer.

Looking at Figure 3(a) and Figure 3(b) it can be seen that, in many cases, it is
not guaranteed that timetable solutions with low average penalty will also have
low highest penalty. This observation confirmed the assumption that considering
only the proximity cost to measure timetable solution quality is not sufficient.
As an example, if the detailed results obtained for the [0,maxValue] boundary
range for LSE-F-91 in Table 3 are analysed, it can be seen that solution 13 (with
the lowest average penalty) is not ranked as the ‘best’ solution. The same effect
can be observed in solution 21 for the TRE-S-92 data set and solution 21 for the
UTE-S-92 data set in Table 4.

In these three data sets (LSE-F-91, TRE-S-92 and UTE-S-92), the timetable
solutions with the lowest average penalty were not selected as the ‘best’ timetable
solution, because the decision made by the fuzzy evaluation system also takes
into account another criterion, the highest penalty. This finding can also be seen
in the other data sets, but it is not too obvious especially if we only focus on the
first 3 ‘best’ solutions. Regardless, in terms of functionality, these results indicate
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Table 3. A comparison of the results obtained using the two alternative forms of the
normalisation process for six of the data sets

Timetable criteria Range[minValue, maxValue] Range[0, maxValue]

Data set Solution
number

Average
penalty

Highest
penalty

Evaluation
value

Solution
ranking

Evaluation
value

Solution
ranking

CAR-F-92I 19 4.544 65 0.888503 1 0.534427 1
17 4.624 71 0.876804 2 0.517946 2
18 4.639 71 0.876791 3 0.517485 3
16 4.643 71 0.876788 4 0.517366 4
7 5.148 68 0.876583 5 0.510084 5

10 5.192 69 0.873279 6 0.506692 6
13 5.508 68 0.858276 7 0.500729 7
12 5.532 68 0.856617 8 0.500120 8
11 5.595 68 0.851966 9 0.498538 9
2 5.609 68 0.850863 10 0.498184 10

CAR-S-91I 17 5.292 68 0.888524 1 0.557585 1
13* 5.573 75 0.880205 2 0.537593 3
11* 5.911 68 0.879621 3 0.542750 2
15 5.654 75 0.879244 4 0.535472 4
14 5.842 75 0.875877 5 0.530812 5
6* 6.079 76 0.868161 6 0.523516 8
2* 6.393 71 0.860211 7 0.526116 6

21* 6.509 71 0.853145 8 0.523572 7
12 5.688 83 0.850233 9 0.520297 9
16 5.690 83 0.850227 10 0.520255 10

EAR-F-83I 21 37.018 116 0.868135 1 0.467867 1
4* 41.860 118 0.834883 2 0.444700 3
5* 43.637 105 0.827016 3 0.454672 2
18 44.147 118 0.798099 4 0.432416 4
1 41.324 131 0.748303 5 0.415267 5

3* 43.628 129 0.733864 6 0.411292 7
20* 44.968 127 0.718542 7 0.411481 6
12 49.662 114 0.710776 8 0.392966 8
2* 41.178 144 0.699109 9 0.370814 11

16* 44.980 135 0.674252 10 0.385906 9

HEC-S-92I 21 11.785 83 0.863057 1 0.506506 1
14 14.774 75 0.854699 2 0.495547 2
13 13.236 84 0.853706 3 0.489407 3
7* 14.162 83 0.847966 4 0.482514 5

16* 14.635 83 0.838633 5 0.477754 7
15* 14.217 85 0.832653 6 0.476641 8
1* 15.594 78 0.828916 7 0.481021 6
6* 15.911 75 0.817611 8 0.485117 4
27 15.763 84 0.801080 9 0.463727 9
8* 14.124 94 0.727535 10 0.446459 11

KFU-S-93 17 15.813 98 0.888529 1 0.541211 1
15 16.904 101 0.884358 2 0.526210 2
14 17.336 100 0.883340 3 0.524294 3
16 17.920 104 0.876034 4 0.513226 4
3* 20.022 102 0.852341 5 0.501383 11
9* 16.463 113 0.847871 6 0.509402 5
7* 16.471 113 0.847868 7 0.509339 6
6* 16.500 113 0.847858 8 0.509119 7
8* 16.500 113 0.847858 9 0.509119 8

10* 16.500 113 0.847858 10 0.509119 9

LSE-F-91 11* 13.458 78 0.881499 1 0.552817 2
13* 12.094 87 0.879126 2 0.555747 1
6* 14.720 89 0.855424 3 0.523229 4

12* 12.349 102 0.812127 4 0.527563 3
10* 16.408 91 0.804048 5 0.504874 5
32* 17.942 98 0.722929 6 0.480142 7
5* 18.564 93 0.720053 7 0.481747 6
9* 16.486 109 0.707889 8 0.476028 9

16* 18.979 95 0.707212 9 0.474395 11
7* 17.174 105 0.704871 10 0.476479 8
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Table 4. A comparison of the results obtained using the two alternative forms of the
normalisation process for the remaining six data sets

Timetable criteria Range[minValue, maxValue] Range[0, maxValue]

Data set Solution
number

Average
penalty

Highest
penalty

Evaluation
value

Solution
ranking

Evaluation
value

Solution
ranking

RYE-F-92 21 10.384 87 0.888528 1 0.610225 1
8 12.180 97 0.871582 2 0.558378 2

10 12.337 97 0.870489 3 0.556102 3
20 12.264 98 0.868672 4 0.555205 4
6 12.976 97 0.864830 5 0.547756 5
9 12.417 102 0.854386 6 0.545595 6
7 12.094 105 0.839576 7 0.544225 7

3* 13.678 104 0.831331 8 0.527428 12
2* 14.441 104 0.817334 9 0.519821 14
4* 14.581 104 0.814229 10 0.518513 15

STA-F-83I 21 160.746 227 0.888536 1 0.215426 1
20 161.151 227 0.887829 2 0.214107 2
15 164.375 228 0.871792 3 0.202156 3
3 167.394 227 0.824391 4 0.196779 4

31 168.195 227 0.805614 5 0.194967 5
18 168.863 227 0.788882 6 0.193535 6

11* 168.781 232 0.788385 7 0.182500 17
16* 169.100 227 0.782864 8 0.193043 7
29* 171.249 227 0.733062 9 0.188900 8
9* 171.391 227 0.730410 10 0.188645 9

TRE-S-92 19* 9.311 69 0.880078 1 0.478231 2
8* 9.389 68 0.878204 2 0.479078 1
20 9.598 68 0.871588 3 0.475325 3
7* 9.039 75 0.868946 4 0.468005 6
6* 9.757 71 0.864316 5 0.465758 8

17* 9.885 68 0.858365 6 0.469941 4
21* 8.671 77 0.855435 7 0.469016 5
1* 10.003 68 0.851293 8 0.467596 7
10 9.856 75 0.846708 9 0.454514 9

16* 9.981 77 0.826007 10 0.446743 11

UTA-S-92I 17 3.567 63 0.888536 1 0.532771 1
11 3.833 68 0.878185 2 0.511100 2
14 3.911 68 0.876019 3 0.508369 3
13 3.927 68 0.875482 4 0.507798 4
16 3.977 68 0.873738 5 0.506065 5
12 4.143 68 0.866816 6 0.500466 6
24 4.531 73 0.807693 7 0.475697 7
23 4.573 73 0.802872 8 0.474319 8
27 4.581 73 0.801938 9 0.474053 9
8 4.976 68 0.762605 10 0.472232 10

UTE-S-92 19 30.323 83 0.879116 1 0.438284 1
18 29.718 86 0.878651 2 0.429775 2
21 28.069 90 0.853031 3 0.420748 3
20 32.804 88 0.835146 4 0.400981 4
26 31.522 91 0.826953 5 0.392480 5
15 33.935 91 0.780095 6 0.378000 6
27 34.928 90 0.767341 7 0.377994 7

12* 32.996 94 0.758297 8 0.367082 9
17* 29.695 98 0.723270 9 0.369027 8

8 30.555 98 0.721926 10 0.362837 10

YOR-F-83I 21 39.801 234 0.883004 1 0.372139 1
8* 44.158 233 0.837983 2 0.363036 3

20* 44.412 231 0.831362 3 0.365581 2
9 45.645 228 0.791749 4 0.359602 4

14 45.736 238 0.785008 5 0.345675 5
1 46.810 234 0.751639 6 0.341781 6
2 46.862 235 0.749650 7 0.340088 7

17 47.142 240 0.736830 8 0.330597 8
32* 46.947 244 0.731929 9 0.324728 10
31* 47.396 242 0.726141 10 0.324908 9



A Novel Fuzzy Approach to Evaluate the Quality 341

Table 5. Range of timetable quality

Range [0, maxV alue] Range [minV alue, maxV alue]

Data set Worst
solution

Best
solution

Worst
solution

Best
solution

CAR-F-92I 0.111464 0.534427 0.111464 0.888503
CAR-S-91I 0.111464 0.557585 0.111464 0.888524
EAR-F-83I 0.111465 0.467867 0.111465 0.868135
HEC-S-92I 0.127502 0.506506 0.155374 0.863057
KFU-S-93 0.111466 0.541211 0.111466 0.888529
LSE-F-91 0.111895 0.555747 0.112182 0.881499
RYE-F-92 0.115999 0.610225 0.119240 0.888528
STA-F-83I 0.111464 0.215426 0.111464 0.888536
TRE-S-92 0.111476 0.479078 0.111488 0.880078
UTA-S-92I 0.111464 0.532771 0.111464 0.888536
UTE-S-92 0.111464 0.438284 0.111464 0.879116
YOR-F-83I 0.120046 0.372139 0.213388 0.883004

that the fuzzy evaluation system has performed as intended in measuring the
timetable’s quality by considering two criteria simultaneously.

Analysing Tables 3 and 4 further, it can also be observed that the decision
made by the fuzzy evaluation function is affected slightly when the different
boundary settings are used to normalise the input values. The consequence of
this is that the same timetable solution might be ranked in a different order, de-
pendent on the boundary conditions. In both tables, the solutions with different
ranking position are marked with ∗. For the CAR-F-92I (in Table 3) and UTA-
S-92I data sets (in Table 4), the solution rankings are unchanged by altering
the boundary settings. In several cases, the solution rankings are only changed
slightly. It is also interesting to note that, in a few cases, for example solution
3 for KFU-S-93 (in Table 3) and solution 11 for STA-F-83I (in Table 4), the
ranking change is quite marked.

Overall, the performance of the fuzzy evaluation system utilising the bound-
ary range [0.0,maxValue] did not seem as satisfactory as when the boundary
range [minValue,maxValue] was used. This observation is highlighted by Ta-
ble 5, which presents the fuzzy quality measure obtained for the ‘worst’ and
‘best’ solutions as evaluated under the two different boundary settings. When
the boundary range [0.0,maxValue] was used, it can be seen that the fuzzy eval-
uation system evaluated the quality of the timetable solutions for the 12 data
sets in the overall range of 0.111464 to 0.610225. In the case of STA-F-83I, the
‘best’ solution was only rated as 0.215426 in quality. The quality of timetable
solutions falls only in the regions of linguistic terms that correspond to meanings
of very low, low and medium in the timetable quality fuzzy set (see Figure 1(c)).
This is because the lower bound value used here (i.e. lowerBound = 0.0) is far
smaller than the actual smallest values. Consequently, the input values for even
the lowest values (i.e. the ‘best’ solution qualities) are transformed to normalised
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Fig. 4. Firing level for Rule 1 with different normalised input values

values that always fall within the regions of the medium and high linguistic terms
in the input variables. As a result, the normalised input values will not cause
any rule to be fired, or the firing level for any rule is relatively very low. This is
illustrated in Figure 4(a), in which the activation level of the consequent part for
Rule 1 is equal to 0.13. Although the possibility exists for any input to fall into
more than one fuzzy set, so that more than one rule can be fired, the aggregation
of fuzzy output for all rules will obtain a final shape that will only produce a
low defuzzification value.

In contrast, Figure 4(b) illustrates the situation when the normalised input
values fall in the regions of the linguistic terms that correspond to the mean-
ing of low. In this situation, a high defuzzification value will be obtained due
to the fact that most of the rules will have a high firing level. Thus, all of the
solutions being ranked first had quality values more than 0.8, when the initial
range [minValue,maxValue] was used. In this case, the quality of timetable so-
lutions falls in the regions of the linguistic terms that correspond to meanings
of high and very high for the timetable quality fuzzy set (see Figure 1(c)). As
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Fig. 5. A graphical comparison of the effect of the two boundary settings for UTA-S-92I
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might be expected, from the fact that the actual minimum and maximum val-
ues from the 35 constructed timetable solutions were used, the fuzzy evaluation
results were nicely distributed along the universe of discourse of the timetable
quality fuzzy set. For a clearer comparison of the effect of the two boundary
settings, the distribution of input and output values for the UTA-S-92I data set
are presented in Figure 5. As can be seen, the input values (Figure 5(b) and
Figure 5(c)) are concentrated in the middle regions (0.4–0.7) of the graphs when
the boundary range [0.0,maxValue] was used. In contrast, when the boundary
range [minValue,maxValue] was used, the input values were concentrated in the
bottom regions of the graphs. Based upon the defined fuzzy rules, we know that
the timetable quality increases with a decrease in both input values. Indeed,
this behaviour of the output can be observed for both boundary settings (see
Figure 5(a)). Using either of the boundary settings, the fuzzy evaluation system
is capable of ranking the timetable solutions. It is purely a matter of choosing
the appropriate boundary settings of the fuzzy sets for the input variables. One
of the deficiencies of this fuzzy evaluation, at present, appears to be that there
is no simple way of selecting the boundary settings of the input variables. The
drawback is that both boundary settings implemented so far can only be ap-
plied after a number of timetable solutions are generated. Therefore, significant
amounts of times are required to construct and analyse the solutions. Further-
more, if boundary setting is based on the actual minimum and maximum values
from the existing timetable solutions, the fuzzy evaluation system might not be
able to evaluate a newly constructed timetable solution if the input values for
the decision criteria for the new solution lie outside the range of the fuzzy sets.
(Actually, output values can always be calculated – the real problem is that
the resultant solution quality will always be the same once both criteria reach
the left-hand boundary of their variables.) Thus it would be highly beneficial if
we could determine approximate boundary settings, particularly some form of
estimate of the lower bound of the assessment criteria, based upon the problem
structure itself.

5 Conclusions

In conclusion, the experimental results presented here demonstrate the capa-
bility of a fuzzy approach of combining multiple decision criteria in evaluating
the overall quality of a constructed timetable solution. However, in the fuzzy
system implementation the selection of the lowerBound and upperBound for
the normalisation process is extremely important because it has a significant
effect on the overall quality obtained. The initial results presented here only use
two decision criteria to evaluate the timetable quality. Possible directions for
future research include extending the application of the fuzzy evaluation sys-
tem by considering more criteria, and devising a more sophisticated approach
to determine approximate boundary settings for the normalisation process. An-
other aspect to be investigated further is in comparing the quality assessments
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produced by such fuzzy approaches with the subjective assessments of quality
that timetabling officers make in real-world timetabling problems.
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