
 

 

 

 

CHAPTER 1 

 

 

 

 

INTRODUCTION 

 

 

 

 

The water industry is seeking ways to produce high quality water at reduced 

cost.  The operation of water treatment plants is significantly different from most 

manufacturing industrial operations because raw water sources are often subject to 

natural perturbations like flood and drought, both of which significantly affect the 

characteristics of the abstracted water.  Whilst it is possible to measure some of 

these variables with commercially available instrumentation, the general experience 

is that the instruments often lack the required reliability, accuracy and robustness.  

Consequently, early applications of automatic control in the water industry were 

often compromised.  More recently, improved sensor technology has enabled the 

successful regulation of variables such as pH and chlorine residual.  Without a 

precise knowledge of the characteristics of the material to be removed, most 

chemical dosage requirements for primary water treatment are determined from 

laboratory measurements (jar tests) which are conducted (usually) at regular time 

intervals.  Excessive overdosing is not only expensive but may lead to increased 

public health concerns.  This paper will begin with a brief explanation of water 

treatment plant operation. 
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1.1  An Overview of Water Treatment  

 

 

 The purification of water for domestic consumption involves several stages 

of treatment of the raw water to remove suspended solids, colour and bacteria before 

entering the distribution network.  The individual treatment processes include 

clarification, disinfection, pH adjustment, filtration and taste and odour removal as 

presented in Figure 1.1. 

 

 

 

Figure 1.1 Schematic diagram of water treatment process 

 

 

The success of the clarification process is crucial for efficient operation of 

the plant.  Failure to clarify the raw water properly will adversely affect the other 

processes and can result in final water that is unfit for human consumption. 
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1.2 Chemical Plant Overview  

 

 

The chemical plant is designed for handling of aluminium sulphate, hydrated 

lime, polyelectrolyte, chorine, sodium silicon fluoride and ammonia. 

 

 

 

 

1.2.1 Water Treatment Chemicals 

 

 

The following is a list of chemicals with estimated dosages which may be 

necessary to meet the final treated quality specified. 

 

 

Table 1.1: List of chemicals with estimated dosages 

Chemical Function Estimated Dosage(mg/l) 

For filtered water  Min Average Max 

Chlorine Disinfection 0.5 3 5 

Hydrated Lime (as 90% Ca(OH)2 pH correction 2 6 10 

Sodium Silicon Fluoride (as 1%F) Dental protection 0.7 0.8 0.9 

 

 

 

 

1.2.2 Lime Operation 

 

 

The hydrated lime chemical as delivered should contain a calcium hydroxide 

Ca(OH)2 content of not less then 90%.  The chemical is to be delivered by bulk air 

pressure road tankers, having a capacity of up to 20 tons.  It should always be 

ensured therefore that the available capacity in a silo to receive chemical is in 
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multiples of 20 tons leaving ample room to spare as an allowance for initial aeration. 

It is recommended that the silo available capacity should not be less than 27 tons for 

a 20 tons bulk road tanker delivery. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.2 Lime-Plant Dosing 

 

 

1.2.2.1 Lime Plant Operation in Manual Mode 

 

 

Introduction 

Lime Plant must be operated in manually if the flow meter for raw 

water/filtered water not functioning.  Due to this, VSD value must be set manually 

based on water flow. 

 

Equipment 

(i) Lime MCC panel 

(ii)  VSD key 

(iii)  VSD panel 
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Procedure 

(i) Go to the Lime Plant. 

(ii)  Check the Lime MCC panel. 

(iii)  Make sure the power supply is ON. 

(iv) After that, go to VSD panel. 

(v) Select either option 1 or 2.  

(vi) By using the VSD key SF101, turn the VSD key to fix position. 

(vii)  ( Please refer  to figure below) 

 

 

 

 

 

 

     

Figure 1.3 VSD key SF101 

 

 

(viii)  Then, use the black button beside the VSD panel to set the VSD 

recording to value requires. 

(ix) Write down the VSD reading in FRM/CP/01 form. 

(x) VSD value will change according to total flow reading. 

 

Formula of Lime Dosage 

 

Liter/day = Flow(MLD)*Dosage rate / C * S.G 

 

Liter/hour= Flow(MLD)*Dosage rate /24*C*S.G 

 

Liter /min = Flow(MLD*Dosage rate/24*60*C*S.G 

 

                C  = Concentration solution 

            S.G = Specific gravity of solution 

fix 

off 

variable 
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Dosage rate  = ppm @ mg/L 

 

Example 1 

Total usage of Lime in a day is 5 ton and the total water flow is 600000m3.  What is 

the average dosage rate ppm of lime that has been used? 

 

Solution: 

Dosing rate = Flow * Dosage rate; kg/day = Flow (MLD) * ppm;  

Flow=600000m3.kg/day = 5 ton = 5000kg 

Kg/day=flow*ppm 

Ppm=5000/600=8.33 

 

 

 

 

1.2.3 Fluoride Operation 

 

 

The sodium silicofluoride chemical is to be supplied in 25kg bags’ charging 

of the dry feeder storage hopper is to be carried out only during the day shift.  It is 

intended that the dosing rate should not exceed 1.5mg/l, the average dose being 1.3 

mg/l.  The preparation system is designed so that an inflow of 2.06 litres/sec enters 

the dissolving tank.  The solution strength will be maintained according to the plant 

flow but the dosing rate is under manual control. 
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Figure 1.4 Fluoride Plant 

 

 

1.2.3.1 Fluoride Plant Operation in Manual Mode 

 

 

Introduction 

Fluoride plant operation is based on VSD value that is manually operated.  

The VSD value required is proportional with filtered water flow 

 

Equipment 

VSD machine 

 

Procedure 

(i) Go to fluoride MCC panel. 

(ii)  Make sure the power supply is ON. 

(iii)  Then go to VSD machine. 

(iv) Press the green button to run the VSD machine. 
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(v) Press “^” button to increase the VSD value to value required. 

(vi) Press “v” button to decrease the VSD value to value required. 

(vii)  Check the VSD reading displayed on the screen. 

(viii)  Write down the VSD reading in FRM/CP/01 form. 

 

Formula of Fluoride Dosage 

 

Dosing rate (kg/day) = Flow(MLD)*Dosage rate(mg/L)  

 

Dosing rate (kg/hr)  = Flow(MLD)*Dosage rate(mg/L)  

 

Dosing rate (kg/min)  = Flow(MLD)*Dosage rate(mg/L)/ 24*60 

 

Dosing rate (g/min)  = Flow(MLD)*Dosage rate(mg/L)*1000/24*60 

 

Example 1 

Fluoride that flow from the feeder is 200g/min. Raw water flow reading is 400MLD. 

Calculate the fluoride dosage rate. 

Solution: 

Flow=400; g/min=200; Dosage rate = x 

From formula no. 4 

200 = (400*x*1000)/24*60 

     x  =  200*24*60/400*1000 = 0.72 mg/L@ppm 

 

Example 2 

Total of fluoride used in a day is 800kg. Total raw water flow is 600000m3. What is 

the average of dosage rate fluoride dosage required? 

Solution: 
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Flow=600000m3/day=600000/1000=600MLD; kg/day=800; dosage rate =x 

From formula no.1 

800 = 600*x 

x = 800/600 

x = 1.3 mg/L@ ppm 

 

 

 

 

1.2.4 Chlorine Operation 

 

 

Chlorine is to be supplied in drums containing 915kg of liquid chlorine.  The 

duty drums supply liquid chlorine to evaporators that converts the liquid to a 

chlorine gas which is the conveyed to gas control chlorination units.  The dosing rate 

is manually set and is maintained proportional to flow as mentioned previously for 

raw water the dose rate to the filtered water, is also under manual control for 

chlorine residual. 
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Figure 1.5 Post Chlorination Plant 

 

 

1.2.4.1 Chlorine Plant Operation in Manual Mode 

 

 

Introduction 

If chlorine reading kg/hr not follows the flow proportional then the chlorine 

gas setting must be change manually 

 

Equipment 

Chlorinator MCC panel 

Walkie Talkie 

Chlorinator 

 

Procedure  

Chlorination MCC panel room 

(i) Go to chlorination MCC panel 

(ii)  At dosing controller, turn the button to manual position 

(iii)  Increase/decrease the value button position to required setting. 
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(iv) Then watch the dose rate kg/hr reading at active chlorinator panel. 

 

Chlorinator Room 

(i) Go to chlorinator room 

(ii)  Check the chlorine gas kg/hr reading at chlorinator on duty. 

(iii)  Jot down the chlorinator reading in FRM/CP/01 form. 

 

Formula of Chlorine Dosage 

 

Dosing rate = Flow (MLD) * Dosage rate (kg/day) 

 

Dosing rate = Flow (MLD)* Dosage rate/24 (kg/hr) 

 

Chlorine Dosing rate = Chlorine Demand + chlorine residual 

(mg/L)                           (mg/L)                      (mg/L) 

 

(i) Dosage rate in ppm or Mg/L 

(ii)  Flow must be in MLD form. 

 

Example 1 

Flow given is 600MLD.While required dosage rate require is 3ppm. Find dosing rate 

needed in kg/hr. 

 

Solution: 

Dosing rate (kg/hr) = Flow * ppm/24 

Flow = 600; Dosage rate = 3  

Dosing rate = (600*3)/24 = 75kg/hr 

 

Example 2 

Flow given is 500MLD. Total dosing used was 60kg/hr. What is the chlorine dosage 

rate? 

 



 12 

Solution:  

Flow = 500; Dosing rate = 60 

From formula 

60 = 500*x /24 

x = 60*24/500 = 2.88 

 

 

 

 

1.3 Neuro-Fuzzy and Soft Computing  

 

 

Analysis of real world problems requires intelligent systems.  Soft 

Computing (SC) is an innovative approach to constructing computationally 

intelligent systems (Jang, Sun and Mizutani, 1997).  These intelligent systems, 

which combine knowledge, techniques, and methodologies from various sources, are 

supposed to possess human-like expertise within a specific domain, adapt 

themselves and learn to do better in changing environments, and explain how they 

make decisions or take actions.  In confronting complex real-world computing 

problems, it is frequently advantageous to use several computing techniques 

synergistically rather than exclusively, resulting in the construction of 

complementary hybrid intelligent systems.  One of the most successful of this kind 

of intelligent systems design is neuro-fuzzy computing: neural networks recognize 

patterns and learn from examples; fuzzy inference systems incorporate human 

knowledge and perform inferencing.   In the following section, a brief description of 

these emerging fields is provided. 
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1.3.1 Neural Networks 

 

 

A neural network is a parallel, distributed information processing structure 

consisting of processing elements (which can possess a local memory and 

can carry out localized information processing operations) interconnected via 

unidirectional signal channels called connections.  Each processing element 

has a single output connection that branches (“fans out”) into as many 

collateral connections as desired; each carries the same signal – the 

processing element output signal.  The processing element output signal can 

be of any mathematical type desired. The information processing that goes 

on within each processing element can be defined arbitrarily with the 

restriction that it must be completely local; that is, it must depend only on the 

current values of the input signal arriving at the processing element’s local 

memory.  

(Hecht-Nielsen, 1990)  

 

 

Clearly, neural networks are models based on the working mechanism of the 

human brain; they are composed of individual interconnected processing elements 

(PEs), which are analogous to neurons in the brain and utilize a distributed 

processing approach to computation.  

 

 

More specifically, anything that can be represented as a number might be fed 

into a neural network.  Each PE sends/receives data to/from other PEs.  For each 

individual PE in standard model, input data (X
0
…X

n
) are multiplied by the weights 

(W
0
…W

n
) associated with the connection to the PE.  Each PE applies a nonlinear 

activation function to its sum of weighted input signals to determine its output 

signal.  The output from a given PE is multiplied by another separate weight and fed 

into the next processing element.  If the processing element is in the output layer, 



 14 

then the output from the processing element is not multiplied by a weight and 

instead is an output of the network itself.  

 

 

The origin of the neural network field began in the 1940s with the work of 

McCulloch and Pitts (1943), who showed that networks of artificial neurons could, 

in principle, compute any arithmetic or logical function.  They also showed that any 

arbitrary logical function could be configured by a neural network of interconnected 

digital neurons, which introduced the idea of the step threshold used in many neural 

network models.  The first practical application of artificial neural networks was 

presented by Rosenblatt in the late 1950s.  In his book published in 1962, Principles 

of Neurodynamics, he introduced a learning algorithm by which the weights can be 

changed, and he demonstrated the ability to perform pattern recognition in a 

perceptron network.  At about the same time, Widrow and Hoff introduced a new 

learning algorithm in 1960 and used it to train adaptive linear neural networks, 

which were similar in structure and capability to Rosenblatt’s perceptron.  

 

 

Unfortunately, both Rosenblatt’s and Widrow’s networks suffered from the 

same inherent limitations as pointed out in the book Perceptrons by Minsky and 

Papert, published in 1969.  They showed that single-layer systems were limited and 

expressed pessimism over multilayer systems. Interest in neural networks dwindled 

from late 1960s to early 1980s.  

 

 

The breakthrough of neural network came in the 1980s when the most 

influential method of training a multilayer neural network, known as the 

backpropagation (BP) algorithm was developed by Parker (1982) and Rumelhart & 

McClelland (1986).  About the same time, new types of neural net with dynamic 

behavior, such as Hopfield neural net (Hopfield, 1982; 1984) and the Kohonen self-
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organizing neural net (Kohonen, 1982; 1984), were introduced.  These new 

developments reinvigorated the field of neural networks.  

 

 

Neural networks are capable of solving a wide range of problems by 

“learning”, “generalizing” and “abstracting”.  They can modify their behavior in 

response to their environment and once trained, the network’s response can be 

tolerant to minor variations to its input.  As a matter of fact, neural networks have 

been widely used in a broad range of areas such as image processing, signal 

processing, pattern recognition, speech recognition, industrial control, aerospace, 

manufacturing, medicine, business, finance, and even literature.  The success in 

application of neural networks is mostly because of their applicability to complex 

nonlinear systems and multivariable systems. 

 

 

 

 

1.3.2 Fuzzy Logic 

 

 

We need a radically different kind of mathematics, the mathematics of fuzzy 

or cloudy quantities which are not described in terms of probability 

distributions.  Indeed, the need for such mathematics is becoming 

increasingly apparent… for in most practical cases the a priori data as well as 

the criteria by which the performance of a man-made system is judged are far 

from being precisely specified or having accurately known probability 

distributions.  

(Zadeh, 1961) 
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Fuzzy set theory, originally introduced by Lotfi Zadeh in the 1960’s, 

resembles human reasoning in its use of approximate information and uncertainty to 

generate decisions.  It was specifically designed to mathematically represent 

uncertainty and vagueness and provide formalized tools for dealing with the 

imprecision intrinsic to many problems.  

 

 

Zadeh’s idea of membership grade is the backbone of fuzzy set theory. In 

1965, the publication of his seminal paper on fuzzy sets declared the birth of fuzzy 

logic technology.  Narrowly speaking, fuzzy logic refers to a logical system that 

generalizes classical two-valued logic for reasoning under uncertainty.  Broadly 

speaking, fuzzy logic refers to all of the theories and technologies that employ fuzzy 

sets, which are classes with unsharp boundaries (Yen and Langari, 1999).  

 

 

Even though the concept of fuzzy sets encountered sharp criticism from the 

academic community at the beginning, many researchers around the world still kept 

stepping into this field.  During the first decade (1965-1975), Zadeh continued to 

broaden the foundation of fuzzy set theory.  He introduced fuzzy multistage 

decision-making, fuzzy similarity relations, fuzzy restrictions, and linguistic hedges. 

Mamdani and Assilian (1975) developed the first fuzzy logic controller to control a 

steam generator in 1974.  In 1976, the first industrial application of fuzzy logic was 

developed by Blue Circle Cement and SIRA in Denmark. Another successful 

application is a fuzzy logic based automatic train operation control system in Sendai 

city’s subway system developed by Yasunobu and his colleagues at Hitachi in 1987. 

Researchers in Japan made many important contributions to the theory as well as to 

the applications.  In 1980s, Takagi and Sugeno developed the first approach for 

constructing fuzzy rules based on the training data.  This important work did not 

gain much immediate attention, but it built the foundation for fuzzy model 

identification.  
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The fuzzy boom in Japan triggered a broad interest in the world.   Fuzzy 

logic is now being widely used in aerospace, defense, automobile, consumer 

products, industry, manufacturing, business and finance.  The main reason for its 

popularity is that it utilizes concepts and knowledge that do not have well-defined, 

sharp boundaries; therefore, it can alleviate the difficulties encountered by 

conventional mathematical tools in developing and analyzing complex systems.  

 

 

Fuzzy set theory implements classes or groupings of data with boundaries 

that are not sharply defined.  Any methodology or theory implementing “crisp” 

definitions such as classical set theory, arithmetic, and programming, may be 

“fuzzified” by generalizing the concept of a crisp set to a fuzzy set with blurred 

boundaries.  The benefit of extending crisp theory and analysis methods to fuzzy 

techniques is the strength in solving real world problems, which inevitably entail 

some degree of imprecision and noise in the variables and parameters measured and 

processed.  Fuzzy logic comprises of fuzzy sets and fuzzy rules which combine 

numerical and linguistic data.  Linguistic variables are a critical aspect of some 

fuzzy logic application, where general terms such as “large”, “medium”, and “small” 

could be used to capture a range of numerical values.  Such terms are not precise and 

cannot be represented in normal set theory.  While similar to conventional 

quantization, fuzzy logic allows these stratified sets to overlap and allows members 

to be partial members as well as the normal multi-set membership.  

 

 

Since fuzzy logic can handle approximate information in a systematic way, it 

is ideal for dealing with nonlinear systems and for modeling complex systems where 

no exact model exists or systems where ambiguity or vagueness is common. 
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1.3.3 Soft Computing 

 

 

Soft computing is an emerging approach to computing which parallels the 

remarkable ability of the human mind to reason and learn in an environment 

of uncertainty and imprecision. 

 (Zadeh, 1992) 

 

  

Soft computing consists of several computing paradigms, including neural 

networks, fuzzy set theory, approximate reasoning, and derivative-free optimization 

methods such as genetic algorithms and simulated annealing.  As for the major part 

of these constituent methodologies, neural network has the strength of learning and 

adaptation, fuzzy logic has the strength of knowledge representation via fuzzy if-

then rules, and genetic algorithm is suitable for systematic random search.  

 

 

Although fuzzy logic and neural network emphasize different strengths, 

these two innovative modeling approaches share some common characteristics: they 

assume parallel operations; they are well known for their fault tolerance capabilities; 

and they have the ability of model-free learning, i.e. the ability to construct models 

using only target system sample data.  Despite these similarities, they stem from 

very different origins.  Primarily, fuzzy logic modeling is based on fuzzy sets and 

fuzzy if-then rules proposed by Zadeh, which are closely related to psychology and 

cognitive sciences, while neural network modeling is based on artificial neural 

networks which are motivated by biological neural systems (Jang, 1992).  Because 

of their very origins, the respective philosophies and methodologies underlying their 

problem solving approaches are quite different and, in general, complementary.  

Therefore, they can be integrated to generate hybrid models that can take advantage 

of the strong points of both. 

 

 




